Skip to main content

Open Mitosis: Nuclear Envelope Dynamics

  • Chapter
  • First Online:
Cell Division Control in Plants

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 9))

Abstract

The nuclear envelope separating the cell nucleus from the cytoplasm is a common feature of alleukaryotic cells, but its origin is still an enigma. Its early evolution appears closely linked with theevolution of the mitotic spindle apparatus. Many regulatory proteins are playing critical dual roles inspindle assembly as well as nuclear envelope and nuclear pore complex formation. During the evolution ofhigher eukaryotes, open mitosis evolved independently in the plant and animal lineages, leading to a markeddiversification of nuclear envelope compositions and roles in mitosis. Unique features of the plant nuclearenvelope include its function as mitotic spindle organizing center and the lack of nuclear lamins and associatedproteins. Nuclear envelope dynamics observed during mitosis appear to be similar between plants and animals.The nuclear envelope is absorbed into the endoplasmic reticulum after breakdown and reformed from the endoplasmicreticulum membrane pool after mitosis. In addition, nuclear envelope material contributes to the newlyforming cell plate in plant cells. Plant and animal cells might use the same underlying molecular signalsfor nuclear envelope reassembly, but modified as variations of a common theme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdel-Ghany SE, Day IS, Simmons MP, Kugrens P, Reddy ASN (2005) Origin and evolution of kinesin-like calmodulin-binding protein. Plant Physiol 138:1711–1722

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ach RA, Gruissem W (1994) A small nuclear GTP-binding protein from tomato suppresses a Schizosaccharomyces pombe cell-cycle mutant. Proc Natl Acad Sci USA 91:5863–5867

    PubMed  PubMed Central  CAS  Google Scholar 

  • Armstrong SJ, Franklin CH, Jones GH (2001) Nucleolus-associated telomere clustering and pairing precede meiotic chromosome synapsis in Arabidopsis thaliana. J Cell Sci 114:4207–4217

    PubMed  CAS  Google Scholar 

  • Arnaoutov A, Dasso M (2003) The Ran GTPase regulates kinetochore function. Dev Cell 5:99–111

    PubMed  CAS  Google Scholar 

  • Askjaer P, Galy V, Hannak E, Mattaj IW (2002) Ran GTPase cycle and importins α and β are essential for spindle formation and nuclear envelope assembly in living Caenorhabditis elegans embryos. Mol Biol Cell 13:4355–4370

    PubMed  PubMed Central  CAS  Google Scholar 

  • Backhuizen R, van Spronsen PC, Sluiman-den Hertog FAJ, Venverloo CJ, Goosen-de Roo L (1985) Nuclear envelope radiating microtubules in plant cells during interphase mitosis transition. Protoplasma 128:43–51

    Google Scholar 

  • Bamba C, Bobinnec Y, Fukuda M, Nishida E (2002) The GTPase Ran regulates chromosome positioning and nuclear envelope assembly in vivo. Curr Biol 12:503–507

    PubMed  CAS  Google Scholar 

  • Bass HW, Marshall WF, Sedat JW, Agard DA, Cande WZ (1997) Telomeres cluster de novo before the initiation of synapsis: a three-dimensional spatial analysis of telomere positions before and during meiotic prophase. J Cell Biol 137:5–18

    PubMed  PubMed Central  CAS  Google Scholar 

  • Battacharya D, Medlin L (1998) Algal phylogeny and the origin of land plants. Plant Physiol 116:9–15

    Google Scholar 

  • Beaudouin J, Gerlich D, Daigle N, Eils R, Ellenberg J (2002) Nuclear envelope breakdown proceeds by microtubule-induced tearing of the lamina. Cell 108:83–96

    PubMed  CAS  Google Scholar 

  • Blumenthal SS, Clark GB, Roux SJ (2004) Biochemical and immunological characterization of pea nuclear intermediate filament proteins. Planta 218:965–975

    PubMed  CAS  Google Scholar 

  • Bodoor K, Shaihk SA, Salina D, Raharjo WH, Bastos R, Lohka MJ, Burke B (1999) Sequential recruitment of NPC proteins to the nuclear periphery at the end of mitosis. J Cell Sci 112:2253–2264

