Skip to main content

Microtubules and Pathogen Defence

  • Chapter
  • First Online:
Book cover Plant Microtubules

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 11))

Abstract

The cytoskeletal network of plant cells represents a dynamic structure that responds to external stimuli by changes of organization. An attack of pathogenic microbes represents an external stress that seriously threatens plant survival. Growing evidence from recent research indicates that cytoskeletal elements, such as microtubules and microfilaments, are central players in plant defence responses. Tubulin and actin inhibitors suppress the polarization of cellular events related to plant defence, such as massive cytoplasmic aggregation, deposition of papillae and the accumulation of autofluorescent compounds at the sites of fungal penetration. Simultaneously, these inhibitors allow non-pathogenic fungi to penetrate successfully into non-host plants. Thus, microtubules and microfilaments, through the temporal and spatial regulation of molecules and/or organelles in the host cell, seem to control responses conferring resistance to attempted fungal penetration. In addition, elements of the plant cytoskeleton seem to play a critical role in hypersensitive cell death. On the other hand, several plant pathogens produce anti-cytoskeletal compounds during invasion, suggesting that the plant cytoskeleton represents an advantageous target for plant pathogens and symbionts. The possibility of enhancing plant resistance to pathogens via artificial manipulation of cytoskeletal elements will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aepfelbacher M, Heesemann J (2001) Modulation of Rho GTPases and the actin cytoskeleton by Yersinia outer proteins (Yops). Int J Med Microbiol 291:269–276

    PubMed  CAS  Google Scholar 

  • Agrawal GK, Iwahashi H, Rakwal R (2003) Small GTPase Rop: molecular switch for plant defense responses. FEBS Lett 546:173–180

    PubMed  CAS  Google Scholar 

  • Aist JR (1976) Papillae and related wound plugs of plant cells. Annu Rev Phytoathol 14:145–163

    Google Scholar 

  • Amiour N, Recorbet G, Robert F, Gianinazzi S, Dumas-Gaudot E (2006) Mutations in DMI3 and SUNN Modify the appressorium-responsive root proteome in arbuscular mycorrhiza. Mol Plant Microbe Interact 19:988–997

    PubMed  CAS  Google Scholar 

  • Andersson MX, Kourtchenko O, Dangl JL, Mackey D, Ellerstrom M (2006) Phospholipase-dependent signalling during the AvrRpm1- and AvrRpt2-induced disease resistance responses in Arabidopsis thaliana. Plant J 47:947–959

    PubMed  CAS  Google Scholar 

  • Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415:977–983

    PubMed  CAS  Google Scholar 

  • Baluška F, Barlow PW (1993) The role of the microtubular cytoskeleton in determining nuclear chromatin structure and passage of maize root cells through the cell cycle. Eur J Cell Biol 61:160–167

    PubMed  Google Scholar 

  • Bhat RA, Miklis M, Schmelzer E, Schulze-Lefert P, Panstruga R (2005) Recruitment and interaction dynamics of plant penetration resistance components in a plasma membrane microdomain. Proc Natl Acad Sci USA 102:3135–3140

    PubMed  CAS  Google Scholar 

  • Binet MN, Humbert C, Lecourieux D, Vantard M, Pugin A (2001) Disruption of microtubular cytoskeleton induced by cryptogein, an elicitor of hypersensitive response in tobacco cells. Plant Physiol 125:564–572

    PubMed  CAS  Google Scholar 

  • Blackman LM, Overall RL (1998) Immunolocalisation of the cytoskeleton to plasmodesmata of Chara corallina. Plant J 14:733–741

    CAS  Google Scholar 

  • Bögre L, Meskiene I, Heberle-Bors E, Hirt H (2000) Stressing the role of MAP kinases in mitogenic stimulation. Plant Mol Biol 43:705–718

    PubMed  Google Scholar 

  • Breviario D, Nick P (2000) Plant tubulins: a melting pot for basic questions and promising applications. Transgenic Res 9:383–393

    PubMed  CAS  Google Scholar 

  • Brownlee C (2002) Role of the extracellular matrix in cell–cell signalling: paracrine paradigms. Curr Opin Plant Biol 5:396–401

    PubMed  CAS  Google Scholar 

  • Browse J, Xin Z (2001) Temperature sensing and cold acclimation. Curr Opin Plant Biol 4:241–246

