Skip to main content

Crossed-Wires: Interactions and Cross-Talk Between the Microtubule and Microfilament Networks in Plants

  • Chapter
  • First Online:
Plant Microtubules

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 11))

Abstract

In plant cells, the cytoskeleton comprises distinct and highly dynamic arrays of microtubules and actin microfilaments. The basic structures and proteins of both the microtubules (∼25  nm-diameter polymers of α- and β-tubulin heterodimers), and the microfilaments (∼7  nm-diameter polymers of 42 kDa actin monomers) are conserved in all eukaryotic organisms, and occur in all cell types. The third cytoskeletal array present in animal cells, intermediate filaments, are of a more varied composition and their presence has not (yet) been demonstrated in plant cells.

The basic organization of microtubules and microfilaments in various plant cells was determined over several decades from static images of fixed material. These images often demonstrated that microfilaments co-align with microtubules. As functional and molecular studies have become more prevalent, it has become apparent that co-ordination of dynamic microtubules and microfilaments is necessary for many facets of growth and development, and that cross-talk exists between them. Numerous studies have shown such interactions in animal cells (Gavin 1997; Goode et al. 2000; Dehmelt and Halpain 2003), and it is the diversity of these processes in plants that forms the subject of this review. As such, this review takes a broad approach to the topic. Defining microtubule–microfilament cross-talk (or microfilament–microtubule cross-talk for those of an actin persuasion) as any type of relationship between microtubules and microfilaments, the review commences with a reassessment of early work into colocalization between microtubules and microfilaments (Sect. ??), which leads to information about microtubule–microfilament interactions (Sect. ??). In this review, the term “interactions” implies a direct, physical relationship between the two components of the cytoskeleton, whereas “cross-talk” is used in a more encompassing way that includes indirect interactions. Section ??considers proteins that might mediate direct microtubule–microfilament interactions. However, taking the broad view of microtubule–microfilament cross-talk leads to discussion of systems where both microtubules and microfilaments play a role, but without any direct involvement with one another. Such microtubule–microfilament co-ordination seemingly occurs in organelle movement and shaping (Sect. ??). A further component of microtubule–microfilament cross-talk involves indirect, but specific interplay between the networks via the Rop-signalling pathway (Sect. ??).

The cytoskeleton performs numerous fundamental roles within plant cells, and plant biologists have demonstrated that the microtubules and microfilaments function independently in many of these. However, as this review documents, on the occasions when these two networks come together, and there is interplay between them, dissecting the tangled cross-wires of the microtubules and microfilaments can become difficult.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abu-Abied M, Golomb L, Belausov E, Huang S, Geiger B, Kam Z, Staiger CJ, Sadot E (2006) Identification of plant cytoskeleton-interacting proteins by screening for actin stress fiber association in mammalian fibroblasts. Plant J 48:367–379

    PubMed  CAS  Google Scholar 

  • Ambrose JC, Li W, Marcus A, Ma H, Cyr R (2005) A minus-end directed kinesin with plus-end tracking protein activity is involved in spindle morphogenesis. Mol Biol Cell 16:1584–1592

    PubMed  CAS  Google Scholar 

  • Anderhag P, Hepler PK, Lazzaro MD (2000) Microtubules and microfilaments are both responsible for pollen tube elongation in the conifer Picea abies (Norway spruce). Protoplasma 214:141–157

    Google Scholar 

  • Andersland JM, Dixon DC, Seagull RW, Triplett BA (1998) Isolation and characterization of cytoskeletons from cotton fiber cytoplasts. In Vitro Cell Dev Biol Plant 34:173–180

    Google Scholar 

  • Baluška F, Wojtaszek P, Volkmann D, Barlow P (2003) The architecture of polarized cell growth: the unique status of elongating plant cells. BioEssays 25:569–576

    PubMed  Google Scholar 

  • Bannigan A, Baskin TI (2005) Directional cell expansion—turning toward actin. Curr Opin Plant Biol 8:619–624

    PubMed  CAS  Google Scholar 

  • Bannigan A, Wiedemeier AMD, Williamson RE, Overall RL, Baskin TI (2006) Cortical microtubule arrays lose uniform alignment between cells and are oryzalin resistant in the Arabidopsis mutant, radially swollen 6. Plant Cell Physiol 47:949–958

    PubMed  CAS  Google Scholar 

  • Barrero RA, Umeda M, Yamamura S, Uchimiya H (2002) Arabidopsis CAP regulates the actin cytoskeleton necessary for plant cell elongation and division. Plant Cell 14:149–163

    PubMed  CAS  Google Scholar 

  • Baskin TI, Bivens NJ (1995) Stimulation of radial expansion in Arabidopsis roots by inhibitors of actomyosin and vesicle secretion but not by various inhibitors of metabolism. Planta 197:514–521

    PubMed  CAS  Google Scholar 

  • Bibikova TN, Blancaflor EB, Gilroy S (1999) Microtubules regulate tip growth and orientation in root hairs of Arabidopsis thaliana. Plant J 17:657–665

    PubMed  CAS  Google Scholar 

  • Blancaflor EB (2000) Cortical actin filaments potentially interact with cortical microtubules in regulating polarity of cell expansion in primary roots of maize (Zea mays L.). J Plant Growth Regul 19:406–414