    PubMed  CAS  Google Scholar 

  • Brugerolle G, Mignot JP (2003) The rhizoplast of chrysomonads, a basal body-nucleus connector that polarizes the dividing spindle. Protoplasma 222:13–21

    PubMed  CAS  Google Scholar 

  • Burke B (1990) On the cell-free association of lamins A and C with metaphase chromosomes. Exp Cell Res 186:169–176

    PubMed  CAS  Google Scholar 

  • Canaday J, Stoppin-Mellet V, Mutterer J, Lambert AM, Schmit AC (2000) Higher plant cells: γ-tubulin and microtubule nucleation in the absence of centrosomes. Microsc Res Tech 49:487–495

    PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (2002) The phagotropic origin of eukaryotes and phylogenetic classification of protozoa. Int J Syst Evol Microbiol 52:297–354

    PubMed  CAS  Google Scholar 

  • Chaudhary N, Courvalin JC (1993) Stepwise reassembly of the nuclear envelope at the end of mitosis. J Cell Biol 122:295–306

    PubMed  CAS  Google Scholar 

  • Chytilova E, Macas J, Sliwinska E, Rafelski SM, Lambert GM, Galbraith DW (2000) Nuclear dynamics in Arabidopsis thaliana. Mol Biol Cell 11:2733–2741

    PubMed  PubMed Central  CAS  Google Scholar 

  • Collings DA, Carter CN, Rink JC, Scott AC, Wyatt SE, Allen SN (2000) Plant nuclei can contain extensive grooves and invaginations. Plant Cell 12:2425–2439

    PubMed  PubMed Central  CAS  Google Scholar 

  • Coss RA (1974) Mitosis in Chlamydomonas reinhardtii basal bodies and the mitotic apparatus. J Cell Biol 63:325–329

    PubMed  PubMed Central  CAS  Google Scholar 

  • Cowan CR, Carlton PM, Cande WZ (2001) The polar arrangement of telomeres in interphase and meiosis. Rabl organization and the bouquet. Plant Physiol 125:532–538

    PubMed  PubMed Central  CAS  Google Scholar 

  • De Ruijter NCA, Ketelaar T, Blumenthal SS, Emons AM, Schel JHN (2000) Spectrin-like proteins in plant nuclei. Cell Biol Int 24:427–438

    PubMed  Google Scholar 

  • De Souza CPC, Osmani AH, Hashmi SB, Osmani SA (2004) Partial nuclear pore complex disassembly during closed mitosis in Aspergillus nidulans. Curr Biol 14:1973–1984

    PubMed  Google Scholar 

  • Di Fiore B, Ciciarello M, Lavia P (2004) Mitotic functions of the Ran GTPase network: the importance of being in the right place at the right time. Cell Cycle 3:305–313

    PubMed  Google Scholar 

  • Dixit R, Cyr RJ (2002) Spatio-temporal relationship between nuclear-envelope breakdown and preprophase band disappearance in cultured tobacco cells. Protoplasma 219:116–121

    PubMed  CAS  Google Scholar 

  • Dolan MF, Melnitsky H, Margulis L, Kolnicki R (2002) Motility proteins and the origin of the nucleus. Anat Rec 268:290–301

    PubMed  CAS  Google Scholar 

  • Downie L, Priddle J, Hawes C, Evans DE (1998) A calcium pump at the higher plant nuclear envelope? FEBS Lett 429:44–48

    PubMed  CAS  Google Scholar 

  • Dymek EE, Goduti D, Kramer T, Smith EF (2006) A kinesin-like calmodulin-binding protein in Chlamydomonas: evidence for a role in cell division and flagellar functions. J Cell Sci 119:3107–3116

    PubMed  CAS  Google Scholar 

  • Ellenberg J, Siggia ED, Moreira JE, Smith CL, Presley JF, Worman HJ, Lippincott-Schwartz J (1997) Nuclear membrane dynamics and reassembly in living cells: targeting of an inner nuclear membrane protein in interphase and mitosis. J Cell Biol 138:1193–1206

