Skip to main content

Signal Crosstalk in the Control of Hypocotyl Elongation in Arabidopsis

  • Chapter
  • First Online:
Book cover The Expanding Cell

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 6))

Abstract

Since plants are sessile organisms, environmental factors have a strong influence on their development. Hence, there is a need for adaptive mechanisms which integrate the multiple endogenous and environmental signals resulting in the most adequate biological response. Because of its morphological simplicity, the hypocotyl is often used as a model to study signal integration. Hypocotyl extension is a process regulated by a network of interacting signals, including light and hormones. Both are subject to reciprocal regulation, with hormonal factors influencing the biosynthesis and/or signalling of other hormones. In the following chapter, the current state of knowledge on the regulation of hypocotyl growth will be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

ACC:

1-Aminocyclopropane-1-carboxylic acid

ACO:

ACC oxidase

AMP:

Altered meristem program

ARF:

Auxin response factor

ARR:

Arabidopsis response regulator

BA:

Benzyladenine

BAS1-D:

phyB activation-tagged suppressor1-dominant

BR:

Brassinosteroid

CAB:

Chlorophyll A/B binding protein

CBB:

Cabbage

CCA:

Circadian clock-associated

CDD:

cop10/det1/dbb1

COP:

Constitutive photomorphogenesis

CPD:

Constitutive photomorphogenesis and dwarfism

CRY:

Cryptochrome

CSN:

COP9-signalosome

DET:

De-etiolated

EBR:

Epibrassinolide

EIN:

Ethylene insensitive

FUS:

Fusca

GA:

Gibberellin

GUS:

β-Glucuronidase

HLS:

Hookless

HPT:

Hauptling

HSS:

Hookless suppressor

HY:

Long hypocotyl

IAA:

Indol-3-acetic acid

LHY:

Late elongated hypocotyl

LNM:

Low-nutrient medium

LRE:

Light-responsive element

MS:

Murashige and Skoog

NPA:

α-Naphthylphthalamic acid

NPH:

Nonphototropic hypocotyl

PCK:

Phosphoenolpyruvate carboxykinase

PHOT:

Phototropin

PHY:

Phytochrome

PIN:

Pin-formed

PT:

Primordial timing

SAX:

Hypersensitive to abscisic acid and auxin

SCF:

SKP1/Cullin/F-box

SPY:

Spindly

TOC:

Timing of CAB-expression

References

  1. Achard P, Vriezen WH, Van Der Straeten D, Harberd NP (2003) Ethylene regulates Arabidopsis development via the modulation of DELLA protein growth repressor function. Plant Cell 15:2816–2825

    PubMed  CAS  Google Scholar 

  2. Aharoni N, Anderson JD, Lieberman M (1979) Production and action of ethylene in senescing leaf discs. Effect of indoleacetic acid, kinetin, silver ion, and carbon dioxide. Plant Physiol 64:805–809

    PubMed  CAS  Google Scholar 

  3. Alabadí D, Gil J, Blázquez MA, Garcia-Martínez JL (2004) Gibberellins repress photomorphogenesis in darkness. Plant Physiol 134:1050–1057

    PubMed  Google Scholar 

  4. Alonso JM, Hirayama T, Roman G, Nourizadey S, Ecker JR (1999) EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284:2148–2152

    PubMed  CAS  Google Scholar 

  5. Ang LH, Chattopadhyay S, Wei N, Oyama T, Okada K, Batschauer A, Deng XW (1998) Molecular interaction between COP1 and HY5 defines a regulatory switch for light control of Arabidopsis development. Mol Cell 1:213–222

    PubMed  CAS  Google Scholar 

  6. Asami T, Oh K, Jikumaru Y, Kaneko I, Nakano T, Takatsuto S, Fujika S, Yoshida S (2004) A mammalian steroid action inhibitor spironolactone retards plant growth by inhibition of brassinosteroid action and induces light-induced gene expression in the dark. J Steroid Biochem Mol Biol 91:41–47

    PubMed  CAS  Google Scholar 

  7. Benkova E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, Jurgens G, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602

    PubMed  CAS  Google Scholar 

  8. Berger F, Linstead P, Dolan L, Haseloff J (1998) Stomata patterning on the hypocotyl of Arabidopsis thaliana is controlled by genes involved in the control of root epidermis patterning. Dev Biol 194:226–234

    PubMed  CAS  Google Scholar 

  9. Blakeslee J, Bandyopadhyay A, Peer W, Makam S, Murphy A (2004) Relocalization of the PIN1 auxin facilitator plays a role in phototropic responses. Plant Physiol 134:28–31