    PubMed  CAS  Google Scholar 

  • Blancaflor EB, Wang Y-S, Motes CM (2006) Organization and function of the actin cytoskeleton in developing root cells. Int Rev Cytol 252:219–264

    PubMed  CAS  Google Scholar 

  • Boevink P, Oparka K, Santa Cruz S, Martin B, Betteridge A, Hawes C (1998) Stacks on tracks: the plant Golgi apparatus traffics on an actin/ER network. Plant J 15:441–447

    PubMed  CAS  Google Scholar 

  • Brière C, Bordel A-C, Barthou H, Jauneau A, Steinmetz A, Alibert G, Petitprez M (2003) Is the LIM-domain protein HaWLIM1 associated with cortical microtubules in sunflower protoplasts? Plant Cell Physiol 44:1055–1063

    PubMed  Google Scholar 

  • Chen C, Marcus A, Li W, Hu Y, Vielle-Calzada J-P, Grossniklaus U, Cyr RJ, Ma H (2002) The Arabidopsis ATK1 gene is required for spindle morphogenesis in male meiosis. Development 129:2401–2409

    PubMed  CAS  Google Scholar 

  • Chu B, Kerr P, Carter JV (1993) Stabilizing microtubules with taxol increases microfilament stability during freezing of rye root tips. Plant Cell Environ 16:883–889

    CAS  Google Scholar 

  • Chuong SDX, Franceschi VR, Edwards GE (2006) The cytoskeleton maintains organelle partitioning required for single-cell C4 photosynthesis in Chenopodiaceae species. Plant Cell 18:2207–2223

    PubMed  CAS  Google Scholar 

  • Chuong SDX, Good AG, Taylor GJ, Freeman MC, Moorhead GBG, Muench DG (2004) Large-scale identification of tubulin binding proteins provides insight on subcellular trafficking, metabolic channeling, and signaling in plant cells. Mol Cell Proteomics 3:970–983

    PubMed  CAS  Google Scholar 

  • Chuong SDX, Mullen RT, Muench DG (2002) Identification of a rice RNA- and microtubule-binding protein as the multifunctional protein (MFP), a peroxisomal enzyme involved in the β-oxidation of fatty acids. J Biol Chem 277:2419–2429

    PubMed  CAS  Google Scholar 

  • Cleary AL (1995) F-actin redistributions at the dividing site in living Tradescantia stomatal complexes as revealed by microinjection of rhodamine-phalloidin. Protoplasma 185:152–165

    Google Scholar 

  • Clore AM, Dannenhoffer JM, Larkins BA (1996) EF-1α is associated with a cytoskeletal network surrounding protein bodies in maize endosperm cells. Plant Cell 8:2003–2014

    PubMed  CAS  Google Scholar 

  • Collings DA, Allen NS (2000) In: Staiger CJ, Baluška F, Volkmann D, Barlow PW (eds) Cortical actin interacts with the plasma membrane and microtubules. Actin: A Dynamic Framework for Multiple Plant Cell Functions. Kluwer Academic, Dordrecht, pp 145–163

    Google Scholar 

  • Collings DA, Asada T, Allen NS, Shibaoka H (1998) Plasma membrane-associated actin in Bright Yellow 2 tobacco cells: Evidence for interaction with microtubules. Plant Physiol 118:917–928

    PubMed  CAS  Google Scholar 

  • Collings DA, Harper JDI, Vaughn KC (2003) The association of peroxisomes with the developing cell plate in dividing onion root cells depends on actin microfilaments and myosin. Planta 218:204–216

    PubMed  CAS  Google Scholar 

  • Collings DA, Lill AW, Himmelspach R, Wasteneys GO (2006) Drug sensitisation studies show actin microfilaments and microtubules interact during root elongation in Arabidopsis thaliana. New Phytol 170:275–290

    PubMed  CAS  Google Scholar 

  • Collings DA, Wasteneys GO (2005) Actin microfilament and microtubule distribution patterns in the expanding root of Arabidopsis thaliana. Can J Bot 83:579–590

    Google Scholar 

  • Collings DA, Wasteneys GO, Williamson RE (1996) Actin-microtubule interactions in the alga Nitella: analysis of the mechanism by which microtubule depolymerization potentiates cytochalasin's effects on streaming. Protoplasma 191:178–190

    CAS  Google Scholar 

  • Collings DA, Zsuppan G, Allen NS, Blancaflor EB (2001) Demonstration of prominent actin filaments in the root columella. Planta 212:392–403

    PubMed  CAS  Google Scholar 

  • Deeks MJ, Hussey PJ, Davies B (2002) Formins: intermediates in signal-transduction cascades that affect cytoskeletal reorganization. Trends Plant Sci 7:492–498

    PubMed  CAS  Google Scholar 

  • Dehmelt L, Halpain S (2003) Actin and microtubules in neurite initiation: are MAPs the missing link? J Neurobiol 58:18–33

    Google Scholar 

  • Ding B, Turgeon R, Parthasarathy MV (1991a) Microfilament organization and distribution in freeze substituted tobacco plant tissues. Protoplasma 165:96–105

    Google Scholar 

  • Ding B, Turgeon R, Parthasarathy MV (1991b) Microfilaments in the preprophase band of freeze substituted tobacco root cells. Protoplasma 165:209–211