    PubMed  CAS  Google Scholar 

  • Bushnell WR, Bergquist S (1975) Aggregation of host cytoplasm and the formation of papillae and haustoria in powdery mildew of barley. Phytopathology 65:310–318

    Google Scholar 

  • Büttner D, Bonas U (2003) Common infection strategies of plant and animal pathogenic bacteria. Curr Opin Plant Biol 6:312–319

    PubMed  Google Scholar 

  • Cahill D, Rookes J, Michalczyk A, McDonald K, Drake A (2002) Microtubule dynamics in compatible and incompatible interactions of soybean hypocotyl cells with Phytophthora sojae. Plant Pathol 51:629–640

    Google Scholar 

  • Cárdenas L, Vidali L, Domínguez J, Pérez H, Sánchez F, Hepler PK, Quinto C (1998) Rearrangements of actin microfilaments in plant root hairs responding to Rhizobium etli nodulation signals. Plant Physiol 116:871–877

    Google Scholar 

  • Collins NC, Thordal-Christensen H, Lipka V, Bau S, Kombrink E, Qiu JL, Huckelhoven R, Stein M, Freialdenhoven A, Somerville SC, Schulze-Lefert P (2003) SNARE-protein-mediated disease resistance at the plant cell wall. Nature 425:973–977

    PubMed  CAS  Google Scholar 

  • Cornelis GR (2002) The Yersinia Ysc–Yop Type III weaponary. Nat Rev Mol Cell Biol 3:742–752

    PubMed  CAS  Google Scholar 

  • Dangl JL, Jones JDG (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833

    PubMed  CAS  Google Scholar 

  • Deeks MJ, Hussey PJ, Davies B (2002) Formins: intermediates in signal-transduction cascades that affect cytoskeletal reorganization. Trends Plant Sci 7:492–498

    PubMed  CAS  Google Scholar 

  • de Jong CF, Laxalt AM, Bargmann BO, de Wit PJ, Joosten MH, Munnik T (2004) Phosphatidic acid accumulation is an early response in the Cf-4/Avr4 interaction. Plant J 39:1–12

    PubMed  Google Scholar 

  • Dhonukshe P, Laxalt AM, Goedhart J, Gadella TW, Munnik T (2003) Phospholipase D activation correlates with microtubule reorganization in living plant cells. Plant Cell 15:2666–2679

    PubMed  CAS  Google Scholar 

  • Fujiwara M, Umemura K, Kawasaki T, Shimamoto K (2005) Proteomics of Rac GTPase signaling reveals its predominant role in elicitor-induced defense response of cultured rice cells. Plant Physiol 140:734–745

    PubMed  Google Scholar 

  • Furuse K, Takemoto D, Doke N, Kawakita K (1999) Involvement of actin filament association in hypersensitive reactions in potato cells. Physiol Mol Plant Pathol 54:51–61

    CAS  Google Scholar 

  • Gage DJ, Margolin W (2000) Hanging by a thread: invasion of legume plants by rhizobia. Curr Opin Microbiol 3:613–617

    PubMed  CAS  Google Scholar 

  • Gardiner J, Collings DA, Harper JD, Marc J (2003) The effects of the phospholipase D-antagonist 1-butanol on seedling development and microtubule organisation in Arabidopsis. Plant Cell Physiol 44:687–696

    PubMed  CAS  Google Scholar 

  • Gardiner JC, Harper JDI, Weerakoon ND, Collings DA, Ritchie S, Gilroy S, Cyr RJ, Marc J (2001) A 90-kD phospholipase D from tobacco binds to microtubules and the plasma membrane. Plant Cell 13:2143–2158

    PubMed  CAS  Google Scholar 

  • Geitmann A, Snowman BN, Emons AMC, Franklin-Tong VE (2000) Alterations in the actin cytoskeleton of pollen tubes are induced by the selfincompatibility reaction in Papaver rhoeas. Plant Cell 12:1239–1251

    PubMed  CAS  Google Scholar 

  • Genre A, Bonfante P (1998) Actin versus tubulin configuration in arbuscule-containing cells from mycorrhizal tobacco roots. New Phytol 140:745–752

    CAS  Google Scholar 

  • Genre A, Bonfante P (2002) Epidermal cells of a symbiosis-defective mutant of Lotus japonicus show altered cytoskeleton organisation in the presence of a mycorrhizal fungus. Protoplasma 219:43–50