    PubMed  PubMed Central  CAS  Google Scholar 

  • Erhardt M, Stoppin-Mellet V, Campagne S, Canaday J, Mutterer J, Fabian T, Sauter M, Muller T, Peter C, Lambert AM, Schmit AC (2002) The plant Spc98p homologue colocalizes with γ-tubulin at the nucleation sites and is required for microtubule nucleation. J Cell Sci 115:2423–2431

    PubMed  CAS  Google Scholar 

  • Fernandez AG, Piano F (2006) MEL-28 is downstream of the Ran cycle and is required for nuclear-envelope function and chromatin maintenance. Curr Biol 16:1757–1763

    PubMed  CAS  Google Scholar 

  • Foisner R, Gerace L (1993) Integral membrane proteins of the nuclear envelope interact with lamins and chromosomes, and binding is modulated by mitotic phosphorylation. Cell 73:1267–1279

    PubMed  CAS  Google Scholar 

  • Franz C, Walczak R, Yavuz S, Santarella R, Gentzel M, Askajer P, Galy V, Hetzer M, Mattaj IW, Antonin W (2007) MEL-28/ELYS is required for the recruitment of nucleoporins to chromatin and postmitotic nuclear pore complex assembly. EMBO Rep 8:165–172

    PubMed  PubMed Central  CAS  Google Scholar 

  • Galy V, Askjaer P, Franz C, Lopez-Iglesias C, Mattaj IW (2006) MEL-28, a novel nuclear-envelope and kinetochore protein essential for zygotic nuclear-envelope assembly in C. elegans. Curr Biol 16:1748–1756

    PubMed  CAS  Google Scholar 

  • Gerace L, Foisner R (1994) Integral membrane proteins and dynamics of the nuclear envelope. Trends Cell Biol 4:127–131

    PubMed  CAS  Google Scholar 

  • Gindullis F, Peffer NJ, Meier I (1999) MAF1, a novel plant protein interacting with matrix attachment region binding protein MFP1, is located at the nuclear envelope. Plant Cell 11:1755–1767

    PubMed  PubMed Central  CAS  Google Scholar 

  • Glass JR, Gerace L (1990) Lamins A and C bind and assemble at the surface of mitotic chromosomes. J Cell Biol 111:1047–1057

    PubMed  CAS  Google Scholar 

  • Goldberg M, Harel A, Gruenbaum Y (1999) The nuclear lamina: molecular organization and interaction with chromatin. Crit Rev Eukaryot Gene Exp 9:285–293

    CAS  Google Scholar 

  • Golubovskaya IN, Harper LC, Pawlowski WP, Schichnes D, Cande WZ (2002) The pam1 gene is required for meiotic bouquet formation and efficient homologous synapsis in maize (Zea mays L.). Genetics 162:1979–1993

    PubMed  PubMed Central  CAS  Google Scholar 

  • Gupton SL, Collings DA, Allen DS (2006) Endoplasmic reticulum targeted GFP reveals ER organization in tobacco NT-1 cells during cell division. Plant Physiol Biochem 44:95–105

    PubMed  CAS  Google Scholar 

  • Haraguchi T, Koujin T, Hayakawa T, Kaneda T, Tsutsumi C, Imamoto N, Akazawa C, Sukegawa J, Yoneda Y, Hiraoka Y (2000) Live fluorescence imaging reveals early recruitment of emerin, LBR, RanBP2, and Nup153 to reforming functional nuclear envelopes. J Cell Sci 113:779–794

    PubMed  CAS  Google Scholar 

  • Harel A, Chan RC, Lachish-Zalait A, Zimmerman E, Elbaum M, Forbes DJ (2003) Importin β negatively regulates nuclear membrane fusion and nuclear pore complex assembly. Mol Biol Cell 14:4387–4396

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hartman H, Fedorov A (2002) The origin of the eukaryotic cell: a genomic investigation. Proc Natl Acad Sci USA 99:1420–1425

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hawes CR, Juniper BE, Horne JC (1981) Low and high-voltage electron-microscopy of mitosis and cytokinesis in maize roots. Planta 152:397–407

    PubMed  CAS  Google Scholar 

  • Hedges SB (2002) The origin and evolution of model organisms. Nat Rev Genet 3:838–849