    PubMed  CAS  Google Scholar 

  10. Bleecker A, Estelle M, Somerville C, Kende H (1988) Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science 241:1086–1089

    CAS  PubMed  Google Scholar 

  11. Boerjan W, Cervera M, Delarue M, Beeckman T, Dewitte W, Belline C, Caboch M, Van Onckelen H, Van Montagu M, Inzé D (1996) Superroot, a recessive mutation in Arabidopsis, confers auxin overproduction. Plant Cell 7:1405–1419

    Google Scholar 

  12. Bouquin T, Meier C, Foster R, Nielsen ME, Mundy J (2001) Control of specific gene expression by gibberellin and brassinosteroid. Plant Physiol 127:450–458

    PubMed  CAS  Google Scholar 

  13. Braam J, Davis RW (1990) Rain-, wind-, and touch-induced expression of calmodulin and calmodulin-related genes in Arabidopsis. Cell 60:357–364

    PubMed  CAS  Google Scholar 

  14. Cary AJ, Liu W, Howell SH (1995) Cytokinin action is coupled to ethylene in its effects on the inhibition of root and hypocotyl elongation in Arabidopsis thaliana seedlings. Plant Physiol 107:1075–1082

    PubMed  CAS  Google Scholar 

  15. Celenza JL, Grisafi PL, Fink GR (1995) A pathway for lateral root formation in Arabidopsis thaliana. Gen Dev 9:2131–2142

    CAS  Google Scholar 

  16. Chae HS, Faure F, Kieber JJ (2003) The eto1, eto2, and eto3 mutations and cytokinin treatment increase ethylene biosynthesis in Arabidopsis by increasing the stability of ACS protein. Plant Cell 15(2):545–559

    PubMed  CAS  Google Scholar 

  17. Chattopadhyay S, Puente P, Deng XW, Wei N (1998) Combinatorial interaction of light-responsive elements play a critical role in determining the response characteristics of light-regulated promoters in Arabidopsis. Plant J 15:69–77

    PubMed  CAS  Google Scholar 

  18. Chaudhury AM, Letham S, Craig S, Dennis ES (1993) amp1—a mutant with high cytokinin levels and altered embryonic pattern, faster vegetative growth, constitutive photomorphogenesis and precocious flowering. Plant J 4:907–916

    CAS  Google Scholar 

  19. Chory J, Nagpal P, Peto CA (1991) Phenotypic and genetic analysis of det2, a new mutant that affects light-regulated seedling development in Arabidopsis. Plant Cell 3:445–459

    PubMed  CAS  Google Scholar 

  20. Chory J, Reinecke D, Sim S, Washburn T, Brenner M (1994) A role for cytokinins in de-etiolation in Arabidopsis. Plant Physiol 104:339–347

    PubMed  CAS  Google Scholar 

  21. Christie JM, Reymond P, Powell GK, Bernasconi P, Raibekas AA, Liscum E, Briggs WR (1998) Arabidopsis PNH1: a flavoprotein with the properties of a photoreceptor for phototropism. Science 282:1698–1701

    PubMed  CAS  Google Scholar 

  22. Clark KL, Larsen PB, Wang XX, Chang C (1998) Association of the Arabidopsis CTR1 Raf-like kinase with the ETR1 and ERS ethylene receptors. Proc Natl Acad Sci USA 95:5401–5406

    PubMed  CAS  Google Scholar 

  23. Collett CE, Harberd NP, Leyser O (2000) Hormonal interactions in the control of Arabidopsis hypocotyl elongation. Plant Physiol 124:553–561

    PubMed  CAS  Google Scholar 

  24. Colón-Carmona A, Chen DL, Yeh KC, Abel S (2000) Aux/IAA proteins are phosphorylated by phytochromes in vitro. Plant Physiol 124:1728–1738

    PubMed  Google Scholar 

  25. Cosgrove DJ (1994) Photomodulation of growth. In: Kendrick RE, Kronenberg GHM (eds) Photomorphogenesis in plants. Kluwer, Dordrecht, pp 631–658

    Google Scholar 

  26. Cowling RJ, Harberd NP (1999) Gibberellins control Arabidopsis hypocotyls growth via regulation of cellular elongation. J Exp Bot 50:1351–1357

    CAS  Google Scholar 

  27. Creelman RA, Mullet JE (1995) Jasmonic acid distribution and action in plants: regulation during development and responses to biotic and abiotic stress. Proc Natl Acad Sci USA 92:4114–4119