    PubMed  CAS  Google Scholar 

  • Gómez-Gómez L, Boller T (2000) FLS2: An LRR receptor–like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5:1003–1011

    PubMed  Google Scholar 

  • Gross P, Julius C, Schmelzer E, Hahlblock K (1993) Translocation of cytoplasm and nucleus to fungal penetration sites is associated with depolymerization of microtubules and defence gene activation in infected, cultured parsley cells. EMBO J 12:1735–1744

    PubMed  CAS  Google Scholar 

  • Gu Y, Wang Z, Yang Z (2004) ROP/RAC GTPase: an old new master regulator for plant signaling. Curr Opin Plant Biol 7:527–536

    PubMed  CAS  Google Scholar 

  • Hall A (1998) Rho GTPases and the actin cytoskeleton. Science 279:509–514

    PubMed  CAS  Google Scholar 

  • Hammond-Kosack KE, Jones JDG (1997) Plant disease resistance genes. Annu Rev Plant Physiol Plant Mol Biol 48:575–607

    PubMed  CAS  Google Scholar 

  • Hardham AR, Green PB, Lang JM (1980) Reorganization of cortical microtubules and cellulose deposition during leaf formation in Graptopetalum paraguayense. Planta 149:181–195

    CAS  Google Scholar 

  • He P, Shan L, Lin NC, Martin GB, Kemmerling B, Nurnberger T, Sheen J (2006) Specific bacterial suppressors of MAMP signaling upstream of MAPKKK in Arabidopsis innate immunity. Cell 125:563–575

    PubMed  CAS  Google Scholar 

  • Heath MC, Heath IB (1971) Ultrastructure of an immune and a susceptible reaction of cowpea leaves to rust infection. Physiol Plant Pathol 1:277–287

    Google Scholar 

  • Heinlein M (2002) Plasmodesmata: Dynamic regulation and role in macromolecular cell-to-cell signaling. Curr Opin Plant Biol 5:543–552

    PubMed  CAS  Google Scholar 

  • Ishida K, Katsumi M (1991) Immunofluorescence microscopical observation of cortical microtubule arrangement as affected by gibberellin in the d5 mutant of Zea mays L. Plant Cell Physiol 32:409–417

    CAS  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    PubMed  CAS  Google Scholar 

  • Jung YH, Agrawal GK, Rakwal R, Kim JA, Lee MO, Choi PG, Kim YJ, Kim MJ, Shibato J, Kim SH, Iwahashi H, Jwa NS (2006) Functional characterization of OsRacB GTPase – a potentially negative regulator of basal disease resistance in rice. Plant Physiol Biochem 44:68–77

    PubMed  CAS  Google Scholar 

  • Kamiya N (1981) Physical and chemical basis of cytoplasmic streaming. Annu Rev Plant Physiol 32:205–236

    CAS  Google Scholar 

  • Katsuta J, Shibaoka H (1992) Inhibition by kinase inhibitors of the development and the disappearance of the preprophase band of microtubules in tobacco BY-2 cells. J Cell Sci 103:397–405

    CAS  Google Scholar 

  • Kawasaki T, Henmi K, Ono E, Hatakeyama S, Iwano M, Satoh H, Shimamoto K (1999) The small GTP-binding protein rac is a regulator of cell death in plants. Proc Natl Acad Sci USA 96:10922–10926

    PubMed  CAS  Google Scholar 

  • Kitazawa K, Inagaki H, Tomiyama K (1973) Cinephotomicrographic observations on the dynamic responses of protoplasm of a potato plant cell to infection by Phytophtora infestans. Phytopath Z 76:80–86

    Google Scholar 

  • Kobayashi I, Hakuno H (2003) Actin-related defense mechanism to reject penetration attempt by a nonpathogen is maintained in tobacco BY-2 cells. Planta 210:340–345

    Google Scholar 

  • Kobayashi I, Kobayashi Y, Hardham AR (1997a) Inhibition of rust-induced hypersensitive response in flax cells by the microtubule inhibitor oryzalin. Aust J Plant Physiol 24:733–740

    Article  CAS  Google Scholar 

  • Kobayashi I, Kobayashi Y, Yamada M, Kunoh H (1996) The involvement of the cytoskeleton in the expression of nonhost resistance in plants. In: Mills D, Kunoh H, Keen NT, Mayama S (eds) Molecular aspects of pathogenicity and host resistance: requirements for signal transduction. APS, Saint Paul, MN, pp 185–195