    PubMed  CAS  Google Scholar 

  • Hepler PK (1980) Membranes in the mitotic apparatus of barley cells. J Cell Biol 86:490–499

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hepler PK, Valster A, Molchan T, Vos JW (2002) Roles for kinesin and myosin during cytokinesis. Phil Trans R Soc Lond B 357:761–766

    CAS  Google Scholar 

  • Hetzer M, Bilbao-Cortes B, Walther TC, Gruss OJ, Mattaj JW (2000) GTP hydrolysis by Ran is required for nuclear envelope assembly. Mol Cell 5:1013–1024

    PubMed  CAS  Google Scholar 

  • Horiike T, Hamada K, Shinozawa T (2002) Origin of eukaryotic cell nuclei by symbiosis of archaea in bacteria supported by the newly clarified origin of functional genes. Genes Genet Syst 77:369–376

    PubMed  CAS  Google Scholar 

  • Irons SL, Evans DE, Brandizzi F (2003) The first 238 amino acids of the human lamin B receptor are targeted to the nuclear envelope in plants. J Exp Bot 54:1–8

    Google Scholar 

  • Jeong SY, Rose A, Joseph J, Dasso M, Meier I (2005) Plant-specific mitotic targeting of RanGAP requires a functional WPP domain. Plant J 42:270–282

    PubMed  CAS  Google Scholar 

  • Job D, Valiron O, Oakley B (2003) Microtubule nucleation. Curr Opin Cell Biol 15:111–117

    PubMed  CAS  Google Scholar 

  • Joseph J, Liu ST, Jablonski SA, Yen TJ, Dasso M (2004) The RanGAP1–RanBP2 complex is essential for microtubule-kinetochore interactions in vivo. Curr Biol 14:611–617

    PubMed  CAS  Google Scholar 

  • Karol KG, McCourt RM, Cimino MT, Delwiche CF (2001) The closest living relatives of land plants. Science 294:2351–2353

    PubMed  CAS  Google Scholar 

  • Ketelaar T, Faivre-Moskalenko C, Esseling JJ, de Ruijter NCA, Grierson CS, Dogterom M, Emons AMC (2002) Positioning of nuclei in Arabidopsis root hairs: an actin-regulated process of tip growth. Plant Cell 14:2941–2955

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kiseleva E, Rutherford S, Cotter LM, Allen TD, Goldberg MW (2001) Steps of nuclear pore complex disassembly and reassembly during mitosis in early Drosophila embryos. J Cell Sci 114:3607–3618

    PubMed  CAS  Google Scholar 

  • Knob M, Schiebel E (1997) Spc98p and Spc97p of the yeast γ-tubulin complex mediate binding to the spindle pole body via their interaction with Spc110p. EMBO J 16:6985–6995

    Google Scholar 

  • Knob M, Schiebel E (1998) Receptors determine the cellular localization of a γ-tubulin complex and thereby the site of microtubule formation. EMBO J 17:3952–3997

    Google Scholar 

  • Kusano A, Yoshioka T, Nishijima H, Nishitani H, Nishimoto T (2004) Schizosaccharomyces pombe RanGAP homolog, SpRNA1, is required for centromeric silencing and chromosome segregation. Mol Biol Cell 15:4960–4970

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lenart P, Ellenberg J (2003) Nuclear envelope dynamics in oocytes: from germinal vesicle breakdown to mitosis. Curr Opin Cell Biol 15:88–95

    PubMed  CAS  Google Scholar 

  • Lenart P, Rabut G, Daigle N, Hand AR, Terasaki M, Ellenberg J (2003) Nuclear envelope breakdown in starfish oocytes proceeds by partial NPC disassembly followed by a rapidly spreading fenestration of nuclear membranes. J Cell Biol 160:1055–1068

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lewis LA, McCourt RM (2004) Green algae and the origin of land plants. Am J Bot 91:1535–1556

    PubMed  Google Scholar 

  • Li H, Roux SJ (1992) Casein kinase II protein kinase is bound to nuclear lamina-matrix and phosphorylates lamin-like protein in isolated pea nuclei. Proc Natl Acad Sci USA 89:8434–8438