    PubMed  CAS  Google Scholar 

  28. De Grauwe L, Vandenbussche F, Tietz O, Palme K, Van Der Straeten D (2005) Auxin, ethylene and brassinosteroids: tripartite control of growth in the Arabidopsishypocotyl. Plant Cell Physiol 46:827–836

    PubMed  Google Scholar 

  29. Deshaies RJ (1999) SCF and Cullin/Ring H2-based ubiquitin ligases. Annu Rev Cell Dev Biol 15:435–467

    PubMed  CAS  Google Scholar 

  30. Devlin PF, Yanovsky MJ, Kay SA (2003) A genomic analysis of the shade avoidance response in Arabidopsis. Plant Physiol 133:1617–1629

    PubMed  CAS  Google Scholar 

  31. Dowson-Day MJ, Millar SA (1999) Circadian dysfunction causes aberrant hypocotyl elongation patterns in Arabidopsis. Plant J 17:63–71

    PubMed  CAS  Google Scholar 

  32. Ecker JR (1995) The ethylene signal transduction pathway in plants. Science 268:667–675

    PubMed  CAS  Google Scholar 

  33. Engelmann W, Simon K, Phen CH (1992) Leaf movement rhythm in Arabidopsis thaliana. Z Naturforsch 47c:925–928

    Google Scholar 

  34. Ephritikhine G, Fellner M, Vannini C, Lapous D, Barbier-Brygoo H (1999) The sax1 dwarf mutant of Arabidopsis thaliana shows altered sensitivity of growth responses to abscisic acid, auxin, gibberellins and ethylene and is partially rescued by exogenous brassinosteroids. Plant J 18:303–314

    PubMed  CAS  Google Scholar 

  35. Fejes E, Nagy F (1998) Molecular analysis of circadian clock-regulated gene expression in plants: features of the “output” pathways. In: Lumsden PJ, Millar AJ (eds) Biological rhythms and photoperiodism in plants. BIOS Scientific, Oxford, pp 99–118

    Google Scholar 

  36. Folta KM (2004) Green light stimulates early stem elongation, antagonizing light-mediated growth inhibition. Plant Physiol 135:1407–1416

    PubMed  CAS  Google Scholar 

  37. Folta KM, Pontin MA, Karlin-Neumann G, Bottini R, Spalding EP (2003) Genomic and physiological studies of early cryptochrome 1 action demonstrates roles for auxin and gibberellin in the control of hypocotyl growth by blue light. Plant J 36:203–214

    PubMed  CAS  Google Scholar 

  38. Frankhauser C, Chory J (1997) Light control of plant development. Annu Rev Cell Dev Biol 13:203–229

    Google Scholar 

  39. Friml J, Wisniewska J, Benkova E, Mendgen K, Palme K (2002) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415:806–809

    PubMed  Google Scholar 

  40. Fu X, Harberd NP (2003) Auxin promotes Arabidopsisroot by modulating gibberellin response. Nature 421:740–743

    PubMed  CAS  Google Scholar 

  41. Fu X, Richards DE, Ait-ali T, Hynes LW, Ougham H, Peng J, Harberd NP (2002) Gibberellin-mediated proteasome-dependent degradation of the barley DELLA protein SLN1 repressor. Plant Cell 14:3191–3200

    PubMed  CAS  Google Scholar 

  42. Fuchs Y, Lieberman M (1968) Effects of kinetin, IAA and gibberellin on ethylene production, and their interactions in growth of seedlings. Plant Physiol 43:2029–2036

    PubMed  CAS  Google Scholar 

  43. Geldner N, Friml J, Stierhof Y, Jürgens G, Palme K (2001) Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413:425–428

    PubMed  CAS  Google Scholar 

  44. Gendreau E, Traas J, Desnos T, Grandjean O, Caboche M, Höfte H (1997) Cellular basis of hypocotyl growth in Arabidopsis thaliana. Plant Physiol 114:295–305

    PubMed  CAS  Google Scholar 

  45. Goeschl JD, Rappaport L, Pratt HK (1966) Ethylene as a factor regulating the growth of pea epicotyls subjected to physical stress. Plant Physiol 41:877–884

    PubMed  CAS  Google Scholar 

  46. Gray WM, Östin A, Sandberg G, Romano CP, Estelle M (1998) High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis. Proc Natl Acad Sci USA 95:7197–7202

    PubMed  CAS  Google Scholar 

  47. Guzman P, Ecker JR (1990) Exploiting the triple response of Arabidopsisto identify ethylene-related mutants. Plant Cell 2:513–523