    Google Scholar 

  • Dong C-H, Kost B, Xia G, Chua N-H (2001a) Molecular identification and characterization of Arabidopsis AtADF1, AtADF5 and AtADF6 genes. Plant Mol Biol 45:517–527

    PubMed  CAS  Google Scholar 

  • Dong C-H, Xia G-X, Hong Y, Ramachandran S, Kost B, Chua N-H (2001b) ADF proteins are involved in the control of flowering and regulate F-actin organization, cell expansion, and organ growth in Arabidopsis. Plant Cell 13:1333–1346

    PubMed  CAS  Google Scholar 

  • Durso NA, Leslie JD, Cyr RJ (1996) In situ immunocytochemical evidence that a homolog of protein translation factor EF-1α is associated with microtubules in carrot cells. Protoplasma 190:141–150

    CAS  Google Scholar 

  • Eleftheriou EP, Palevitz BA (1992) The effect of cytochalasin D on preprophase band organisation in root tip cells of Allium. J Cell Sci 103:989–998

    CAS  Google Scholar 

  • Endow SA, Waligora KW (1998) Determinants of kinesin motor polarity. Science 281:1200–1202

    PubMed  CAS  Google Scholar 

  • Faix J, Grosse R (2006) Staying in shape with formins. Dev Cell 10:693–706

    PubMed  CAS  Google Scholar 

  • Foissner I (2004) Microfilaments and microtubules control the shape, motility, and subcellular distribution of cortical mitochondria in characean internodal cells. Protoplasma 224:145–157

    PubMed  CAS  Google Scholar 

  • Foissner I, Wasteneys GO (1999) Microtubules at wound sites of Nitella internodal cells passively co-align with actin bundles when exposed to hydrodynamic forces generated by cytoplasmic streaming. Planta 208:480–490

    CAS  Google Scholar 

  • Foissner I, Wasteneys GO (2000) Microtubule disassembly enhances reversible cytochalasin-dependent disruption of actin bundles in characean internodes. Protoplasma 214:33–44

    CAS  Google Scholar 

  • Frank MJ, Cartwright HN, Smith LG (2003) Three Brick genes have distinct functions in a common pathway promoting polarized cell division and cell morphogenesis in the maize leaf epidermis. Development 130:753–762

    PubMed  CAS  Google Scholar 

  • Franke WW, Herth W, van der Woude WJ, Morre DJ (1972) Tubular and filamentous structures in pollen tubes: possible involvement as guide elements in protoplasmic streaming and vectorial migration of secretory vesicles. Planta 105:317–341

    Google Scholar 

  • Fu Y, Gu Y, Zheng Z, Wasteneys G, Yang Z (2005) Arabidopsis interdigitating cell growth requires two antagonistic pathways with opposing action on cell morphogenesis. Cell 120:687–700

    PubMed  CAS  Google Scholar 

  • Fu Y, Li H, Yang Z (2002) The ROP2 GTPase controls the formation of cortical fine F-actin and the early phase of directional cell expansion during Arabidopsis organogenesis. Plant Cell 14:777–794

    PubMed  CAS  Google Scholar 

  • Fu Y, Wu G, Yang Z (2001) Rop GTPase-dependent dynamics of tip-localized F-actin controls tip growth in pollen tubes. J Biol Chem 152:1019–1032

    CAS  Google Scholar 

  • Gardiner JC, Harper JDI, Weerakoon ND, Collings DA, Ritchie S, Gilroy S, Cyr RJ, Marc J (2001) A 90-kD phospholipase D from tobacco binds to microtubules and the plasma membrane. Plant Cell 13:2143–2158

    PubMed  CAS  Google Scholar 

  • Gavin RH (1997) Microtubule–microfilament synergy in the cytoskeleton. Int Rev Cytol 173:207–242

    Article  PubMed  CAS  Google Scholar 

  • Gilliland LU, Pawloski LC, Kandasamy MK, Meagher RB (2003) Arabidopsis actin gene ACT7 plays an essential role in germination and root growth. Plant J 33:319–328

    PubMed  CAS  Google Scholar 

  • Gimona M, Djinovic-Carugo K, Kranewitter WJ, Winder SJ (2002) Functional plasticity of CH domains. FEBS Lett 513:98–106

    PubMed  CAS  Google Scholar 

  • Gimona M, Mital R (1998) The single CH domain of calponin is neither sufficient nor necessary for F-actin binding. J Cell Sci 111:1813–1821

    PubMed  CAS  Google Scholar 

  • Goode BL, Drubin DG, Barnes G (2000) Functional cooperation between the microtubule and actin cytoskeletons. Curr Op Cell Biol 12:63–71

    PubMed  CAS  Google Scholar 

  • Granger CL, Cyr RJ (2001) Use of abnormal preprophase bands to decipher division plane determination. J Cell Sci 114:599–607

    PubMed  CAS  Google Scholar 

  • Grebe M, Xu J, Möbius W, Ueda T, Nakano A, Geuze HJ, Rook MB, Scheres B (2003) Arabidopsis sterol endocytosis involves actin-mediated trafficking via ARA6-positive early endosomes. Curr Biol 13:1378–1387

    PubMed  CAS  Google Scholar 

  • Gu Y, Wang Z, Yang Z (2004) ROP/RAC GTPase: an old new master regulator for plant signaling. Curr Op Plant Biol 7:527–536

