Skip to main content

Nitric Oxide in Cytokinin and Polyamine Signaling: Similarities and Potential Crosstalk

  • Chapter
  • First Online:
  • 902 Accesses

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 5))

Abstract

New roles are emerging for nitric oxide (NO) besides senescence and defense. While NO itself is probably used as a chemical weapon in defense, in several examples the biosynthesis of NO is up-regulated so rapidly that a function of NO as a second messenger in signal transduction seems likely. We investigated this postulate with the signal substances cytokinin and polyamines. After polyamine addition to Arabidopsis seedlings, net NO biosynthesis increased with no apparent lag phase, and after zeatin addition, NO increased within 3 min. Thus, the up-regulation of NO levels is faster than activation of gene expression, consistent with our hypothesis of NO being a second messenger. A role for NO in signal transduction constitutes a new finding for both classes of signaling substances – polyamines and cytokinins. Cytokinin–polyamine crosstalk has already been indicated by known overlaps in the physiology of both signals, and the results reported here strengthen the case for this crosstalk. In addition, known multiple functions of polyamines in the physiology of pathogen defense, abiotic stress, hormones, and embryogenesis are already known to involve NO as a mediator. We discuss this new “input” into polyamine physiology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen GJ, Muir SR, Sanders D (1995) Release of Ca2+ from individual plant vacuoles by both InsP3 and cyclic ADP ribose. Science 268:735–737

    PubMed  CAS  Google Scholar 

  • Arita NO, Cohen MF, Tokuda G, Yamasaki H (2007) Fluorometric detection of nitric oxide with diaminofluoresceins: applications and limitations for plant no research. In: Lamattina L, Polacco JC (eds) Nitric oxide in plant growth. Plant Cell Monographs, vol 6. Springer, Berlin Heidelberg New York (in press)

    Google Scholar 

  • Bertoldi D, Tassoni A, Martinelli L, Bagni N (2004) Polyamines and somatic embryogenesis in two Vitis vinifera cultivars. Physiol Plant 120:657–666

    PubMed  CAS  Google Scholar 

  • Bethke PC, Badger MR, Jones RL (2004) Apoplastic synthesis of nitric oxide by plant tissues. Plant Cell 16:332–341

    PubMed  CAS  Google Scholar 

  • Binda C, Mattevi A, Edmondson DE (2002) Structure-function relationships in flavoenzyme-dependent amine oxidations: a comparison of polyamine oxidase and monoamine oxidase. J Biol Chem 277:23973–23976

    PubMed  CAS  Google Scholar 

  • Bouchereau A, Aziz A, Larher F, Martin-Tanguy J (1999) Polyamines and environmental challenges: recent developments. Plant Sci 140:103–125

    CAS  Google Scholar 

  • Bregoli AM, Scaramagli S, Costa G, Sabatini E, Ziosi V, Biondi S, Torrigiani P (2002) Peach (Prunus persica) fruit ripening: aminoethoxyvinylglycine (AVG) and exogenous polyamines affect ethylene emission and flesh firmness. Physiol Plant 114:472–481

    PubMed  CAS  Google Scholar 

  • Broillet M-C, Randin O, Chatton J-Y (2001) Photoactivation and calcium sensitivity of the fluorescent NO indicator 4,5-diamniofluorescein (DAF-2): implications for cellular NO imaging. FEBS Lett 491:227–232

    PubMed  CAS  Google Scholar 

  • Butt YK, Lum JH, Lo SC (2003) Proteomic identification of plant proteins probed by mammalian nitric oxide synthase antibodies. Planta 216:762–771

    PubMed  CAS  Google Scholar 

  • Carimi F, Zottini M, Costa A, Cattalani I, De Michele M, Terzi M, Lo Schiavo F (2005) NO signaling in cytokinin-induced programmed cell death. Plant Cell Environ 28:1171–1178

    CAS  Google Scholar 

  • Cohen AS, Popovic RB, Zalk S (1979) Effects of polyamines on chlorophyll and protein content, photochemical activity, and chloroplast ultrastructure of barley discs during senescence. Plant Physiol 64:7171–720

    Google Scholar 

  • Conrath U, Amoroso G, Köhle H, Sültemeier DF (2004) Non-invasive on-line detection of nitric oxide from plants and some other organisms by mass spectrophotometry. Plant J 38:1015–1022