    PubMed  CAS  Google Scholar 

  48. Haley A, Russell AJ, Wood N, Allan AC, Knight M, Campbell AK, Trewavas AJ (1995) Effects of mechanical signalling on plant cell cytosolic calcium. Proc Natl Acad Sci USA 92:4124–4128

    PubMed  CAS  Google Scholar 

  49. Harmer SL, Kay SA (2005) Positive and negative factors confer phase-specific circadian regulation of transcription in Arabidopsis. Plant Cell 17:1926–1940

    PubMed  CAS  Google Scholar 

  50. Harmer SL, Hogenesch JB, Straume M, Chang HS, Han B, Zhu T, Wang X, Kreps JA, Kay SA (2000) Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290:2110–2113

    PubMed  CAS  Google Scholar 

  51. Harper RM, Stowe-Evans EL, Luesse DR, Muto H, Tatematsu K, Watahiki MK, Yamamoto K, Liscum E (2000) The NPH4locus encodes the auxin response factor ARF7, a conditional regulator of differential growth in aerial Arabidopsis tissue. Plant Cell 12:757–770

    PubMed  CAS  Google Scholar 

  52. Helliwell CA, Chin-Atkins AN, Wilson IW, Chapple R, Dennis ES, Chaudhury A (2001) The Arabidopsis AMP1 gene encodes a putative glutamate carboxypeptidase. Plant Cell 13:2115–2125

    PubMed  CAS  Google Scholar 

  53. Holm M, Ma LG, Qu LJ, Deng XW (2002) Two interacting bZIP proteins are direct targets of COP1-mediated control of light-dependent gene expression in Arabidopsis. Gen Dev 16:1247–1259

    CAS  Google Scholar 

  54. Hong SW, Vierling E (2000) Mutants of Arabidopsis thaliana defective in the acquisition of tolerance to high-temperature stress. Proc Natl Acad Sci USA 97:4392–4397

    PubMed  CAS  Google Scholar 

  55. Horwitz BA, Epel BL (1978) Circadian changes in activity of the far-red form of phytochrome: physiological and in vivo spectrophotometric studies. Plant Sci Lett 13:9–14

    CAS  Google Scholar 

  56. Jacobsen SE, Olszewski NE (1993) Mutations in the SPINDLY locus of Arabidopsis alter gibberellin signal transduction. Plant Cell 5:887–896

    PubMed  CAS  Google Scholar 

  57. Jensen PJ, Hangarter RP, Estelle M (1998) Auxin transport is required for hypocotyl elongation in light-grown but not dark-grown Arabidopsis. Plant Physiol 116:455–462

    PubMed  CAS  Google Scholar 

  58. Johnson KA, Sistrunk ML, Polisensky DH, Braam J (1998) Arabidopsis thaliana responses to mechanical stimulation do not require ETR1 and EIN2. Plant Physiol 116:643–649

    PubMed  CAS  Google Scholar 

  59. Jouve L, Gaspar T, Kevers C, Greppin H, Degli Agosti R (1999) Involvement of indole-3-acetic acid in the circadian growth of the first internode of Arabidopsis. Planta 209:136–142

    PubMed  CAS  Google Scholar 

  60. Kauschmann A, Jessop A, Koncz C, Szekeres M, Willmitzer L, Altmann T (1996) Genetic evidence for an essential role of brassinosteroids in plant development. Plant J 9:701–713

    CAS  Google Scholar 

  61. King JJ, Stimart D, Fisher RH, Bleecker AB (1995) A mutation altering auxin homeostasis and plant morphology in Arabidopsis. Plant Cell 7:2023–2037

    PubMed  CAS  Google Scholar 

  62. King RW, Schafer E, Thomas B, Vince-Prue D (1982) Photoperiodism and rhythmic response to light. Plant Cell Environ 5:395–404

    Google Scholar 

  63. Knight MR, Campbell AK, Smith SM, Trewavas AJ (1991) Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature 352:524–526

    PubMed  CAS  Google Scholar 

  64. Koornneef M, Rolff E, Spruitt CJP (1980) Genetic control of light-inhibited hypocotyl elongation in Arabidopsis thalianaL. Heynh. Z Pflanzenphysiol 100:147–160

    Google Scholar 

  65. Larkindale J, Hall JD, Knight MR, Vierling E (2005) Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol 138:882–897