    PubMed  PubMed Central  CAS  Google Scholar 

  • Li HY, Cao K, Zheng Y (2003) Ran in the spindle checkpoint: a new function for a versatile GTPase. Trends Cell Biol 13:553–557

    PubMed  CAS  Google Scholar 

  • Lopez-Bautista JM, Waters DA, Chapman RL (2003) Phragmoplastin, green algae and the evolution of cytokinesis. Int J Syst Evol Microbiol 53:1715–1718

    PubMed  Google Scholar 

  • Lopez-Garcia P, Moreira D (2006) Selective forces for the origin of the eukaryotic nucleus. Bioessays 28:525–533

    PubMed  CAS  Google Scholar 

  • Lu P, Ren M, Zhai ZH (2001) Nuclear reconstitution of plant (Orychophragmusviolaceus) demembranated sperm in cell-free extracts from animal (Xenopus laevis) eggs. J Struct Biol 136:89–95

    PubMed  CAS  Google Scholar 

  • Lu P, Zhai ZH (2001) Nuclear assembly of demembranated Xenopus sperm in plant cell-free extracts from Nicotiana ovules. Exp Cell Res 270:96–101

    PubMed  CAS  Google Scholar 

  • Mans BJ, Anantharaman V, Aravind L, Koonin EV (2004) Comparative genomics, evolution and origins of the nuclear envelope and nuclear pore complex. Cell Cycle 3:1612–1637

    PubMed  CAS  Google Scholar 

  • Margulis L, Chapman M, Guerrero R, Hall J (2006) The last eukaryotic common ancestor (LECA): acquisition of cytoskeletal motility from aerotolerant spirochetes in the proterozoic eon. Proc Natl Acad Sci USA 103:13080–13085

    PubMed  PubMed Central  CAS  Google Scholar 

  • Margulis L, Dolan MF, Guerrero R (2000) The chimeric eukaryote: origin of the nucleus from the karymastigont in amitochondriate protists. Proc Natl Acad Sci USA 97:6954–6959

    PubMed  PubMed Central  CAS  Google Scholar 

  • Martin W (1999) A briefly argued case that mitochondria and plastids are descendants of endosymbionts, but that the nuclear compartment is not. Proc R Soc Lond B 266:1387–1395

    Google Scholar 

  • Martin W (2005) Archaebacteria (archaea) and the origin of the eukaryotic nucleus. Curr Opin Microbiol 8:630–637

    PubMed  CAS  Google Scholar 

  • Martinez-Perez E, Shaw P, Reader S, Aragon-Alcaide L, Miller T, Moore G (1999) Homologous chromosome pairing in wheat. J Cell Sci 112:1761–1769

    PubMed  CAS  Google Scholar 

  • Masuda K, Haruyama S, Fujino K (1999) Assembly and disassembly if the peripheral architecture of the plant nucleus during mitosis. Planta 210:165–167

    PubMed  CAS  Google Scholar 

  • Masuda K, Xu ZJ, Takahashi S, Ito A, Ono M, Nomura K, Inoue M (1997) Peripheral framework of carrot cell nucleus contains a novel protein predicted to exhibit a long α-helical domain. Exp Cell Res 232:173–181

    PubMed  CAS  Google Scholar 

  • McCourt RM, Delwiche CF, Karol KG (2004) Charophyte algae and land plant origins. Trends Ecol Evol 19:661–666

    PubMed  Google Scholar 

  • McNulty AK, Saunders MJ (1992) Purification and immunological detection of pea nuclear intermediate filaments: evidence for plant nuclear lamins. J Cell Sci 103:407–414

    PubMed  CAS  Google Scholar 

  • Merkle T, Haizel T, Matsumoto T, Harter K, Dailmann G, Nagy F (1994) Phenotype of the fission yeast cell cycle regulatory mutant pim1-46 is suppressed by a tobacco cDNA encoding a small, Ran-like GTP-binding protein. Plant J 6:555–565

    PubMed  CAS  Google Scholar 

  • Minguez A, Morena Diaz de la Espina S (1993) Immunological characterization of lamins in the nuclear matrix of onion cells. J Cell Sci 106:431–439