    PubMed  CAS  Google Scholar 

  • Corpas FJ, Barroso JB, Carreras A, Quiros M, Leon AM, Romero-Puertas MC, Esteban FJ, Valderrama R, Palma JM, Sandalio LM, Gomez M, del Rio LA (2004) Cellular and subcellular localization of endogenous nitric oxide in young and senescent pea plants. Plant Physiol 136:2722–2733

    PubMed  CAS  Google Scholar 

  • Corpas FJ, Barroso JB, Carreras A, Valderrama R, Palma JM, León AM, Sandalio LM, del Río LA (2006) Constitutive arginine-dependent nitric oxide synthase activity in different organs of pea seedlings during plant development. Planta 224:246–254

    PubMed  CAS  Google Scholar 

  • Correa-Aragunde N, Graziano M, Lamattina L (2004) Nitric oxide plays a central role in determining lateral root development in tomato. Planta 218:900–905

    PubMed  CAS  Google Scholar 

  • D'Agostino IB, Deruere J, Kieber JJ (2000) Characterization of the response of the Arabidopsis response regulator gene family to cytokinin. Plant Physiol 124:1706–1717

    PubMed  Google Scholar 

  • Delledonne M (2005) NO news is good news for plants. Curr Opin Plant Biol 8:390–396

    PubMed  CAS  Google Scholar 

  • Delledone M, Xia Y, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394:585–588

    Google Scholar 

  • Desikan R, Griffiths R, Hancock J, Neill S (2002) A new role for an old enzyme: nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidospsis thaliana. Proc Natl Acad Sci USA 99:16314–16318

    PubMed  CAS  Google Scholar 

  • Dordas C, Hasinoff BB, Igamberdiev AU, Manac'h N, al Rivo J, Hill RD (2003) Expression of a stress-induced hemoglobin affects NO levels produced by alfalfa root cultures under hypoxic stress. Plant J 35:763–770

    PubMed  CAS  Google Scholar 

  • Durner J, Gow AJ, Stamler JS, Glazebrook J (1999) Ancient origins of nitric oxide signaling in biological systems. Proc Natl Acad Sci USA 96:14206–14207

    PubMed  CAS  Google Scholar 

  • Durner J, Wendehenne D, Klessig DF (1998) Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc Natl Acad Sci USA 95:10328–10333

    PubMed  CAS  Google Scholar 

  • Erdei L, Szegeltes Z, Barabas K, Pestenacz A (1996) Response in polyamine titer under osmotic and salt stress in sorghum and maize seedlings. J Plant Physiol 147:599–603

    CAS  Google Scholar 

  • Flores HE, Galston AW (1984) Osmotic stress-induced polyamine content in cereal leaves. I. Physiological parameters of the response. Plant Physiol 75:102–109

    PubMed  CAS  Google Scholar 

  • Foissner I, Wendehenne D, Langebartels C, Durner J (2000) In vivo imaging of an elicitor-induced nitric oxide burst in tobacco. Plant J 23:817–824

    PubMed  CAS  Google Scholar 

  • Gabaldón C, Gómez Ros LV, Pedreno MA, Ros Barceló A (2005) Nitric oxide production by the differentiating xylem of Zinnia elegans. New Phytol 165:121–130

    PubMed  Google Scholar 

  • Galston AW, Kauw-Shawney R, Altabella T, Tiburcio AF (1995) Plant polyamines in reproductive activity and response to abiotic stress. Bot Acta 110:197–207

    Google Scholar 

  • Geny L, Broquedis M, Martin-Tanguy J, Soyer JP, Bouard J (1997) Effects of potassium nutrition on polyamine content of various organs of fruiting cuttings of Vitis vinifera L. cv. Cabernet Sauvignon. Am J Enol Vitic 48:85–91

    CAS  Google Scholar 

  • Gerber IB, Zeidler D, Durner J, Dubery IA (2004) Early perception responses of Nicotiana tabacum cells in response to lipopolysaccharides from Burkholderia cepacia. Planta 218:647–657

    PubMed  CAS  Google Scholar 

  • Graziano M, Beligni V, Lamattina L (2002) Nitric Oxide improves the iron deficiency phenotype in maize. Plant Physiol 130:1852–1859

    PubMed  CAS  Google Scholar 

  • Graziano M, Lamattina L (2005) Nitric oxide and iron in plants: an emerging and converging story. Trends Plant Sci 10:4–8