    PubMed  CAS  Google Scholar 

  66. Le J, Vandenbussche F, De Cnodder T, Van Der Straeten D, Verbelen J-P (2005) Cell elongation and microtubule behavior in the Arabidopsis hypocotyl: responses to ethylene and auxin. J Plant Growth Regul 24:166–178

    Google Scholar 

  67. Lehman A, Black R, Ecker JR (1996) HOOKLESS1, an ethylene response gene, is required for differential cell elongation in the Arabidopsis hypocotyl. Cell 85:183–184

    PubMed  CAS  Google Scholar 

  68. Li H, Johnson P, Stepanova A, Alonso JM, Ecker JR (2004) Convergence of signalling pathways in the control of differential cell growth in Arabidopsis. Dev Cell 7:193–204

    PubMed  CAS  Google Scholar 

  69. Lin C (2000) Plant blue-light receptors. Trends Plant Sci 5:337–342

    PubMed  CAS  Google Scholar 

  70. Lin C, Yang H, Guo H, Mockler T, Chen J, Cashmore AR (1998) Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2. Proc Natl Acad Sci USA 95:2686–2690

    PubMed  CAS  Google Scholar 

  71. Lincoln C, Britton JH, Estelle M (1990) Growth and development of the axr1 mutants in Arabidopsis. Plant Cell 2:1071–1080

    PubMed  CAS  Google Scholar 

  72. Liscum E, Hangarter R (1993) Light-stimulated apical hook opening in wild-type Arabidopsis thalianaseedlings. Plant Physiol 101:567–572

    PubMed  Google Scholar 

  73. Lumsden PJ, Millar AJ (eds) (1998) Biological rhythms and photoperiodism in plants. BIOS Scientific, Oxford

    Google Scholar 

  74. Lyapina S, Cope G, Shevchenko A, Serino G, Tsuge T, Zhou C, Wolf DA, Wei N, Shevchenko A, Deshaies RJ (2001) Promotion of NEDD8-CUL1 conjugate cleavage by COP9 signalosome. Science 292:1382–1385

    PubMed  CAS  Google Scholar 

  75. Ma L, Gao Y, Qu L, Chen Z, Li J, Zhao H, Deng XW (2002) Genomic evidence for COP1 as a repressor of light-regulated gene expression and development in Arabidopsis. Plant Cell 14:2383–2398

    PubMed  CAS  Google Scholar 

  76. Mattoo AK, White WB (1991) Regulation of ethylene biosynthesis. In: Mattoo AK, Suttle JC (eds) The plant hormone ethylene. CRC, Boca Raton, pp 21–42

    Google Scholar 

  77. Millar AJ, Kay SA (1996) Integration of circadian and phototransduction pathways in the network controlling CAB gene transcription in Arabidopsis. Proc Natl Acad Sci USA 93:15491–15496

    PubMed  CAS  Google Scholar 

  78. Morelli G, Ruberti I (2002) Light and shade in the photocontrol of Arabidopsisgrowth. Trends Plant Sci 7:399–404

    PubMed  CAS  Google Scholar 

  79. Nagatani A, Reed JW, Chory J (1993) Isolation and initial characterisation of Arabidopsismutants that are deficient in functional phytochrome A. Plant Physiol 102:269–277

    PubMed  CAS  Google Scholar 

  80. Nagy F, Schafer E (2002) Phytochromes control photomorphogenesis by differentially regulated, interacting signalling pathways in higher plants. Annu Rev Plant Physiol Plant Mol Biol 53:329–355

    CAS  Google Scholar 

  81. Neff MM, Nguyen SM, Malancharuvil EJ, Fujioka S, Noguchi T, Seto H, Tsubuki M, Honda T, Takatsuto S, Chory J (1999) BAS1: a gene regulating brassinosteroid levels and light responsiveness in Arabidopsis. Proc Natl Acad Sci USA 96:15316–15323

    PubMed  CAS  Google Scholar 

  82. Nicolas IL, Echeverria MA, Sanchez-Bravo L (2001) Influences of ethylene and Ag+ on hypocotyl growth in etiolated lupin seedlings. Effects on cell growth and division. Plant Growth Regul 33:95–105

    CAS  Google Scholar 

  83. Okushima Y, Overvoorde PJ, Arima K, Alonso JM, Chan A, Chang C, Ecker JR, Hughes B, Lui A, Nguyen D, Onodera C, Quach H, Smith A, Yu G, Theologis A (2005) Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. Plant Cell 17:444–463

    PubMed  CAS  Google Scholar 

  84. Osterlund MT, Hardtke CS, Wei N, Deng XW (2000) Targeted destabilization of HY5 during light regulated development of Arabidopsis. Nature 405:462–466