    CAS  Google Scholar 

  • Gungabissoon RA, Khan S, Hussey PJ, Maciver SK (2001) Interaction of elongation factor 1α from Zea mays (ZmEF-1α) with F-actin and interplay with the maize actin severing protein, ZmADF3. Cell Motil Cytoskel 49:104–111

    CAS  Google Scholar 

  • Gunning BES, Wick SM (1985) Preprophase bands, phragmoplasts and spatial control of cytokinesis. J Cell Sci Suppl 2:157–179

    PubMed  CAS  Google Scholar 

  • Hamada T, Igarashi H, Yao M, Hashimoto T, Shimmen T, Sonobe S (2006) Purification and characterization of plant dynamin from tobacco BY-2 cells. Plant Cell Physiol 47:1175–1181

    PubMed  CAS  Google Scholar 

  • Hardham AR, Green PB, Lang JM (1980) Reorganization of cortical microtubules and cellulose deposition during leaf formation in Graptopetalum paraguayense. Planta 149:181–195

    CAS  Google Scholar 

  • Harper JDI, Weerakoon ND, Gardiner JC, Blackman LM, Marc J (2002) A 75-kDa plant protein isolated by tubulin-affinity chromatography is a peroxisomal matrix enzyme. Can J Bot 80:1018–1027

    CAS  Google Scholar 

  • Hasezawa S, Nagata T (1993) Microtubule organizing centers in plant cells: localization of a 49 kDa protein that is immunologically cross-reactive to a 51 kDa protein from sea urchin centrosomes in synchronised tobacco BY-2 cells. Protoplasma 176:64–74

    CAS  Google Scholar 

  • Hasezawa S, Sano T, Nagata T (1998) The role of microfilaments in the organization and orientation of microtubules during the cell cycle transition from M phase to G1 phase in tobacco BY-2 cells. Protoplasma 202:105–114

    Google Scholar 

  • Holweg C, Nick P (2004) Arabidopsis myosin XI mutant is defective in organelle movement and polar auxin transport. Proc Nat Acad Sci USA 101:10488–10493

    PubMed  CAS  Google Scholar 

  • Huang S, An Y-Q, McDowell JM, McKinney EC, Meagher RB (1997) The Arabidopsis ACT11 actin gene is strongly expressed in tissues of the emerging inflorescence, pollen, and developing ovules. Plant Mol Biol 33:125–139

    PubMed  CAS  Google Scholar 

  • Hush JM, Overall RL (1992) Re-orientation of cortical F-actin is not necessary for wound-induced microtubule re-orientation and cell polarity establishment. Protoplasma 169:97–106

    Google Scholar 

  • Hussey PJ, Hawkins TJ, Igarashi H, Kaloriti D, Smertenko A (2002) The plant cytoskeleton: recent advances in the study of the plant microtubule-associated proteins MAP-65, MAP-190 and the Xenopus MAP215-like protein, MOR1. Plant Mol Biol 50:915–924

    PubMed  CAS  Google Scholar 

  • Hussey PJ, Yuan M, Calder G, Khan S, Lloyd CW (1998) Microinjection of pollen-specific actin-depolymerizing factor, ZmADF1, reorientates F-actin strands in Tradescantia stamen hair cells. Plant J 14:353–357

    CAS  Google Scholar 

  • Igarashi H, Orii H, Mori H, Shimmen T, Sonobe S (2000) Isolation of a novel 190 kDa protein from tobacco BY-2 cells: possible involvement in the interaction between actin filaments and microtubules. Plant Cell Physiol 41:920–931

    PubMed  CAS  Google Scholar 

  • Itano N, Hatano S (1991) F-actin bundling protein from Physarum polycephalum: purification and its capacity for co-bundling of actin filaments and microtubules. Cell Motil Cytoskel 19:244–254

    CAS  Google Scholar 

  • Kakimoto T, Shibaoka H (1988) Cytoskeletal ultrastructure of phragmoplast-nuclei complexes isolated from cultured tobacco cells. Protoplasma Suppl 2:95–103

    Google Scholar 

  • Ketelaar T, Allwood EG, Anthony RG, Voigt B, Menzel D, Hussey PJ (2004) The actin-interacting protein AIP1 is essential for actin organization and plant development. Curr Biol 14:145–149

    PubMed  CAS  Google Scholar 

  • Ketelaar T, de Ruijter NCA, Emons AMC (2003) Unstable F-actin specifies the area and microtubule direction of cell expansion in Arabidopsis root hairs. Plant Cell 15:285–292

    PubMed  CAS  Google Scholar 

  • Kobayashi H, Fukuda H, Shibaoka H (1988) Interrelation between the spatial disposition of actin filaments and microtubules during the differentiation of tracheary elements in cultured Zinnia cells. Protoplasma 143:29–37

    Google Scholar 

  • Kong L-J, Hanley-Bowdoin L (2002) A geminivirus replication protein interacts with a protein kinase and a motor protein that display different expression patterns during plant development and infection. Plant Cell 14:1817–1832

    PubMed  CAS  Google Scholar 

  • Kost B, Spielhofer P, Chua N-H (1998) A GFP-mouse talin fusion protein labels plant actin filaments in vivo and visualizes the actin cytoskeleton in growing pollen tubes. Plant J 16:393–401