    PubMed  CAS  Google Scholar 

  • Greenland AJ, Lewis DH (1984) Amines in barley leaves infected by brown rust and their possible relevance to formation of for the green islands. New Phytol 96:283–291

    CAS  Google Scholar 

  • Grefen C, Harter K (2004) Plant two-component systems: principles, functions, complexity and cross talk. Planta 219:733–742

    PubMed  CAS  Google Scholar 

  • Gould KS, Lamotte O, Klinguer A, Pugin A, Wendehenne D (2003) Nitric oxide production in tobacco leaf cells: a generalized stress response? Plant Cell Environ 26:1851–1862

    CAS  Google Scholar 

  • Guo FQ, Crawford NM (2005) Arabidopsis nitric oxide synthase1 is targeted to mitochondria and protects against oxidative damage and dark-induced senescence. Plant Cell 17:3436–3450

    PubMed  CAS  Google Scholar 

  • Guo F-Q, Okamoto M, Crawford NM (2003) Identification of a plant nitric oxide synthase gene involved in hormonal signaling. Science 302:100–103

    PubMed  CAS  Google Scholar 

  • Hajouj T, Michelis R, Gepstein S (2000) Cloning and characterization of a receptor-like protein kinase gene associated with senescence. Plant Physiol 124:1305–1314

    PubMed  CAS  Google Scholar 

  • Harper JE (1981) Evolution of nitrogen oxide(s) during in vivo nitrate reductase assay of soybean leaves. Plant Physiol 68:1488–1493

    PubMed  CAS  Google Scholar 

  • Huang X, von Rad U, Durner J (2002) Nitric oxide induces transcriptional activation of the nitric oxide-tolerant alternative oxidase in Arabidopsis suspension cells. Planta 215:914–923

    PubMed  CAS  Google Scholar 

  • Huang X, Stettmaier K, Michel C, Hutzler P, Mueller MJ, Durner J (2004) Nitric oxide is induced by wounding and influences jasmonic acid signaling in Arabidopsis thaliana. Planta 218:938–946

    PubMed  CAS  Google Scholar 

  • Hutchison CE, Kieber JJ (2002) Cytokinin signaling in Arabidopsis. Plant Cell 14:S47-S59

    PubMed  CAS  Google Scholar 

  • Hwang I, Sheen J (2001) Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature 413:383–389

    PubMed  CAS  Google Scholar 

  • Inoue T, Higuchi M, Hashimoto Y, Seki M, Kobayashi M, Kato T, Tabata S, Shinozaki K, Kakimoto T (2001) Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature 409:1060–1063

    PubMed  CAS  Google Scholar 

  • Jaffrey SR, Snyder SH (2001) The biotin switch method for the detection of S-nitrosylated proteins. Sci STKE 2001:PL1

    PubMed  CAS  Google Scholar 

  • Kakimoto T (2003) Perception and signal transduction of cytokinins. Annu Rev Plant Biol 54:605–627

    PubMed  CAS  Google Scholar 

  • Kakkar RK, Nagar PK, Ahuja PS, Rai VK (2000) Polyamines and plant morphogenesis. Physiol Plant 43:1–11

    CAS  Google Scholar 

  • Kiba T, Naitou T, Koizumi N, Yamashino T, Sakakibara H, Mizuno T (2005) Combinatorial microarray analysis revealing Arabidopsis genes implicated in cytokinin responses through the his→asp phosphorelay circuitry. Plant Cell Physiol 46:339–355

    PubMed  CAS  Google Scholar 

  • Kojima H, Hirotani M, Nakatsubo N, Kikuchi K, Urano Y, Higuchi T, Hirata Y, Nagano T (2001) Bioimaging of nitric oxide with fluorescent indicators based on the rhodamine chromophore. Anal Chem 73:1967–1973

    PubMed  CAS  Google Scholar 

  • Kojima H, Hirotani M, Urano Y, Kikuchi K, Higuchi T, Nagano T (2000) Fluorescence indicators for nitric oxide based on rhodamine chromophore. Tetrahedron Lett 41:69–72

    CAS  Google Scholar 

  • Krishnamurthy R, Bhagnat KA (1984) Polyamines as modulators of salt tolerance in rice cultivars. Plant Physiol 91:500–504

    Google Scholar 

  • Lamattina L, Garcia-Mata C, Graziano M, Pagnussat G (2003) Nitric oxide: the versatility of an extensive signal molecule. Annu Rev Plant Biol 54:109–136