    PubMed  CAS  Google Scholar 

  • Mitchison TJ (1995) Evolution of a dynamic cytoskeleton. Phil Trans R Soc Lond B 349:299–304

    CAS  Google Scholar 

  • Moreira D, Le Guyader H, Phillipe H (2000) The origin of red algae and the evolution of chloroplasts. Nature 405:69–72

    PubMed  CAS  Google Scholar 

  • Newport J, Dunphy W (1992) Characterization of membrane binding and fusion events during nuclear envelope assembly using purified components. J Cell Biol 116:295–306

    PubMed  CAS  Google Scholar 

  • Nicolas FJ, Zhang C, Hughes M, Goldberg MW, Watton SJ, Clarke PR (1997) Xenopus Ran-binding protein 1: molecular interactions and effects on nuclear assembly in Xenopus egg extracts. J Cell Sci 110:3019–3030

    PubMed  CAS  Google Scholar 

  • Niepel M, Strambio-de-Castillia C, Fasolo J, Chait BT, Rout MP (2005) The nuclear pore complex-associated protein, Mlp2p, binds to the yeast spindle pole body and promotes its efficient assembly. J Cell Biol 170:225–235

    PubMed  PubMed Central  CAS  Google Scholar 

  • Nishijima H, Nakayama J, Yoshioka T, Kusano A, Nishitani H, Shibahara K, Nishimoto T (2006) Nuclear RanGAP is required for the heterochromatin assembly and is reciprocally regulated by histone H3 and Clr4 histone methyltransferase in Schizosaccharomyces pombe. Mol Cell Biol 17:2524–2536

    CAS  Google Scholar 

  • Patel S, Brkljacic J, Gindullis F, Rose A, Meier I (2005) The plant nuclear envelope protein MAF1 has an additional location at the Golgi and binds to a novel Golgi-associated coiled-coil protein. Planta 222:1028–1040

    PubMed  CAS  Google Scholar 

  • Patel S, Rose A, Meulia T, Dixit R, Cyr RJ, Meier I (2004) Arabidopsis WPP-domain proteins are developmentally associated with the nuclear envelope and promote cell division. Plant Cell 16:3260–3273

    PubMed  PubMed Central  CAS  Google Scholar 

  • Pay A, Resch K, Frohnmeyer H, Fejes E, Nagy F, Nick P (2002) Plant RanGAPs are localized at the nuclear envelope in interphase and associated with microtubules in mitotic cells. Plant J 30:699–709

    PubMed  CAS  Google Scholar 

  • Preuss ML, Delmer DP, Liu B (2003) The cotton kinesin-like calmodulin-binding protein associates with cortical microtubules in cotton fibers. Plant Physiol 132:154–160

    PubMed  PubMed Central  CAS  Google Scholar 

  • Pu RT, Dasso M (1997) The balance of RanBP1 and RCC1 is critical for nuclear assembly and nuclear transport. Mol Biol Cell 8:1955–1970

    PubMed  PubMed Central  CAS  Google Scholar 

  • Pyrasopoulou A, Meier J, Maison C, Simos G, Georgatos SD (1996) The lamin B receptor (LBR) provides essential chromatin docking sites at the nuclear envelope. EMBO J 15:7108–7119

    Google Scholar 

  • Quimby BB, Wilson CA, Corbett AH (2000) The interaction between Ran and NTF2 is required for cell cycle progression. Mol Biol Cell 11:2617–2629

    PubMed  PubMed Central  CAS  Google Scholar 

  • Rasala BA, Orjalo AV, Shen Z, Briggs S, Forbes DJ (2006) ELYS is a dual nucleoporin/kinetochore protein required for nuclear pore assembly and proper cell division. Proc Natl Acad Sci USA 103:17801–17806

    PubMed  PubMed Central  CAS  Google Scholar 

  • Roos UP (1984) From proto-mitosis to mitosis – an alternative hypothesis on the origin and evolution of the mitotic spindle. Orig Life 13:183–193

    PubMed  CAS  Google Scholar 

  • Rose A, Meier I (2001) A domain unique to plant RanGAP is responsible for its targeting to the plant nuclear rim. Proc Natl Acad Sci USA 98:15377–15382