    PubMed  CAS  Google Scholar 

  • Kotzer AM, Wasteneys GO (2006) Mechanisms behind the puzzle: microtubule–microfilament cross-talk in pavement cell formation. Can J Bot 84:594–603

    CAS  Google Scholar 

  • Kovar DR, Gibbon BC, McCurdy DW, Staiger CJ (2001) Fluorescently-labeled fimbrin decorates a dynamic actin filament network in live plant cells. Planta 213:390–395

    PubMed  CAS  Google Scholar 

  • Kropf DL, Bisgrove SR, Hable WE (1998) Cytoskeletal control of polar growth in plant cells. Curr Op Cell Biol 10:117–122

    PubMed  CAS  Google Scholar 

  • Kusner DJ, Barton JA, Qin C, Wang X, Iyer SS (2003) Evolutionary conservation of physical and functional interactions between phospholipase D and actin. Arch Biochem Biophys 412:231–241

    PubMed  CAS  Google Scholar 

  • Kwok EY, Hanson MR (2003) Microfilaments and microtubules control the morphology and movement of non-green plastids and stromules in Nicotiana tabacum. Plant J 35:16–26

    PubMed  Google Scholar 

  • Lancelle SA, Cresti M, Hepler PK (1987) Ultrastructure of the cytoskeleton in freeze-substituted pollen tubes of Nicotiana alata. Protoplasma 140:141–150

    Google Scholar 

  • Lancelle SA, Hepler PK (1991) Association of actin with cortical microtubules revealed by immunogold localization in Nicotiana pollen tubes. Protoplasma 165:167–172

    CAS  Google Scholar 

  • Lee Y-RJ, Giang HM, Liu B (2001) A novel plant kinesin-related protein specifically associates with the phragmoplast organelles. Plant Cell 13:2427–2439

    PubMed  CAS  Google Scholar 

  • Leung CL, Sun D, Zheng M, Knowles DR, Liem RKH (1999) Microtubule actin cross-linking factor (MACF): a hybrid of dystonin and dystrophin that can interact with the actin and microtubule cytoskeletons. J Cell Biol 147:1275–1285

    PubMed  CAS  Google Scholar 

  • Li S, Blanchoin L, Yang Z, Lord EM (2003) The putative Arabidopsis Arp2/3 complex controls leaf cell morphogenesis. Plant Physiol 132:2034–2044

    PubMed  CAS  Google Scholar 

  • Logan DC (2006) Plant mitochondrial dynamics. Bioch Biophys Acta 1763:430–441

    CAS  Google Scholar 

  • Logan DC, Scott I, Tobin AK (2003) The genetic control of plant mitochondrial morphology and dynamics. Plant J 36:500–509

    PubMed  CAS  Google Scholar 

  • Lu L, Lee Y-RJ, Pan R, Maloof JN, Liu B (2005) An internal motor kinesin is associated with the Golgi apparatus and plays a role in trichome morphogenesis in Arabidopsis. Mol Biol Cell 16:811–823

    PubMed  CAS  Google Scholar 

  • Mathur J, Mathur N, Kernebeck B, Hülskamp M (2003) Mutations in actin-related proteins 2 and 3 affect cell shape development in Arabidopsis. Plant Cell 15:1632–1645

    PubMed  CAS  Google Scholar 

  • Matsui K, Collings D, Asada T (2001) Identification of a novel plant-specific kinesin-like protein that is highly expressed in interphase tobacco BY-2 cells. Protoplasma 215:105–115

    PubMed  CAS  Google Scholar 

  • McCurdy DW, Gunning BES (1990) Reorganization of cortical actin microfilaments and microtubules at preprophase and mitosis in wheat root-tip cells: a double label immunofluorescence study. Cell Motil Cytoskel 15:76–87

    Google Scholar 

  • Mineyuki Y, Palevitz BA (1990) Relationship between preprophase band organization, F-actin and the division site in Allium. J Cell Sci 97:283–295

    CAS  Google Scholar 

  • Mitsui H, Nakatani K, Yamaguchi-Shinozaki K, Shinozaki K, Nishikawa K, Takahashi H (1994) Sequencing and characterization of the kinesin-related genes katB and katC of Arabidopsis thaliana. Plant Mol Biol 25:865–876

    PubMed  CAS  Google Scholar 

  • Mitsui H, Yamaguchi-Shinozaki K, Shinozaki K, Nishikawa K, Takahashi H (1993) Identification of a gene family (kat) encoding kinesin-like proteins in Arabidopsis thaliana and the characterization of secondary structure of KatA. Mol Gen Genet 238:362–368

    PubMed  CAS  Google Scholar 

  • Moore RC, Cyr RJ (2000) Association between elongation factor-1α and microtubules in vivo is domain dependent and conditional. Cell Motil Cytoskel 45:279–292

    CAS  Google Scholar 

  • Moore RC, Durso NA, Cyr RJ (1998) Elongation factor-1α stabilizes microtubules in a calcium/calmodulin-dependent manner. Cell Motil Cytoskel 41:168–180

    CAS  Google Scholar 

  • Motes CM, Pechter P, Yoo CM, Wang Y-S, Chapman KD, Blancaflor EB (2005) Differential effects of two phospholipase D inhibitors, 1-butanol and N-acylethanolamine, on in vivo cytoskeletal organization and Arabidopsis seedling growth. Protoplasma 226:109–123