    Google Scholar 

  • Kobayashi I, Kobayashi Y, Yamaoka N, Kunoh H (1991) An immunofluorescent cytochemical technique applying micromanipulation to detect microtubules in plant tissues inoculated with fungal spores. Can J Bot 69:2634–2636

    Google Scholar 

  • Kobayashi I, Kobayashi Y, Yamaoka N, Kunoh H (1992) Recognition of a pathogen and a nonpathogen by barley coleoptile cells. (III). Responses of microtubules and actin filaments in barley coleoptile cells to penetration attempts. Can J Bot 70:1815–1823

    Article  Google Scholar 

  • Kobayashi I, Kobayashi Y, Hardham AR (1994) Dynamic reorganization of microtubules and microfilaments in flax cells during the resistance response to flax rust infection. Planta 195:237–247

    CAS  Google Scholar 

  • Kobayashi I, Komura T, Sakamoto Y, Yamaoka N, Kunoh H (1990) Recognition of a pathogen and nonpathogen by barley coleoptile cells (I). Cytoplasmic responses to the nonpathogen, Erysiphe pisi, prior to its penetration. Physiol Mol Plant Pathol 37:479–490

    Google Scholar 

  • Kobayashi Y, Kobayashi I (2007) Depolymerization of the actin cytoskeleton induces defense responses in tobacco plants. J Gen Plant Pathol 73:360–364

    CAS  Google Scholar 

  • Kobayashi Y, Kobayashi I, Funaki Y, Fujimoto S, Takemoto T, Kunoh H (1997b) Dynamic reorganization of microfilaments and microtubules is necessary for the expression of non-host resistance in barley coleoptile cells. Plant J 11:525–537

    CAS  Google Scholar 

  • Kobayashi Y, Kobayashi I, Kunoh H (1993) Recognition of a pathogen and a nonpathogen by barley coleoptile cells. II. Alteration of cytoplasmic strands in coleoptile cells caused by the pathogen, Erysiphe graminis, and the nonpathogen, E. pisi, prior to their penetration. Physiol Mol Plant Pathol 43:243–254

    Google Scholar 

  • Kobayashi Y, Yamada M, Kobayashi I, Kunoh H (1997c) Actin microfilaments are required for the expression of nonhost resistance in higher plants. Plant Cell Physiol 38:725–733

    CAS  Google Scholar 

  • Kunoh H, Aist JR, Hayashimoto A (1985a) The occurrence of cytoplasmic aggregates induced by Erysiphe pisi in barley coleoptile cells before the host cell walls are penetrated. Physiol Plant Pathol 26:199–207

    Article  Google Scholar 

  • Kunoh H, Hayashimoto A, Harui M, Ishizaki H (1985b) Induced susceptibility and enhanced resistance at the cellular level in barley coleoptiles. I. The significance of timing of fungal invasion. Physiol Plant Pathol 27:43–54

    Google Scholar 

  • Kunoh H, Katsuragawa N, Yamaoka N, Hayashimoto A (1988) Induced accessibility and enhanced inaccessibility at the cellular level in barley coleoptiles. III. Timing and localization of enhanced inaccessibility in a single coleoptile cell and its transfer to an adjacent cells. Physiol Mol Plant Pathol 33:81–93

    Google Scholar 

  • La Claire JW II (1989) Actin cytoskeleton in intact and wounded coencytic green algae. Planta 177:47–57

    Google Scholar 

  • Lipka V, Dittgen J, Bednarek P, Bhat R, Wiermer M, Stein M, Landtag J, Brandt W, Rosahl S, Scheel D, Llorente F, Molina A, Parker J, Somerville S, Schulze-Lefert P (2005) Pre- and postinvasion defenses both contribute to nonhost resistance in Arabidopsis. Science 310:1180–1183

    PubMed  CAS  Google Scholar 

  • Liu Y, Dammann C, Bhattacharyya MK (2001) The matrix metalloproteinase gene GmMMP2 is activated in response to pathogenic infections in soybean. Plant Physiol 127:1788–1797

    PubMed  CAS  Google Scholar 

  • Lohar DP, Sharopova N, Endre G, Penuela S, Samac D, Town C, Silverstein KAT, VandenBosch KA (2006) Transcript analysis of early nodulation events in Medicago truncatula. Plant Physiol 140:221–234