    PubMed  CAS  Google Scholar 

  85. Parks BM, Quail PH (1993) hy8, a new class of Arabidopsis long hypocotyl mutants deficient in functional phytochrome A. Plant Cell 3:39–48

    Google Scholar 

  86. Peng ZH, Serino G, Deng XW (2001) A role of Arabidopsis COP9 signalosome in multifaceted developmental processes revealed by the characterization of its subunit 3. Development 128:4277–4288

    PubMed  CAS  Google Scholar 

  87. Penfield S, Rylott EL, Gilday AD, Graham S, Larson TR, Graham IA (2004) Reserve mobilization in the Arabidopsis endosperm fuels hypocotyl elongation in the dark, is independent of abscisic acid, and requires PHOSPHOENOLPYRUVATE CARBOXYKINASE1. Plant Cell 16:2705–2718

    PubMed  CAS  Google Scholar 

  88. Poovaiah BW (1974) Promotion of radial growth by 2-chloroethylphosphonic acid in bean. Bot Gaz 135:289–292

    Google Scholar 

  89. Quail PH (2002) Photosensory perception and signalling in plant cells: new paradigms? Curr Opin Plant Biol 14:180–188

    CAS  Google Scholar 

  90. Quail PH, Boylan MT, Parks BM, Short TW, Xu Y, Wagner D (1995) Phytochromes: photosensory perception and signal transduction. Science 268:675–680

    PubMed  CAS  Google Scholar 

  91. Raskin I, Kende H (1984) Role of gibberellin in the growth response of submerged deepwater rice. Plant Physiol 76:947–950

    Article  PubMed  CAS  Google Scholar 

  92. Raz V, Ecker J (1999) Regulation of differential growth in the apical hook in Arabidopsis. Development 126:3661–3665

    PubMed  CAS  Google Scholar 

  93. Raz V, Koornneef M (2001) Cell division activity during apical hook development. Plant Physiol 125(1):219–26

    PubMed  CAS  Google Scholar 

  94. Reed JW, Nagatani A, Elich T, Fagan M, Chory J (1994) Phytochrome A and phytochrome B have overlapping but distinct functions in Arabidopsis development. Plant Physiol 104:1139–1149

    PubMed  CAS  Google Scholar 

  95. Reed JW, Foster KR, Morgan PW, Chory J (1996) Phytochrome B affects responsiveness to gibberellins in Arabidopsis. Plant Physiol 112:337–342

    PubMed  CAS  Google Scholar 

  96. Refrégier G, Pellentier S, Jaillard D, Höfte H (2004) Interaction between wall deposition and cell elongation in dark-grown hypocotyl cells in Arabidopis. Plant Physiol 135:959–968

    PubMed  Google Scholar 

  97. Rylott EL, Hooks MA, Graham IA (2001) Co-ordinate regulation of genes involved in storage lipid mobilization in Arabidopsis thaliana. Biochem Soc Trans 29:283–287

    PubMed  CAS  Google Scholar 

  98. Rylott EL, Gilday AD, Graham IA (2003) The gluconeogenic enzyme phosphoenolpyruvate carboxykinase in Arabidopsis is essential for seedling establishment. Plant Physiol 131:1834–1842

    PubMed  CAS  Google Scholar 

  99. Saibo NJM, Vriezen WH, Beemster GTS, Van Der Straeten D (2003) Growth and stomata development of Arabidopsis hypocotyls are controlled by gibberellins and modulated by ethylene and auxins. Plant J 33:989–1000

    PubMed  CAS  Google Scholar 

  100. Salomé PA, To JPC, Kieber JJ, Robertson McClung C (2006) Arabidopsis response regulators ARR3 and ARR4 play cytokinin-independent roles in the control of circadian period. Plant Cell 18:55–69

    PubMed  Google Scholar 

  101. Schaffer R, Ramsay N, Samach A, Corden S, Putterill J, Carre IA, Coupland G (1998) The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell 93:1219–1229

    PubMed  CAS  Google Scholar 

  102. Scheres B, Wolkenfelt H, Willemsen V, Terlouw M, Lawson E, Dean C, Weisbeek P (1994) Embryonic origin of the Arabidopsis primary root and root meristem initials. Development 120:2475–2487

    CAS  Google Scholar 

  103. Schwechheimer C, Deng XW (2001) COP9 signalosome revisited: a novel mediator of protein degradation. Mol Cell Biol 18:576–589