    PubMed  CAS  Google Scholar 

  • Muday GK, Murphy AS (2002) An emerging model of auxin transport regulation. Plant Cell 14:293–299

    PubMed  CAS  Google Scholar 

  • Muench DG, Mullen RT (2003) Peroxisome dynamics in plant cells: a role for the cytoskeleton. Plant Sci 164:307–315

    CAS  Google Scholar 

  • Nakasuka Y, Shimmen T (2006) The effects of microtubule inhibitors on actin cytoskeleton in root hairs of Limnobium. J Plant Res 119S:111

    Google Scholar 

  • Narasimhulu SB, Reddy ASN (1998) Characterization of microtubule binding domains in the Arabidopsis kinesin-like calmodulin binding protein. Plant Cell 10:957–965

    PubMed  CAS  Google Scholar 

  • Nebenführ A, Gallagher LA, Dunahy TG, Frohlick JA, Mazurkiewicz AM, Meehl JB, Staehelin LA (1999) Stop-and-go movements of plant Golgi stacks are mediated by the acto-myosin system. Plant Physiol 121:1127–1141

    PubMed  Google Scholar 

  • Ni CZ, Wang HQ, Xu T, Qu Z, Liu GQ (2005) AtKP1, a kinesin-like protein, mainly localizes to mitochondria in Arabidopsis thaliana. Cell Res 15:725–733

    PubMed  CAS  Google Scholar 

  • Nishimura T, Yokota E, Wada T, Shimmen T, Okada K (2003) An Arabidopsis ACT2 dominant-negative mutation, which disturbs F-actin polymerization, reveals its distinctive function in root development. Plant Cell Physiol 44:1131–1140

    PubMed  CAS  Google Scholar 

  • Oliver TN, Berg JS, Cheney RE (1999) Tails on unconventional myosins. Cell Mol Life Sci 56:243–257

    PubMed  CAS  Google Scholar 

  • Oppenheimer DG, Pollock MA, Vacik J, Szymanski DB, Ericson B, Feldman K, Marks MD (1997) Essential role of a kinesin-like protein in Arabidopsis trichome morphogenesis. Proc Natl Acad Sci USA 94:6261–6266

    PubMed  CAS  Google Scholar 

  • Panteris E, Apostolakos P, Galatis B (1993) Microtubules and morphogenesis in ordinary epidermal cells of Vigna sinensis leaves. Protoplasma 174:91–100

    Google Scholar 

  • Panteris E, Apostolakos P, Galatis B (2006) Cytoskeletal asymmetry in Zea mays subsidiary cell mother cells: a monopolar prophase microtubule half-spindle anchors the nucelus to its polar position. Cell Motil Cytoskel 63:696–709

    CAS  Google Scholar 

  • Panteris E, Galatis B (2005) The morphogenesis of lobed plant cells in the mesophyll and epidermis: organization and distinct roles of cortical microtubules and actin filaments. New Phytol 167:721–732

    PubMed  CAS  Google Scholar 

  • Paredez AR, Somerville CR, Ehrhardt DW (2006) Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312:1491–1495

    PubMed  CAS  Google Scholar 

  • Preuss ML, Kovar DR, Lee Y-RJ, Staiger CJ, Delmer DP, Liu B (2004) A plant-specific kinesin binds to actin microfilaments and interacts with cortical microtubules in cotton fibers. Plant Physiol 136:3945–3955

    PubMed  CAS  Google Scholar 

  • Ramachandran S, Christensen HEM, Ishimaru Y, Dong C-H, Chao-Ming W, Cleary AL, Chua N-H (2000) Profilin plays a role in cell elongation, cell shape maintenance and flowering in Arabidopsis. Plant Physiol 124:1637–1647

    PubMed  CAS  Google Scholar 

  • Reddy ASN, Day IS (2001) Kinesins in the Arabidopsis genome: a comparative analysis among eukaryotes. BMC Genomics 2:2

    PubMed  CAS  Google Scholar 

  • Reddy ASN, Safadi F, Narasimhulu SB, Golovkin M, Hu X (1996) A novel plant calmodulin-binding protein with a kinesin heavy chain motor domain. J Biol Chem 271:7052–7060

    PubMed  CAS  Google Scholar 

  • Richardson DN, Simmons MP, Reddy ASN (2006) Comprehensive comparative analysis of kinesins in photosynthetic eukaryotes. BMC Genomics 7:18

    PubMed  Google Scholar 

  • Riesen D, Hanson MR (2007) Association of six YFP-myosin XI-tail fusions with mobile plant cell organelles. BMC Plant Biol 7:6

    Google Scholar 

  • Romagnoli S, Cai G, Faleri C, Yokota E, Shimmen T, Cresti M (2007) Microtubule– and actin-filament-dependent motors are distributed on pollen tube mitochondria and contribute differently to their movement. Plant Cell Physiol 48:345–361

    PubMed  CAS  Google Scholar 

  • Saedler R, Mathur N, Srinivas BP, Kernebeck B, Hülskamp M, Mathur J (2004) Actin control over microtubules suggested by DISTORTED2 encoding the Arabidopsis ARPC2 subunit homolog. Plant Cell Physiol 45:813–822

