Skip to main content

The Embryo Surrounding Region

  • Chapter
  • First Online:
Book cover Endosperm

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 8))

Abstract

There is converging evidence in maize, wheat, barley, Arabidopsis and other species that the endosperm in proximity of the embryo is cytologically different from the remaining endosperm. Gene expression restricted to this embryo surrounding region (ESR) reinforces the notion of a specialized endosperm domain at least in maize and Arabidopsis. The ESR is a dynamic structure that is set apart prior to cellularisation and starts to disappear with the onset of reserve accumulation in the developing seed. During later developmental stages it is frequently succeeded by a liquid filled space around the embryo. While the cytological characteristics of the regions surrounding the embryo are quite similar between the species analyzed, their functional equivalence has not yet been established. Possible functions of the ESR include nutrition or defense of the embryo as well as signaling between the embryo and the endosperm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Balandin M, Royo J, Gomez E, Muniz LM, Molina A, Hueros G (2005) A protective role for the embryo surrounding region of the maize endosperm, as evidenced by the characterisation of ZmESR-6, a defensin gene specifically expressed in this region. Plant Mol Biol 58:269–282

    Article  PubMed  CAS  Google Scholar 

  • Bate NJ, Niu X, Wang Y, Reimann KS, Helentjaris TG (2004) An invertase inhibitor from maize localizes to the embryo surrounding region during early kernel development. Plant Physiol 134:246–254

    Article  PubMed  CAS  Google Scholar 

  • Baud S, Wuilleme S, Lemoine R, Kronenberger J, Caboche M, Lepiniec L, Rochat C (2005) The AtSUC5 sucrose transporter specifically expressed in the endosperm is involved in early seed development in Arabidopsis. Plant J 43:824–836

    Article  PubMed  CAS  Google Scholar 

  • Boisnard-Lorig C, Colon-Carmona A, Bauch M, Hodge S, Doerner P, Bancharel E, Dumas C, Haseloff J, Berger F (2001) Dynamic analyses of the expression of the HISTONE::YFP fusion protein in arabidopsis show that syncytial endosperm is divided in mitotic domains. Plant Cell 13:495–509

    Article  PubMed  CAS  Google Scholar 

  • Bonello JF, Opsahl-Ferstad HG, Perez P, Dumas C, Rogowsky PM (2000) Esr genes show different levels of expression in the same region of maize endosperm. Gene 246:219–227

    Article  PubMed  CAS  Google Scholar 

  • Bonello J-F, Sevilla-Lecoq S, Berne A, Risueno M-C, Dumas C, Rogowsky PM (2002) Esr proteins are secreted by the cells of the embryo surrounding region. J Exp Bot 53:1559–1568

    Article  PubMed  CAS  Google Scholar 

  • Brown RC, Lemmon BE, Nguyen H (2003) Events during the first four rounds of mitosis establish three developmental domains in the syncytial endosperm of Arabidopsis thaliana. Protoplasma 222:167–174

    Article  PubMed  CAS  Google Scholar 

  • Brown RC, Lemmon BE, Nguyen H, Olsen OA (1999) Development of endosperm in Arabidopsis thaliana. Sex Plant Reprod 12:32–42

    Article  Google Scholar 

  • Brown RC, Lemmon BE, Olsen O-A (1994) Endosperm development in barley: Microtubule involvement in the morphogenetic pathway. Plant Cell 6:1241–1252

    Article  PubMed  Google Scholar 

  • Chourey PS, Jain M, Li QB, Carlson SJ (2005) Genetic control of cell wall invertases in developing endosperm of maize. Planta 1–9

    Google Scholar 

  • Clark JK, Sheridan WF (1991) Isolation and characterisation of 51 embryo-specific mutations of maize. Plant Cell 3:935–951

    Article  PubMed  Google Scholar 

  • Clark SE (2001) Cell signalling at the shoot meristem. Nat Rev Mol Cell Biol 2:276–284

    Article  PubMed  CAS  Google Scholar 

  • Cock JM, McCormick S (2001) A large family of genes that share homology with CLAVATA3. Plant Physiol 126:939–942