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ryan KJ, McCaffery JM, Wente SR (2003) The Ran GTPase cycle is required for yeast nuclear pore complex assembly. J Cell Biol 160:1041–1053

    PubMed  PubMed Central  CAS  Google Scholar 

  • Salina D, Bodoor K, Eckley DM, Schroer TA, Rattner JB, Burke B (2002) Cytoplasmic dynein is a facilitator of nuclear envelope breakdown. Cell 108:97–107

    PubMed  CAS  Google Scholar 

  • Salina D, Enarson P, Rattner JB, Burke B (2003) Nup358 integrates nuclear envelope breakdown with kinetochore assembly. J Cell Biol 162:991–1001

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sano T, Higaki T, Oda Y, Hayashi T, Hasezawa S (2005) Appearance of actin microfilament “twin peaks” in mitosis and their function in cell plate formation, as visualized in tobacco BY-2 cells expressing GFP-fimbrin. Plant J 44:595–605

    PubMed  CAS  Google Scholar 

  • Scherthan H (2001) A bouquet makes ends meet. Nat Rev 2:621–627

    CAS  Google Scholar 

  • Schetter A, Askjaer P, Piano F, Mattaj I, Kemphues K (2006) Nucleoporins NPP-1, NPP-3, NPP-4, NPP-11 and NPP-13 are required for proper spindle orientation in C. elegans. Dev Biol 289:360–371

    PubMed  CAS  Google Scholar 

  • Schmit AC, Stoppin V, Chevrier V, Job D, Lambert AM (1994) Cell-cyle dependent distribution of a centrosomal antigen at the perinuclear MTOC or at the kinetochores of higher-plant cells. Chromosoma 103:343–351

    PubMed  CAS  Google Scholar 

  • Schwartz TU (2005) Modularity within the architecture of the nuclear pore complex. Curr Opin Struct Biol 15:221–226

    PubMed  CAS  Google Scholar 

  • Smith S, Blobel G (1993) The first membrane spanning region of the lamin B receptor is sufficient for sorting to the inner nuclear-membrane. J Cell Biol 120:631–637

    PubMed  CAS  Google Scholar 

  • Soullam B, Worman HJ (1993) The amino-terminal domain of the lamin B receptor is a nuclear-envelope targeting signal. J Cell Biol 120:1093–1100

    PubMed  CAS  Google Scholar 

  • Soullam B, Worman HJ (1995) Signals and structural features involved in integral membrane-protein targeting to the inner nuclear-membrane. J Cell Biol 130:15–27

    PubMed  CAS  Google Scholar 

  • Steggerda SM, Paschal BM (2002) Regulation of nuclear import and export by the GTPase Ran. Int Rev Cytol 217:41–91

    PubMed  CAS  Google Scholar 

  • Stoppin V, Lambert AM, Vantard M (1996) Plant microtubule-associated proteins (MAPs) affect microtubule nucleation and growth at plant nuclei and mammalian centrosomes. Eur J Cell Biol 69:11–23

    PubMed  CAS  Google Scholar 

  • Stoppin V, Vantard M, Schmit AC, Lambert AM (1994) Isolated plant nuclei nucleate microtubule assembly: the nuclear surface in higher plants has centrosome-like activity. Plant Cell 6:1099–1106

    PubMed  PubMed Central  CAS  Google Scholar 

  • Straube A, Weber I, Steinberg G (2005) A novel mechanism of nuclear envelope break-down in a fungus: nuclear migration strips off the envelope. EMBO J 24:1674–1685

    PubMed  PubMed Central  CAS  Google Scholar 

  • Takano M, Takeuchi M, Ito H, Furukawa K, Sugimoto K, Omata S, Horigome T (2002) The binding of lamin B receptor to chromatin is regulated by phosphorylation in the RS region. Eur J Biochem 269:943–953

    PubMed  CAS  Google Scholar 

  • Teresaki M, Campagnola P, Rolls MM, Stein PA, Ellenberg J, Hinkle B, Slepchenko B (2001) A new model for nuclear envelope breakdown. Mol Biol Cell 12:503–510