    PubMed  CAS  Google Scholar 

  • Lamotte O, Courtois C, Barnavon L, Pugin A, Wendehenne D (2005) Nitric oxide in plants: the biosynthesis and cell signaling properties of a fascinating molecule. Planta 221:1–4

    PubMed  CAS  Google Scholar 

  • Lamotte O, Gould K, Lecourieux D, Sequeira-Legrand A, Lebrun-Garcia A, Durner J, Pugin A, Wendehenne D (2004) Analysis of nitric oxide signaling functions in tobacco cells challenged by the elicitor cryptogein. Plant Physiol 135:516–529

    PubMed  CAS  Google Scholar 

  • Laxalt A, Beligni MV, Lamatina L (1997) Nitric oxide preserves the level of chlorophyll in potato leaves infected by Phythophthora infestans. Eur J Plant Pathol 73:643–651

    Google Scholar 

  • Leshem YY (1996) Nitric oxide in biological systems. Plant Growth Regul 18:155–159

    CAS  Google Scholar 

  • Leshem YY Pinchasov Y (2000) Noninvasive photoacoustic spectroscopic determination of relative endogenous nitric oxide and ethylene content stoichiometry during the ripening of strawberries Fragaria annanasa (Duch.) and avocados Persea americana (Mill.). J Exp Bot 51:1471–1473

    Google Scholar 

  • Leshem YY, Wils RBH, Ku VVV (1998) Evidence for the function of the free radical gas – nitric oxide – as an endogenous maturation and senescence regulating factor in higher plants. Plant Physiol Biochem 36:825–833

    CAS  Google Scholar 

  • Lester GE (2000) Polyamines and their cellular anti-senescence properties in honey dew muskmelon fruit. Plant Sci 160:105–112

    PubMed  CAS  Google Scholar 

  • Li Q, Bettany AJ, Donnison I, Griffiths CM, Thomas H, Scott IM (2000) Characterisation of a cysteine protease cDNA from Lolium multiflorum leaves and its expression during senescence and cytokinin treatment. Biochim Biophys Acta 1492:233–236

    PubMed  CAS  Google Scholar 

  • Lindermayr C, Saalbach G, Bahnweg G, Durner J (2006) Differential inhibition of Arabidopsis methionine adenosyltransferases by protein S-nitrosylation. J Biol Chem 281:4285–4291

    PubMed  CAS  Google Scholar 

  • Lindermayr C, Saalbach G, Durner J (2005) Proteomic identification of S-nitrosylated proteins in Arabidopsis. Plant Physiol 137:921–930

    PubMed  CAS  Google Scholar 

  • Liu L, Hausladen A, Zeng M, Que L, Heitman J, Stamler JS (2001) A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans. Nature 410:490–494

    PubMed  CAS  Google Scholar 

  • Mähönen AP, Bonke M, Kauppinen L, Riikonen M, Benfey PN, Helariutta Y (2000) A novel two-component hybrid molecule regulates vascular morphogenesis of the Arabidopsis root. Genes Dev 14:2938–2943

    PubMed  Google Scholar 

  • Mannick JB, Schonhoff CM (2004) NO means no and yes: regulation of cell signaling by protein nitrosylation. Free Radic Res 38:1–7

    PubMed  CAS  Google Scholar 

  • Martinez-Moreno M, Alvarez-Barrientos A, Roncal F, Albar JP, Gavilanes F, Sokolovski S, Hills A, Gay R, Garcia-Mata C, Lamattina L, Blatt MR (2005) Protein phosphorylation is a prerequisite for intracellular Ca release and ion channel control by nitric oxide and abscisic acid in guard cells. Plant J 43:520–529

    Google Scholar 

  • Miyata S, Urao T, Yamaguchi-Shinozaki K, Shinozaki K (1998a) Expression of Arabidopsis regulator homologs is induced by cytokinins and nitrate. FEBS Lett 429:259–262

    Google Scholar 

  • Miyata S, Urao T, Yamaguchi-Shinozaki K, Shinozaki K (1998b) Characterization of genes for two-component phosphorelay mediators with a single HPt domain in Arabidopsis Mo H, Pua EC (2002) Up-regulation of arginine decarboxylase gene expression and accumulation of polyamines in mustard (Brassica juncea) in response to stress. Physiol Plant 114:439–449