    Article  PubMed  CAS  Google Scholar 

  • Drea S, Leader DJ, Arnold BC, Shaw P, Dolan L, Doonan JH (2005) Systematic spatial analysis of gene expression during wheat caryopsis development. Plant Cell 17:2172–2185

    Article  PubMed  CAS  Google Scholar 

  • Engell K (1989) Embryology of barley: Time course and analysis of controlled fertilization and early embryo formation based on serial sections. Nord J Bot 9:265–280

    Article  Google Scholar 

  • Fiers M, Golemiec E, Xu J, van der Geest L, Heidstra R, Stiekema W, Liu CM (2005) The 14-amino acid CLV3, CLE19, and CLE40 peptides trigger consumption of the root meristem in Arabidopsis through a CLAVATA2-dependent pathway. Plant Cell 17:2542–2553

    Article  PubMed  CAS  Google Scholar 

  • Fletcher JC, Brand U, Running MP, Simon R, Meyerowitz EM (1999) Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 283:1911–1914

    Article  PubMed  CAS  Google Scholar 

  • Hong LS Kitano H, Satoh H, Nagato Y (1996) How is embryo size genetically regulated in rice? Dev Suppl 122:2051–2058

    Google Scholar 

  • Huber AG, Grabe DF (1987a) Endosperm Morphogenesis in Wheat—Termination of Nuclear Division. Crop Sci 27:1252–1256

    Article  Google Scholar 

  • Huber AG, Grabe DF (1987b) Endosperm Morphogenesis in Wheat—Transfer of Nutrients from the Antipodals to the Lower Endosperm. Crop Sci 27:1248–1252

    Article  Google Scholar 

  • Ingouff M, Haseloff J, Berger F (2005) Polycomb group genes control developmental timing of endosperm. Plant J 42:663–674

    Article  PubMed  CAS  Google Scholar 

  • Kiesselbach TA (1949) Reproduction and kernel development in the structure and reproduction of corn. University of Nebraska, Lincoln, Nebraska, pp 63–83

    Google Scholar 

  • Kiesselbach TA, Walker ER (1952) Structure of Certain Specialized Tissues in the Kernel of Corn. Am J Bot 39:561–569

    Article  Google Scholar 

  • Kim JY, Mahe A, Guy S, Brangeon J, Roche O, Chourey PS, Prioul JL (2000) Characterization of two members of the maize gene family, Incw3 and Incw4, encoding cell-wall invertases. Gene 245:89–102

    Article  PubMed  CAS  Google Scholar 

  • Leduc N, Matthys-Rochon E, Rougier M, Mogensen L, Holm P, Magnard JL, Dumas C (1996) Isolated maize zygotes mimic in vivo embryonic development and express microinjected genes when cultured in vitro. Dev Biol 177:190–203

    Article  PubMed  CAS  Google Scholar 

  • Luo M, Dennis ES, Berger F, Peacock WJ, Chaudhury A (2005) MINISEED3 (MINI3), a WRKY family gene, and HAIKU2 (IKU2), a leucine-rich repeat (LRR) KINASE gene, are regulators of seed size in Arabidopsis. Proc Natl Acad Sci USA 102:17531–17536

    Article  PubMed  CAS  Google Scholar 

  • Magnard JL, Le Deunff E, Domenech J, Rogowsky PM, Testillano PS, Rougier M, Risueno MC, Vergne P, Dumas C (2000) Genes normally expressed in the endosperm are expressed at early stages of microspore embryogenesis in maize. Plant Mol Biol 44:559–574

    Article  PubMed  CAS  Google Scholar 

  • Magnard JL, Lehouque G, Massonneau A, Frangne N, Heckel T, Gutierrez-Marcos JF, Perez P, Dumas C, Rogowsky PM (2003) ZmEBE genes show a novel, continuous expression pattern in the central cell before fertilization and in specific domains of the resulting endosperm after fertilization. Plant Mol Biol 53:821–836

    Article  PubMed  CAS  Google Scholar 

  • Mansfield SG, Briarty LG (1990a) Development of the free-nuclear endosperm in Arabidopsis thaliana (L). Arab Inf Serv 27:53–64