    Google Scholar 

  • Ueda K, Abhayavardhani P, Noguchi T (1986) Formation of the nuclear envelope during mitotic anaphase in Spirogyra. J Plant Res 99:301–308

    Google Scholar 

  • Ulitzur N, Harel A, Goldberg M, Feinstein N, Gruenbaum Y (1997) Nuclear membrane vesicle targeting to chromatin in a Drosophila embryo cell-free system. Mol Biol Cell 8:1439–1448

    PubMed  PubMed Central  CAS  Google Scholar 

  • Van den Hoek C, Mann DG, Jahns HM (1995) Algae: an introduction to phycology. Cambridge University Press, Cambridge NY

    Google Scholar 

  • Vigers GPA, Lohka MJ (1991) A distinct vesicle population targets membranes and nuclear pore complexes to the nuclear-envelope in Xenopus cells. J Cell Biol 112:545–556

    PubMed  CAS  Google Scholar 

  • Vos JW, Safadi F, Reddy ASN, Hepler PK (2000) The kinesin-like calmodulin-binding protein is differentially involved in cell division. Plant Cell 12:979–990

    PubMed  PubMed Central  CAS  Google Scholar 

  • Walther TC, Askajer P, Gentzel M, Habermann A, Griffiths G, Wilm M, Mattaj JW, Hetzer M (2003) RanGTP mediates nuclear pore complex assembly. Nature 424:689–694

    PubMed  CAS  Google Scholar 

  • Yang L, Guan T, Gerace L (1997) Integral membrane proteins of the nuclear envelope are dispersed throughout the endoplasmic reticulum during mitosis. J Cell Biol 137:1199–1210

    PubMed  PubMed Central  CAS  Google Scholar 

  • Yang X, Timofejeva L, Ma H, Makaroff CA (2006) The Arabidopsis SKP1 homolog ASK1 controls meiotic chromosome remodeling and release of chromatin from the nuclear membrane and nucleolus. J Cell Sci 119:3754–3763

    PubMed  CAS  Google Scholar 

  • Ye Q, Worman HJ (1994) Primary structure-analysis and lamin-b and DNA-binding of human LBR, an integral protein of the nuclear-envelope inner membrane. J Biol Chem 269:11306–11311

    PubMed  CAS  Google Scholar 

  • Yoneda A, Akatsuka M, Kumagai F, Hasezawa S (2004) Disruption of actin microfilaments causes cortical microtubule disorganization and extra-phragmoplast formation at M/G1 interface in synchronized tobacco cells. Plant Cell Physiol 45:761–769

    PubMed  CAS  Google Scholar 

  • Zachariadis M, Quader M, Galatis B, Apostolakos P (2001) Endoplasmic reticulum preprophase band in dividing root-tip cells in Pinus brutia. Planta 213:824–827

    PubMed  CAS  Google Scholar 

  • Zhang C, Hutchins JR, Mühlhäusser P, Kutay U, Clarke PR (2002) Role of importin β in the control of nuclear envelope assembly by Ran. Curr Biol 12:498–502

    PubMed  CAS  Google Scholar 

  • Zhang CM, Clarke PR (2000) Chromatin-independent nuclear envelope assembly induced by Ran GTPase in Xenopus egg extracts. Science 288:1429–1432

    PubMed  CAS  Google Scholar 

  • Zhang CM, Clarke PR (2001) Roles of Ran-GTP and Ran-GDP in precursor vesicle recruitment and fusion during nuclear envelope assembly in a human cell-free system. Curr Biol 11:208–212

    PubMed  CAS  Google Scholar 

  • Zhao Y, Liu X, Wu M, Tao W, Zhai Z (2000) In vitro nuclear reconstitution could be induced by a plant cell-free system. FEBS Lett 480:208–212

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annkatrin Rose .

Editor information

Desh Pal S. Verma Zonglie Hong

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rose, A. (2007). Open Mitosis: Nuclear Envelope Dynamics. In: Verma, D.P.S., Hong, Z. (eds) Cell Division Control in Plants. Plant Cell Monographs, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7089_2007_128

Download citation

Publish with us

Policies and ethics