    PubMed  CAS  Google Scholar 

  • McCurdy DW, Kovar DR, Staiger CJ (2001) Actin and actin-binding proteins in higher plants. Protoplasma 215:89–104

    PubMed  CAS  Google Scholar 

  • McLusky SR, Bennett MH, Beale MH, Lewis MJ, Gaskin P, Mansfield JW (1999) Cell wall alterations and localized accumulation of feruloyl-3′-methoxytyramine in onion epidermis at sites of attempted penetration by Botrytis allii are associated with actin polarization, peroxydase activity and suppression of flavonoid biosynthesis. Plant J 17:523–534

    CAS  Google Scholar 

  • Miller DD, de Ruijter NCA, Bisseling T, Emons AMC (1999) The role of actin in root hair morphogenesis: studies with lipochitin-oligosaccharide as a growth stimulator and cytochalasin as an actin perturbing drug. Plant J 17:141–154

    CAS  Google Scholar 

  • Moeder W, Yoshioka K, Klessig DF (2005) Involvement of the small GTPase Rac in the defense responses of tobacco to pathogens. Mol Plant Microbe Interact 18:116–24

    PubMed  CAS  Google Scholar 

  • Nibau C, Wu HM, Cheung AY (2006) RAC/ROP GTPases: hubs for signal integration and diversification in plants. Trends Plant Sci 11:309–315

    PubMed  CAS  Google Scholar 

  • Nishihama R, Soyano T, Ishikawa M, Araki S, Tanaka H, Asada T, Irie K, Ito M, Terada M, Banno H, Yamazaki Y, Machida Y (2002) Expansion of the cell plate in plant cytokinesis requires a kinesis-like protein/MAPKKK complex. Cell 109:87–99

    PubMed  CAS  Google Scholar 

  • Nishimura MT, Stein M, Hou B-H, Vogel JP, Edwards H, Somerville SC (2003) Loss of a callose synthase results in salicylic acid dependent disease resistance. Science 301:969–972

    PubMed  CAS  Google Scholar 

  • Ono E, Wong HL, Kawasaki T, Hasegawa M, Kodama O, Shimamoto K (2001) Essential role of the small GTPase Rac in disease resistance of rice. Proc Natl Acad Sci USA 98:759–764

    PubMed  CAS  Google Scholar 

  • Opalski KS, Schultheiss H, Kogel K-H, Hückelhoven R (2005) The receptor-like MLO protein and the RAC/ROP family G-protein RACB modulate actin reorganization in barley attacked by the biotrophic powdery mildew fungus Blumeria graminis f.sp. hordei. Plant J 41:291–303

    PubMed  CAS  Google Scholar 

  • Pappelis AJ, Pappelis GA, Kulfinski FB (1974) Nuclear orientation in onion epidermal cells in relation to wounding and infection. Phytopathology 64:1010–1012

    Article  Google Scholar 

  • Parniske M (2000) Intracellular accommodation of microbes by plants: a common developmental program for symbiosis and disease? Curr Opin Plant Biol 3:320–328

    PubMed  CAS  Google Scholar 

  • Pedley KF, Martin GB (2005) Role of mitogen-activated protein kinases in plant immunity. Curr Opin Plant Biol 8:541–547

    PubMed  CAS  Google Scholar 

  • Perbal G, Driss-Ecole D (2003) Mechanotransduction in gravisensing cells. Trends Plant Sci 8:498–504

    PubMed  CAS  Google Scholar 

  • Profotova B, Burketova L, Novotna Z, Martinec J, Valentova O (2006) Involvement of phospholipases C and D in early response to SAR and ISR inducers in Brassica napus plants. Plant Physiol Biochem 44:143–151

    PubMed  CAS  Google Scholar 

  • Šamaj J, Baluška F, Hirt H (2004) From signal to cell polarity: mitogen-activated protein kinases as sensors and effectors of cytoskeleton dynamicity. J Exp Bot 55:189–198

    PubMed  Google Scholar 

  • Schmelzer E (2002) Cell polarization, a crucial process in fungal defence. Trends Plant Sci 7:411–415

    PubMed  CAS  Google Scholar 

  • Schultheiss H, Dechert C, Kogel KH, Huckelhoven R (2002) A small GTP-binding host protein is required for entry of powdery mildew fungus into epidermal cells of barley. Plant Physiol 128:1447–1454