    Google Scholar 

  104. Smalle J, Haegman M, Kurepa J, Van Montagu M, Van Der Straeten D (1997) Ethylene can stimulate Arabidopsis hypocotyl elongation in the light. Proc Natl Acad Sci USA 94:2756–2761

    PubMed  CAS  Google Scholar 

  105. Smets R, Le J, Prinsen E, Verbelen JP, Van Onckelen HA (2005) Cytokinin-induced hypocotyl elongation in light-grown Arabidopsis plants with inhibited ethylene action or indole-3-acetic acid transport. Planta 221:39–47

    PubMed  CAS  Google Scholar 

  106. Somers DE, Webb AAR, Pearson M, Kay SA (1998) The short-period mutant, toc1-1, alters circadian clock regulation of multiple outputs throughout development in Arabidopsis thaliana. Development 125:485–494

    PubMed  CAS  Google Scholar 

  107. Stowe-Evans EL, Harper RM, Motchoulski AV, Liscum E (1998) NPH4, a conditional modulator of auxin-dependent differential growth responses in Arabidopsis. Plant Physiol 118:1265–1275

    PubMed  CAS  Google Scholar 

  108. Stowe-Evans EL, Luesse DR, Liscum E (2001) The enhancement of phototropin-induced phototropic curvature in Arabidopsis occurs via a photoreversible phytochrome A-dependent modulation of auxin responsiveness. Plant Physiol 26:826–834

    Google Scholar 

  109. Sweeney BM (1987) Rhythmic phenomena in plants. Academic, San Diego

    Google Scholar 

  110. Sweere U, Eichenberg K, Lohrmann J, Mira-Rodado V, Baurie I, Kudia J, Nagy F, Schafer E, Harter K (2001) Interaction of the response regulator ARR4 with phytochrome B in modulating red light signalling. Science 294:1108–1110

    PubMed  CAS  Google Scholar 

  111. Su W, Howell SH (1995) The effects of cytokinin and light on hypocotyl elongation in Arabidopsis seedlings are independent and additive. Plant Physiol 108:1423–1430

    PubMed  CAS  Google Scholar 

  112. Suzuki G, Yanagawa Y, Kwok SF, Matsui M, Deng XW (2002) ArabidopsisCOP10 is a ubiquitin-conjugating enzyme variant that acts together with COP1 and the COP9 signalosome in repressing photomorphogenesis. Gene Dev 16:554–559

    PubMed  CAS  Google Scholar 

  113. Szekeres M, Nemeth K, Koncz-Kalman Z, Mathur J, Kauschmann A, Altmann T, Redei GP, Nagy F, Schell J, Koncz C (1996) Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85:171–182

    PubMed  CAS  Google Scholar 

  114. Takahashi H, Jaffe MJ (1984) Thigmomorphogenesis: the relationship of mechanical perturbation to elicitor-like activity and ethylene production. Physiol Plant 61:405–411

    PubMed  CAS  Google Scholar 

  115. Terzaghi WB, Cashmore AR (1995) Light-regulated transcription. Annu Rev Plant Physiol Plant Mol Biol 46:445–474

    CAS  Google Scholar 

  116. Thain SC, Vandenbussche F, Laarhoven LJ, Dowson-Day MJ, Wang ZY, Tobin EM, Harren FJ, Millar AJ, Van Der Straeten D (2004) Circadian rhythms of ethylene emission in Arabidopsis. Plant Physiol 136:3751–3761

    PubMed  CAS  Google Scholar 

  117. Thingnaes E, Torre S, Ernstsen A, Moe R (2003) Day and night temperature responses in Arabidopsis: effects on gibberellin and auxin content, cell size, morphology and flowering time. Ann Bot 92:601–612

    PubMed  CAS  Google Scholar 

  118. Tobin EM, Kehoe DM (1994) Phytochrome regulated gene expression. Semin Cell Biol 5:335–346

    PubMed  CAS  Google Scholar 

  119. Turk EM, Fujioka S, Seto H, Shimada Y, Takatsuto S, Yoshida S, Wang H, Torres QI, Ward JM, Murthy G, Zhang J, Walker JC, Neff MM (2005) BAS1 and SOB7 act redundantly to modulate Arabidopsis photomorphogenesis via unique brassinosteroid inactivation mechanisms. Plant J 42:23–34

    PubMed  CAS  Google Scholar 

  120. Vandenbussche F, Vriezen WH, Smalle J, Laarhoven LJ, Harren FJ, Van Der Straeten D (2003a) Ethylene and auxin control the Arabidopsis response to decreased light intensity. Plant Physiol 133:517–527