    PubMed  CAS  Google Scholar 

  • Sano T, Higaki T, Oda Y, Hayashi T, Hasezawa S (2005) Appearance of actin microfilament twin peaks in mitosis and their function in cell plate formation, as visualized in tobacco BY-2 cells expressing GFP-fimbrin. Plant J 44:595–605

    PubMed  CAS  Google Scholar 

  • Sato Y, Wada M, Kadota A (2001) Choice of tracks, microtubules and/or actin filaments for chloroplast photo-movement is differentially controlled by phytochrome and a blue light receptor. J Cell Sci 114:269–279

    PubMed  CAS  Google Scholar 

  • Schwab B, Mathur J, Saedler R, Schwarz H, Frey B, Scheidegger C, Hülskamp M (2003) Regulation of cell expansion by the DISTORTED genes in Arabidopsis thaliana: actin controls the spatial organization of microtubules. Mol Gen Genomics 269:350–360

    CAS  Google Scholar 

  • Seagull RW (1990) The effects of microtubule and microfilament disrupting agents on cytoskeletal arrays and wall deposition in developing cotton fibres. Protoplasma 159:44–59

    CAS  Google Scholar 

  • Seagull RW (1992) A quantitative electron microscopic study of changes in microtubule arrays and wall microfibril orientation during in vitro cotton fiber development. J Cell Sci 101:561–577

    Google Scholar 

  • Seagull RW, Heath IB (1979) The effects of tannic acid on the in vivo preservation of microfilaments. Eur J Cell Biol 20:184–188

    PubMed  CAS  Google Scholar 

  • Sheahan MB, McCurdy DW, Rose RJ (2005) Mitochondria as a connected population: ensuring continuity of the mitochondrial genome during plant cell dedifferentiation through massive mitochondrial fusion. Plant J 44:744–755

    PubMed  CAS  Google Scholar 

  • Sheahan MB, Staiger CJ, Rose RJ, McCurdy DW (2004) A green fluorescent protein fusion to actin-binding domain 2 of Arabidopsis thaliana fimbrin highlights new features of a dynamic actin cytoskeleton in live plant cells. Plant Physiol 136:3968–3978

    PubMed  CAS  Google Scholar 

  • Smith LG, Oppenheimer DG (2005) Spatial control of cell expansion by the plant cytoskeleton. Ann Rev Cell Dev Biol 21:271–295

    CAS  Google Scholar 

  • Song H, Golovkin M, Reddy ASN, Endow SA (1997) In vitro motility of AtKCBP, a calmodulin-binding kinesin protein of Arabidopsis. Proc Natl Acad Sci USA 94:322–327

    PubMed  CAS  Google Scholar 

  • Sonobe S (1996) Studies on the plant cytoskeleton using miniprotoplasts of tobacco BY-2 cells. J Plant Res 109:437–448

    Google Scholar 

  • Sonobe S, Shibaoka H (1989) Cortical fine actin filaments in higher plant cells visualized by rhodamine-phalloidin after pretreatment with m-maleimidobenzoyl N-hydroxysuccinimide ester. Protoplasma 148:80–86

    Google Scholar 

  • Sutoh K (1984) Actin-actin and actin-deoxyribonuclease I contact sites in the actin sequence. Biochemistry 23:1942–1946

    PubMed  CAS  Google Scholar 

  • Takesue K, Shibaoka H (1998) The cyclic reorientation of cortical microtubules in epidermal cells of azuki bean epicotyls: the role of actin filaments in the progression of the cycle. Planta 205:539–546

    PubMed  CAS  Google Scholar 

  • Tamura K, Makatani K, Mitsui H, Ohashi Y, Takahashi H (1999) Characterization of katD, a kinesin-like protein gene specifically expressed in floral tissues of Arabidopsis thaliana. Gene 230:23–32

    PubMed  CAS  Google Scholar 

  • Thomas C, Hoffmann C, Dieterle M, van Troys M, Ampe C, Steinmetz A (2006) Tobacco WLIM1 is a novel F-actin binding proteins involved in actin cytoskeleton remodeling. Plant Cell 18:2194–2206

    PubMed  CAS  Google Scholar 

  • Timmers ACJ, Vallotton P, Heym C, Menzel D (2007) Microtubule dynamics in root hairs of Medicago truncatula. Eur J Cell Biol 86:69–83

    PubMed  CAS  Google Scholar 

  • Tiwari SC, Wick SM, Williamson RE, Gunning BES (1984) Cytoskeleton and integration of cellular function in cells of higher plants. J Cell Biol 99:63s-69s

    Google Scholar 

  • Tiwari SC, Wilkins TA (1995) Cotton (Gossypium hirsutum) seed trichomes expand via diffuse growing mechanism. Can J Bot 73:746–757

    Google Scholar 

  • Tominaga M, Morita K, Sonobe S, Yokota E, Shimmen T (1997) Microtubules regulate the organization of actin filaments at the cortical region in root hair cells of Hydrocharis. Protoplasma 199:83–92

    CAS  Google Scholar 

  • Traas JA, Doonan JH, Rawlins DJ, Shaw PJ, Watts J, Lloyd CW (1987) An actin network is present in the cytoplasm throughout the cell cycle of carrot cells and associates with the dividing nucleus. J Cell Biol 105:387–395

    PubMed  CAS  Google Scholar 

  • Ueda K, Matsuyama T (2000) Rearrangement of cortical microtubules from transverse to oblique or longitudinal in living cells of transgenic Arabidopsis thaliana. Protoplasma 213:28–38