    PubMed  CAS  Google Scholar 

  • Seagull RW (1989) The plant cytoskeleton. CRC Critic Rev Plant Sci 8:131–167

    CAS  Google Scholar 

  • Shao F, Merritt PM, Bao Z, Innes RW, Dixon JE (2002) A Yersinia effector and a Pseudomonas avirulence protein define a family of cysteine proteases functioning in bacterial pathogenesis. Cell 109:575–588

    PubMed  CAS  Google Scholar 

  • Shimada C, Lipka V, O'Connell R, Okuno T, Schulze-Lefert P, Takano Y (2006) Nonhost resistance in Arabidopsis-Colletotrichum interactions acts at the cell periphery and requires actin filament function. Mol Plant-Microbe Interact 19:270–279

    PubMed  CAS  Google Scholar 

  • Sieberer BJ, Timmers ACJ, and Emons AMC (2005) Nod factors alter the microtubule cytoskeleton in Medicago truncatula root hairs to allow root hair reorientation. Mol Plant Microbe Interact 18:1195–1204

    PubMed  CAS  Google Scholar 

  • Škalamera D, Heath MC (1998) Changes in the cytoskeleton accompanying infection-induced nuclear movements and the hypersensitive response in plant cells invaded by rust fungi. Plant J 16:191–200

    Google Scholar 

  • Snyder BA, Nicholson RL (1990) Synthesis of phytoalexins in sorghum as a site-specific response to fungal ingress. Science 248:1637–1639

    PubMed  CAS  Google Scholar 

  • Soyano T, Nishihama R, Morikiyo K, Ishikawa M, Machida Y (2003) NQK1/NtMEK1 is a MAPKK that acts in the NPK1 MAPKKK-mediated MAPK cascade and is required for plant cytokinesis. Genes Dev 17:1055–1067

    PubMed  CAS  Google Scholar 

  • Staiger CJ (2000) Signaling to the actin cytoskeleton in plants. Annu Rev Plant Physiol Plant Mol Biol 51:257–288

    PubMed  CAS  Google Scholar 

  • Steiger CJ, Gibbon BC, Kovar DR, Zonia LE (1997) Profilin and actin depolymerizing factor: Modulators of actin organization in plants. Trends Plant Sci 2:275–281

    Google Scholar 

  • Stein M, Dittgen J, Sánchez-Rodríguez C, Hou B-H, Molina A, Schulze-Lefert P, Lipka V, Somerville S (2006) Arabidopsis PEN3/PDR8, an ATP binding cassette transporter, contributes to nonhost resistance to inappropriate pathogens that enter by direct penetration. Plant Cell 18:731–746

    PubMed  CAS  Google Scholar 

  • Sugimoto M, Toyoda K, Ichinose Y, Yamada T, Shiraishi T (2000) Cytochalasin A inhibits the binding of phenylalanine ammonia-lyase mRNA to ribosomes during induction of phytoalexin in pea seedlings. Plant Cell Physiol 41:234–238

    PubMed  CAS  Google Scholar 

  • Takemoto D, Jones DA, Hardham AR (2003) GFP-tagging of cell components reveals the dynamics of subcellular re-organization in response to infection of Arabidopsis by oomycete pathogens. Plant J 33:775–792

    PubMed  CAS  Google Scholar 

  • Thomas DD (1978) Cytochalasin effects in plants and eukaryotic microbial systems. In: Tanenbaum SW (ed) Cytochalasins – biochemical and cell biological aspects. Elsevier/North-Holland Biomedical, New York, pp 257–275

    Google Scholar 

  • Thomas SG, Franklin-Tong VE (2004) Self-incompatibility triggers programmed cell death in Papaver pollen. Nature 429:305–309

    PubMed  CAS  Google Scholar 

  • Timmers AC, Auriac MC, de Billy F, Truchet G (1998) Nod factor internalization and microtubular cytoskeleton changes occur concomitantly during nodule differentiation in alfalfa. Development 125:339–349

    PubMed  CAS  Google Scholar 

  • Timmers ACJ, Auriac MC, Truchet G (1999) Refined analysis of early symbiotic steps of the Rhizobium-Medicago interaction in relationship with microtubular cytoskeleton rearrangements. Development 126:3617–3628