    Google Scholar 

  • Mansfield SG, Briarty LG (1990b) Endosperm cellularization in Arabidopsis thaliana (L). Arab Inf Serv 27:53–64

    Google Scholar 

  • Mol R, Matthys-Rochon E, Dumas C (1993) In vitro culture of fertilized embryo sacs of maize: Zygotes and two-celled proembryos can develop into plants. Planta 189:213–217

    Article  Google Scholar 

  • Nguyen H, Brown RC, Lemmon BE (2001) Patterns of cytoskeletal organization reflect distinct developmental domains in endosperm of Coronopus didymus (Brassicaceae). Int J Plant Sci 162:1–14

    Article  Google Scholar 

  • Norstog K (1972) Early development of the barley embryo: fine structure. Am J Bot 59:123–132

    Article  Google Scholar 

  • Olsen OA (2001) ENDOSPERM DEVELOPMENT: Cellularization and Cell Fate Specification. Annu Rev Plant Physiol Plant Mol Biol 52:233–267

    Article  PubMed  CAS  Google Scholar 

  • Opsahl-Ferstad HG, Le Deunff E, Dumas C, Rogowsky PM (1997) ZmEsr, a novel endosperm-specific gene expressed in a restricted region around the maize embryo. Plant J 12:235–246

    Article  PubMed  CAS  Google Scholar 

  • Randolph LF (1936) Developmental morphology of the caryopsis in maize. J Agric Res 53:882–916

    Google Scholar 

  • Schel JHN, Kieft H, Lammeren AAM (1984) Interactions between embryo and endosperm during early developmental stages of maize caryopses (Zea mays). Can J Bot 62:2842–2853

    Article  Google Scholar 

  • Serna A, Maitz M, O'Connell T, Santandrea G, Thevissen K, Tienens K, Hueros G, Faleri C, Cai G, Lottspeich F, Thompson RD (2001) Maize endosperm secretes a novel antifungal protein into adjacent maternal tissue. Plant J 25:687–698

    Article  PubMed  CAS  Google Scholar 

  • Sevilla-Lecoq S, Deguerry F, Matthys-Rochon E, Perez P, Dumas C, Rogowsky PM (2003) Analysis of ZmAE3 upstream sequences in maize endosperm and androgenic embryos. Sex Plant Reprod 16:1–8

    CAS  Google Scholar 

  • Smart MG, O'Brien TP (1983) The development of the wheat embryo in relation to the neighbouring tissues. Protoplasma 114:1–13

    Article  Google Scholar 

  • Sorensen MB, Chaudhury AM, Robert H, Bancharel E, Berger F (2001) Polycomb group genes control pattern formation in plant seed. Curr Biol 11:277–281

    Article  PubMed  CAS  Google Scholar 

  • van Lammeren AAM (1987) Embryogenesis in Zea mays L A structural approach to maize caryopsis development in vivo and in vitro. Agricultural University Wageningen, Wageningen

    Google Scholar 

  • van Lammeren AAM, Kieft H, Ma F, van Veenendaal WLH (1996) Light microscopical study of endosperm formation in Brassica napus L. Acta Soc Bot Pol 65:267–272

    Google Scholar 

  • Wegel E, Pilling E, Calder G, Drea S, Doonan J, Dolan L, Shaw P (2005) Three-dimensional modelling of wheat endosperm development. New Phytol 168:253–262

    Article  PubMed  Google Scholar 

  • Wobus U, Weber H (1999) Sugars as signal molecules in plant seed development. Biol Chem 380:937–944

    Article  PubMed  CAS  Google Scholar 

  • Yeung EC, Clutter ME (1979) Embryogeny of Phaseolus coccineus: the ultrastructure and development of the suspensor. Can J Bot 57:120–136

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P.M. Rogowsky .

Editor information

Odd-Arne Olsen

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cosségal, M., Vernoud, V., Depège, N., Rogowsky, P. (2007). The Embryo Surrounding Region. In: Olsen, OA. (eds) Endosperm. Plant Cell Monographs, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7089_2007_109

Download citation

Publish with us

Policies and ethics