    CAS  Google Scholar 

  • van Gestel K, Köhler RH, Verbelen J-P (2002) Plant mitochondria move on F-actin, but their positioning in the cortical cytoplasm depends on both F-actin and microtubules. J Exp Bot 53:659–667

    PubMed  Google Scholar 

  • Vanstraelen M, Acosta JAT, De Veylder L, Inzé D, Geelen D (2004) A plant-specific subclass of C-terminal kinesins contains a conserved A-type cyclin-dependent kinase site implicated in folding and dimerization. Plant Physiol 135:1417–1429

    PubMed  CAS  Google Scholar 

  • Vanstraelen M, Inzé D, Geelen D (2006a) Mitosis-specific kinesins in Arabidopsis. Trends Plant Sci 11:167–175

    PubMed  CAS  Google Scholar 

  • Vanstraelen M, van Damme D, de Rycke R, Mylle E, Inzé D, Geelen D (2006b) Cell cycle-dependent targeting of a kinesin at the plasma membrane demarcates the division site in plant cells. Curr Biol 16:308–314

    PubMed  CAS  Google Scholar 

  • Wada M, Suetsugu N (2004) Plant organelle positioning. Curr Op Plant Biol 7:626–631

    CAS  Google Scholar 

  • Waller F, Wang Q-Y, Nick P (2000) In: Staiger CJ, Baluška F, Barlow PW, Volkmann D (eds) Actin and signal-controlled cell elongation in coleoptiles. Actin: A Dynamic Framework for Multiple Plant Functions. Kluwer, Dordrecht, pp 477–496

    Google Scholar 

  • Wang Q-Y, Nick P (1998) The auxin response of actin is altered in the rice mutant Yin-Yang. Protoplasma 204:22–33

    PubMed  CAS  Google Scholar 

  • Wang Y-S, Motes CM, Mohamalawari DR, Blancaflor EB (2004) Green fluorescent protein fusions to Arabidopsis fimbrin 1 for spatio-temporal imaging of F-actin dynamics in roots. Cell Motil Cytoskel 59:79–93

    CAS  Google Scholar 

  • Wasteneys GO, Williamson RE (1991) Endoplasmic microtubules and nucleus-associated actin rings in Nitella internodal cells. Protoplasma 162:86–98

    Google Scholar 

  • Wasteneys GO, Willingale-Theune J, Menzel D (1997) Freeze shattering: a simple and effective method for permeabilizing higher plant cell walls. J Microscopy 188:51–61

    CAS  Google Scholar 

  • Wernicke W, Jung G (1992) Role of cytoskeleton in cell shaping of developing mesophyll of wheat (Triticum aestivum L.). Eur J Cell Biol 57:88–94

    PubMed  CAS  Google Scholar 

  • Whittington AT, Vugrek O, Wei KJ, Hasenbein NG, Sugimoto K, Rashbrooke MC, Wasteneys GO (2001) MOR1 is essential for organizing cortical microtubules in plants. Nature 411:610–613

    PubMed  CAS  Google Scholar 

  • Wilsen KL, Lovy-Wheeler A, Voigt B, Menzel D, Kunkel JG, Hepler PK (2006) Imaging the actin cytoskeleton in growing pollen tubes. Sex Plant Reprod 19:51–62

    Google Scholar 

  • Wu G, Gu Y, Li S, Yang Z (2001) A genome-wide analysis of Arabidopsis Rop-interactive CRIB motif containing proteins that act as Rop GTPase targets. Plant Cell 13:2841–2856

    PubMed  CAS  Google Scholar 

  • Yang F, Demma M, Warren V, Dharmawardhane S, Condeelis J (1990) Identification of an actin-binding protein from Dictyostelium as elongation factor 1a. Nature 347:494–496

    PubMed  CAS  Google Scholar 

  • Yang W, Burkhart W, Cavallius J, Merrick WC, Boss WF (1993) Purification and characterization of a phosphatidylinositol 4-kinase activator in carrot cells. J Biol Chem 268:392–398

    PubMed  CAS  Google Scholar 

  • Yoneda A, Akatsuka M, Kumagai F, Hasezawa S (2004) Disruption of actin microfilaments causes cortical microtubule disorganization and extra-phragmoplast formation at M/G1 interface in synchronized tobacco cells. Plant Cell Physiol 45:761–769

    PubMed  CAS  Google Scholar 

  • Zhang D, Wadsworth P, Hepler PK (1993) Dynamics of microfilaments are similar, but distinct from microtubules during cytokinesis in living, dividing plant cells. Cell Motil Cytoskel 24:151–155

    Google Scholar 

  • Zhang X, Dyachok J, Krishnakumar S, Smith LG, Oppenheimer DG (2005) IRREGULAR TRICHOME BRANCH1 in Arabidopsis encodes a plant homolog of the actin-related protein2/3 complex activator Scar/WAVE that regulates actin and microtubule organization. Plant Cell 17:2314–2326

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Collings .

Editor information

Peter Nick

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Collings, D.A. (2008). Crossed-Wires: Interactions and Cross-Talk Between the Microtubule and Microfilament Networks in Plants. In: Nick, P. (eds) Plant Microtubules. Plant Cell Monographs, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7089_2007_146

Download citation

Publish with us

Policies and ethics