    PubMed  CAS  Google Scholar 

  • Tomiyama K (1956) Cell physiological studies on the resistance of potato plant to Phytophthora infestans. Ann Phytopathol Soc Japan 21:54–62

    Google Scholar 

  • Tsuji G, Fujii S, Tsuge S, Shiraishi T, Kubo Y (2003) The Colletotrichum lagenarium Ste12-like gene CST1 is essential for appressorium penetration. Mol Plant-Microbe Interact 16:315–325

    PubMed  CAS  Google Scholar 

  • Tsurushima T, Don LD, Kawashima K, Murakami J, Nakayashiki H, Tosa Y, Mayama S (2005) Pyrichalasin H production and pathogenicity of Digitaria-specific isolates of Pyricularia grisea. Mol Plant Pathol 6:605–613

    CAS  PubMed  Google Scholar 

  • van der Biezen EA, Jones JDG (1998) Plant disease resistance proteins and the gene-for-gene concept. Trends Biochem Sci 23:454–456

    PubMed  Google Scholar 

  • Vantard M, Blanchoin L (2002) Actin polymerization processes in plant cells. Curr Opin Plant Biol 5:502–506

    PubMed  CAS  Google Scholar 

  • Vassileva VN, Kouchi H, Ridge RW (2005) Microtubule dynamics in living root hairs: Transient slowing by lipochitin oligosaccharide nodulation signals. Plant Cell 17:1777–1787

    PubMed  CAS  Google Scholar 

  • Volkmann D, Baluska F (1999) Actin cytoskeleton in plants: from transport networks to signaling networks. Microsc Res Tech 47:135–154

    PubMed  CAS  Google Scholar 

  • Wasteneys GO (2000) The cytoskeleton and growth polarity. Curr Opin Plant Biol 3:503–511

    PubMed  CAS  Google Scholar 

  • Wasteneys GO (2004) Progress in understanding the role of microtubules in plant cells. Curr Opin Plant Biol 7:651–660

    PubMed  CAS  Google Scholar 

  • Wasteneys GO, Galway ME (2003) Remodeling the cytoskeleton for growth and form: an overview with some new views. Annu Rev Plant Biol 54:691–722

    PubMed  CAS  Google Scholar 

  • Wasteneys GO, Yang Z (2004) New views on the plant cytoskeleton. Plant Physiol 136:3884–3891

    PubMed  CAS  Google Scholar 

  • Weerasinghe RR, Collings DA, Johannes E, Allen NS (2003) The distributional changes and role of microtubules in Nod factor-challenged Medicago sativa root hairs. Planta 218:276–287

    PubMed  CAS  Google Scholar 

  • White RG, Badelt K, Overall RL, Vesk M (1994) Actin associated with plasmodesmata. Protoplasma 180:169–184

    CAS  Google Scholar 

  • Williamson R (1986) Organelle movements along actin filaments and microtubules. Plant Physiol 82:631–634

    PubMed  CAS  Google Scholar 

  • Xu JR, Staiger CJ, Hamer JE (1998) Inactivation of the mitogen-activated protein kinase Mps1 from the rice blast fungus prevents penetration of host cells but allows activation of plant defense responses. Proc Natl Acad Sci USA 95:12713–12718

    PubMed  CAS  Google Scholar 

  • Xu P, Lloyd CW, Staiger CJ, Drøbak BK (1992) Association of phosphatidylinositol 4-kinase with the plant cytoskeleton. Plant Cell 4:941–951

    PubMed  CAS  Google Scholar 

  • Yuan H-Y, Yao L-L, Jia Z-Q, Li Y, Li Y-Z (2006) Verticillium dahliae toxin induced alterations of cytoskeletons and nucleoli in Arabidopsis thaliana suspension cells. Protoplasma 229:75–82

    PubMed  CAS  Google Scholar 

  • Zhang S, Klessig DF (2001) MAPK cascades in plant defense signaling. Trends Plant Sci 6:520–527

    PubMed  CAS  Google Scholar 

  • Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JDG, Boller T, Felix G (2006) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125:749–760

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Issei Kobayashi .

Editor information

Peter Nick

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kobayashi, I., Kobayashi, Y. (2007). Microtubules and Pathogen Defence. In: Nick, P. (eds) Plant Microtubules. Plant Cell Monographs, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7089_2007_144

Download citation

Publish with us

Policies and ethics