    Google Scholar 

  • Morot-Gaudry-Talarmain Y, Rockel P, Moureaux T, Quileré I, Leydecker MT, Kaiser WM, Morot-Gaudry JF (2002) Nitrite accumulation and nitric oxide emission in relation to signaling in nitrite reductase antisense plants. Planta 215:708–715

    PubMed  CAS  Google Scholar 

  • Moura-Costa PH, Viana AM, Mantell SH (1993) In vitro plantlet regeneration of Ocotea catharinensis, an endangered Brasilian hardwood forest tree. Plant Cell Tiss Org Cult 35:279–286

    Google Scholar 

  • Mur LA, Santosa IE, Laarhoven LJ, Holton NJ, Harren FJ, Smith AR (2005) Laser photoacoustic detection allows in planta detection of nitric oxide in tobacco following challenge with avirulent and virulent Pseudomonas syringae pathovars. Plant Physiol 138:1247–1258

    PubMed  CAS  Google Scholar 

  • Murgia I, Delledonne M, Soave C (2002) Nitric oxide mediates iron-induced ferritin accumulation in Arabidopsis. Plant J 30:521–532

    PubMed  CAS  Google Scholar 

  • Neill SJ, Desikan R, Hancock J (2003) Nitric oxide signaling in plants. New Phytol 159:11–35

    CAS  Google Scholar 

  • Nishimura C, Ohashi Y, Sato S, Kato T, Tabato S, Ueguchi C (2004) Histidine kinase homologs that act as cytokinin receptors possess overlapping functions in the regulation of shoot and root growth in Arabidopsis. Plant Cell 16:1365–1377

    PubMed  CAS  Google Scholar 

  • Polverari A, Molesini B, Pezzotti M, Buonoaurio R, Marte M, Delledone M (2003) Nitric oxide-mediated transcriptional changes in Arabidopsis thaliana. Mol Plant Microbe Interact 16:1094–1105

    PubMed  CAS  Google Scholar 

  • Prakash L, Prathapsenan G (1988) Effect of NaCl on salinity and putrescine on shoot growth, tissue ion concentration, and yield of rice (Oryza sativa). J Agron Crop Sci 160:325–334

    CAS  Google Scholar 

  • Racz I, Kovacs M, Lasztity D, Veisz O, Szalai G, Paldi E (1996) Effects of short-term and long-term low temperature stress on polyamine biosynthesis in wheat genotypes with varying degrees of frost tolerance. J Plant Physiol 148:368–373

    CAS  Google Scholar 

  • Reggiani R, Bertani A (1989a) Effect of decreasing oxygen concentration of polyamine metabolism in rice and wheat shoots. J Plant Physiol 135:375–377

    Google Scholar 

  • Reggiani R, Guissani P, Bertani A (1990) Relationship of the accumulation of putrescine and the tolerance to oxygen deficit stress in Gramineae seedlings. Plant Cell Physiol 31:489–494

    CAS  Google Scholar 

  • Reggiani R, Hochkoeppler A, Bertani A (1989b) Polyamines and anaerobic elongation in rice coleoptile. Plant Cell Physiol 30:893–898

    CAS  Google Scholar 

  • Richards FJ, Coleman EG (1952) Occurrence of putrescine in potassium deficient barley. Nature 170:460–461

    PubMed  CAS  Google Scholar 

  • Rockel P, Strube F, Rockel A, Wildt J, Kaiser WM (2002) Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. J Exp Bot 53:103–110

    PubMed  CAS  Google Scholar 

  • Roitsch T, Gonzalez MC (2004) Function and regulation of plant invertases: sweet sensations. Trends Plant Sci 9:606–613

    PubMed  CAS  Google Scholar 

  • Roychowdhury S, Luthe A, Keilhoff G, Wolf G, Horn TFW (2002) Oxidative stress in glial cultures: detection by DAF-2 fluorescence used as a tool to measure peroxynitrite rather than nitric oxide. Glia 38:103–114

    PubMed  Google Scholar 

  • Sakamoto A, Ueda M, Morikawa H (2002) Arabidopsis glutathione dependent formaldehyde dehydrogenase is an S-nitrosoglutathione reductase. FEBS Lett 515:20–24

    PubMed  CAS  Google Scholar 

  • Sakihama Y, Nakamura S, Yamasaki H (2002) Nitric oxide production mediated by nitrate reductase in the green alga Chlamydomonas reinhardtii: an alternative NO production pathway in photosynthesis organisms. Plant Cell Physiol 43:290–297