    PubMed  CAS  Google Scholar 

  121. Vandenbussche F, Smalle J, Le J, Saibo NJM, De Paepe A, Chaerle L, Tietz O, Smets R, Laarhoven LJJ, Harren FJM, Van Onckelen H, Palme K, Verbelen JP, Van Der Straeten D (2003b) The Arabidopsis mutant alh1 illustrates a cross talk between ethylene and auxin. Plant Physiol 131:1228–1238

    PubMed  CAS  Google Scholar 

  122. Vandenbussche F, Pierik R, Millenaar FF, Voesenek LA, Van Der Straeten D (2004) Reaching out of the shade. Curr Opin Plant Biol 8:462–468

    Google Scholar 

  123. Vierstra RD (1994) Phytochrome degradation. In: Kendrick RD, Kronenberg GHM (eds) Photomorphogenesis in plants. Kluwer, Dordrecht, pp 141–162

    Google Scholar 

  124. Vogel JP, Woeste KE, Theologis A, Kieber JJ (1998) Recessive and dominant mutations in the ethylene biosynthetic gene ACS5 of Arabidopsis confer cytokinin insensitivity and ethylene overproduction, respectively. Proc Natl Acad Sci USA 95:4766–4771

    PubMed  CAS  Google Scholar 

  125. von Arnim A, Deng XW (1996) Light control of seedling development. Annu Rev Plant Physiol Plant Mol Biol 47:215–243

    Google Scholar 

  126. Vriezen WH, Achard P, Harberd N, Van Der Straeten D (2004) Ethylene-mediated enhancement of apical hook formation in etiolated Arabidopsis thaliana seedlings is gibberellin dependent. Plant J 37:505–516

    PubMed  CAS  Google Scholar 

  127. Wang ZY, Tobin EM (1998) Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell 93:1207–1217

    PubMed  CAS  Google Scholar 

  128. Webb AAR (1998) Stomatal rhythms. In: Lumsden PJ, Millar AJ (eds) Biological rhythms and photoperiodism in plants. BIOS Scientific, Oxford, pp 69–80

    Google Scholar 

  129. Wei N, Deng XW (1999) Making sense of the COP9 signalosome. A regulatory protein complex conserved from Arabidopsis to human. Trends Genet 15:98–103

    PubMed  CAS  Google Scholar 

  130. Weissman AM (2001) Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol 2:169–178

    PubMed  CAS  Google Scholar 

  131. Whitelam GC, Smith H (1993) Retention of phytochrome-mediated shade avoidance responses in phytochrome-deficient mutants of Arabidopsis, cucumber and tomato. J Plant Physiol 139:119–125

    Google Scholar 

  132. Yamagami T, Tsuchisaka A, Yamada K, Haddon WF, Harden LA, Theologis A (2003) Biochemical diversity among the 1-amino-cyclopropane-1-carboxylate synthase isozymes encoded by the Arabidopsis gene family. J Biol Chem 278:49102–49112

    PubMed  CAS  Google Scholar 

  133. Yamaguchi S, Smith MW, Brown RG, Kamiya Y, Sun T (1996) Phytochrome regulation and differential expression of gibberellin 3beta-hydroxylase genes in germinating Arabidopsis seeds. Plant Cell 10:2115–2126

    Google Scholar 

  134. Yanagawa Y, Sullivan JA, Komatsu S, Gusmaroli G, Suzuki G, Yin J, Ishibashi T, Saijo Y, Rubio V, Kimura S, Wang J, Deng XW (2004) ArabidopsisCOP10 forms a complex with DBB1 and DET1 in vivo and enhances the activity of ubiquitin conjugating enzymes. Gen Dev 18:2173–2181

    Google Scholar 

  135. Young JC, Liscum E, Hangarter RP (1992) Spectral dependence of light-inhibited hypocotyl elongation in photomorphogenic mutants of Arabidopsis: evidence for a UV-A photosensor. Planta 188:106–114

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Van Der Straeten .

Editor information

Jean-Pierre Verbelen Kris Vissenberg

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

De Grauwe, L., Vandenbussche, F., Van Der Straeten, D. (2006). Signal Crosstalk in the Control of Hypocotyl Elongation in Arabidopsis . In: Verbelen, JP., Vissenberg, K. (eds) The Expanding Cell. Plant Cell Monographs, vol 6. Springer, Berlin, Heidelberg . https://doi.org/10.1007/7089_2006_079

Download citation

Publish with us

Policies and ethics