    PubMed  CAS  Google Scholar 

  • Samuelson ME, Campbell WH, Larsson CM (1995) The influence of cytokinins in nitrate regulation of nitrate reductase activity and expression in barley. Physiol Plant 93:533–539

    CAS  Google Scholar 

  • Santa-Catarina C, Hanai LR, Dornelas MC, Viana AM, Floh EIS (2004) Serk gene homolog expression, polyamines and amino acids associated with somatic embryogenic competence of Ocotea catharinensis Mez. (Lauraceae). Plant Cell Tiss Org Cult 90R1:1–9

    Google Scholar 

  • Santa-Catarina C, Randi AM, Viana AM (2003) Growth and accumulation of storage reserves by somatic embryos of Ocotea catharinensis Mez. (Lauraceae). Plant Cell Tiss Org Cult 74:67–71

    CAS  Google Scholar 

  • Santa-Cruz A, Perez-Alfocea MA, Bolarin C (1997) Changes in free polyamine levels induced by salt stress in leaves of cultivated and wild tomato species. Physiol Plant 101:341–346

    CAS  Google Scholar 

  • Silveira V, Floh EIS, Handro W, Guerra M (2004) Effect of plant growth regulators on the cellular growth and levels of intracellular protein, starch and polyamines in embryogenic suspension cultures of Pinus taeda. Plant Cell Tiss Org Cult 76:53–60

    CAS  Google Scholar 

  • Silveira V, Santa-Catarina C, Tun NN, Handro W, Scherer GFE, Handro W, Guerra M, Floh EIS (2006) Polyamine effects on the endogenous polyamine contents, nitric oxide release, growth and differentiation of embryonic suspension cultures of Araucaria angustifolia (Bert.) O.KTZE. Plant Sci 171:91–98

    CAS  Google Scholar 

  • Shi LM, Kaur-Shawney R, Fuhrer J, Samanat S, Galston A (1982) Effects of exogeneous 1,3-diaminepropane and spermidine on senescence on oat leaves. Plant Physiol 70:1592–1596

    Google Scholar 

  • Shoeb F, Yadav JS, Bajaj S, Rajam MV (2001) Polyamines as biomarkers for plant regeneration capacity: improvement of regeneration by modulation of polyamine metabolism in different genotypes of indica rice. Plant Sci 160:1229–1235

    PubMed  CAS  Google Scholar 

  • Sokolovski S, Blatt MR (2004) Nitric oxide block of outward-rectifying K+ channels indicates direct control by protein nitrosylation in guard cells. Plant Physiol 136:4275–4284

    PubMed  CAS  Google Scholar 

  • Sokolovski S, Hills A, Gay R, Garcia-Mata C, Lamattina L, Blatt MR (2005) Protein phosphorylation is a prerequisite for intracellular Ca release and ion channel control by nitric oxide and abscisic acid in guard cells. Plant J 43:520–529

    PubMed  CAS  Google Scholar 

  • Stamler JS, Lamas S, Fang FC (2001) Nitrosylation. the prototypic redox-based signaling mechanism. Cell 106:675–683

    PubMed  CAS  Google Scholar 

  • Stöhr C, Strube F, Marx G, Ullrich WR, Rockel P (2001) A plasma membrane-bound enzyme of tobacco roots catalyses the formation of nitric oxide from nitrite. Planta 212:835–841

    PubMed  Google Scholar 

  • Takahashi Y, Berberich T, Miyazaki A, Seo S, Ohashi Y, Kusano T (2003) Spermine signaling in tobacco: activation of mitogen-activated protein kinases by spermine is mediated through mitochondrial dysfunction. Plant J 36:820–829

    PubMed  CAS  Google Scholar 

  • Takahashi Y, Uehara Y, Berberich T, Ito A, Saitoh H, Miyazaki A, Terauchi R, Kusano T (2004) A subset of hypersensitive response marker genes, including HSR203J, is the downstream target of a spermine signal transduction pathway in tobacco. Plant J 40:586–595

    PubMed  CAS  Google Scholar 

  • Takei K, Takahashi T, Sugiyama T, Yamaya T, Sakakibara H (2002) Multiple routes communicating nitrogen availability from roots to shoots: a signal transduction pathway mediated by cytokinin. J Exp Bot 53:971–977

    PubMed  CAS  Google Scholar 

  • Tanaka S, Suzuki T, Yamashino T, Mizuno T (2004) Comparative studies on the AHP histidine-containing phosphotransmitters implicated in his-to-asp phosphorelay in Arabidopsis thaliana. Biosci Biotechnol Biochem 68:462–465

    PubMed  CAS  Google Scholar 

  • Taniguch M, Kiba T, Sakakibara H, Ueguchi C, Mizuno T, Sugiyama T (1998) Expression of Arabidopsis response regulator homologs is induced by cytokinins and nitrate. FEBS Lett 429:259–262

    Google Scholar 

  • Tischner R, Planchet E, Kaiser WM (2004) Mitochondrial electron transport as a source for nitric oxide in the unicellular green alga Chlorella sorokiniana. FEBS Lett 576:151–155

    PubMed  CAS  Google Scholar 

  • Tun NN, Holk A, Scherer GFE (2001) Rapid increase of NO release in plant cell cultures induced by cytokinin. FEBS Lett 509:174–176

    PubMed  CAS  Google Scholar 

  • Tun NN, Santa-Catarina C, Begum T, Silveira V, Handro W, Floh EIS, Scherer GFE (2006) Polyamines induce rapid biosynthesis of nitric oxide (NO) in Arabidopsis thaliana seedlings. Plant Cell Physiol 47:346–354

    PubMed  CAS  Google Scholar 

  • Ueguchi C, Koizumi H, Suzuki T, Mizuno T (2001) Novel family of sensor histidine kinase genes in Arabidopsis thaliana. Plant Cell Physiol 42:231–235

    PubMed  CAS  Google Scholar 

  • Viana AM, Mantell SH (1999) Somatic embryogenesis of Ocotea catharinensis: an endangered tree of the Mata Atlantica (S. Brasil). In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants, vol 5. Kluwer, Dordrecht, pp 3–30

    Google Scholar 

  • Watson MB, Malmberg RL (1996) Regulation of Arabidopsis thaliana (L.) Heynh arginine decarboxylase by potassium deficiency stress. Plant Physiol 111:1077–1083

    PubMed  CAS  Google Scholar 

  • Wendehenne D, Durner J, Klessig DF (2004) Nitric oxide: a new player in plant signaling and defence responses. Curr Opin Plant Biol 7:449–455

    PubMed  CAS  Google Scholar 

  • Wendehenne D, Pugin A, Klessig DF, Durner J (2001) Nitric oxide: comparative synthesis and signaling in animal and plant cells. Trends Plant Sci 4:177–183

    Google Scholar 

  • Wilkinson JQ, Crawford NM (1993) Identification and characterisation of a chlorate-resistant mutant of Arabidopsis thaliana with mutations in both nitrate reductase structural genes NIA1 and NIA2. Mol Gen Genet 239:289–297

    PubMed  CAS  Google Scholar 

  • Willidiano L, Camara T, Boget N, Claparols I, Santos M, Torne JM (1996) Polyamine and free amino acid variations in NaCl-treated embryogenic maize callus from sensitive and resistant cultivars. J Plant Physiol 149:179–185

    Google Scholar 

  • Yamakawa H Kamada H, Satoh M, Ohashi Y (1998) Spermine is a salicylate-independent endogenous inducer for both tobacco acidic pathogenesis-related proteins and resistance against tobacco mosaic virus infection. Plant Physiol 118:1213–1222

    Google Scholar 

  • Yamasaki H (2005) The NO world for plants: achieving balance in an open system. Plant Cell Environ 28:78–84

    CAS  Google Scholar 

  • Yamasaki H, Sakihama Y Takahashi S (1999) An alternative pathway for nitric oxide production in plants: new features of an old enzyme. Trends Plant Sci 4:128–129

    PubMed  Google Scholar 

  • Zeidler D, Zähringer U, Gerber I, Dubery I, Hartung T, Bors W, Hutzler P, Durner J (2004) Innate immunity in Arabidopsis thaliana: lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes. Proc Natl Acad Sci USA 101:15811–15816

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günther F. E. Scherer .

Editor information

Lorenzo Lamattina Joseph C. Polacco

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Scherer, G.F.E. (2006). Nitric Oxide in Cytokinin and Polyamine Signaling: Similarities and Potential Crosstalk. In: Lamattina, L., Polacco, J.C. (eds) Nitric Oxide in Plant Growth, Development and Stress Physiology. Plant Cell Monographs, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7089_2006_088

Download citation

Publish with us

Policies and ethics