Skip to main content

Mechanics of the Expanding Cell Wall

  • Chapter
  • First Online:

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 6))

Abstract

Cell enlargement is one of the essential facets in plant growth and development, but the underlying mechanisms of primary cell wall expansion still remain partly elusive. The primary cell wall, only ∼100 nm thick, has to be both strong enough to withstand high stresses due to hydrostatic pressure and external loads as well as flexible enough to allow a tremendous expansion of the cell. Evidently, to shed light on this mechanical paradox, an interdisciplinary combination of biophysical (biomechanical), biochemical and physiological approaches is required. Here we deal with the mechanical constraints of cell wall expansion from a plant biomechanics perspective. Possible mechanisms of increasing cell wall volume are introduced. Current models on cell wall structure and its expansion are reviewed with regard to the capability of the polymer network to undergo sufficient elongation. Methods to determine the mechanical properties of living tissues and isolated cells are briefly reviewed focussing on how the deformation behaviour of the cell wall is influenced by various chemical and biochemical treatments. The crucial role of cellulose microfibril orientation and fibre and matrix interaction in the course of cell wall expansion is discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Astley OM, Chanliaud E, Donald AM, Gidley MJ (2003) Tensile deformation of bacterial cellulose composites. Int J Biol Macromol 32:28–35

    PubMed  CAS  Google Scholar 

  2. Bacic A, Harris PJ, Stone BA (1998) Structure and function of plant cell walls. In: Priess J (ed) The biochemistry of plants. Academic, New York, pp 297–371

    Google Scholar 

  3. Baskin TI (2005) Anisotropic expansion of the plant cell wall. Annu Rev Cell Dev Biol 21:203–222

    PubMed  CAS  Google Scholar 

  4. Boyer JS (2001) Growth-induced water potentials originate from wall yielding during growth. J Exp Bot 52:1483–1488

    PubMed  CAS  Google Scholar 

  5. Brummell DA, Hall JL (1985) The role of cell wall synthesis in sustained auxin-induced growth. Physiol Plant 63:406–412

    CAS  Google Scholar 

  6. Bunce JA (1977) Leaf elongation in relation to leaf water potential in soybean. J Exp Bot 28:156–161

    Google Scholar 

  7. Carpita NC (1987) The biochemistry of “growing” cell walls. In: Cosgrove DJ, Knievel DP (eds) Physiology of cell expansion during plant growth. Am Soc Plant Physiol, Rockville MD, pp 28–45

    Google Scholar 

  8. Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30

    PubMed  CAS  Google Scholar 

  9. Cleland RE (1971a) Cell wall extension. Ann Rev Plant Physiol 22:179–222

    Google Scholar 

  10. Cleland RE (1971b) The mechanical behavior of isolated Avena coleoptile walls subjected to constant stress. Plant Physiol 47:805–811

    PubMed  CAS  Google Scholar 

  11. Cleland R (1984) The Instron technique as a measure of immediate-past wall extensibility. Planta 160:514–520

    Google Scholar 

  12. Cleland R, Cosgrove DJ, Tepfer M (1987) Long-term acid-induced wall extension in an in-vitro system. Planta 170:379–385

    PubMed  CAS  Google Scholar 

  13. Coleman MM, Painter PC (1995) Hydrogen bonded polymer blends. Prog Polym Sci 20:1–59

    CAS  Google Scholar 

  14. Cosgrove DJ (1985) Cell wall yield properties of growing tissue. Plant Physiol 78:347–356

    PubMed  CAS  Google Scholar 

  15. Cosgrove DJ (1986) Biophysical control of plant cell growth. Ann Rev Plant Physiol 37:377–405

    CAS  Google Scholar 

  16. Cosgrove DJ (1987) Wall relaxation and the driving force for cell expansive growth. Plant Physiol 84:561–564

    PubMed  CAS  Google Scholar 

  17. Cosgrove DJ (1988) Mechanism of rapid suppression of cell expansion in cucumber hypocotyls after blue-light radiation. Planta 176:109–116

    PubMed  CAS  Google Scholar 

  18. Cosgrove DJ (1989) Characterization of long-term extension of isolated cell walls from growing cucumber hypocotyls. Planta 177:121–130

    PubMed  CAS  Google Scholar 

  19. Cosgrove DJ (1993) Wall extensibility: Its nature, measurement and relationship to plant cell growth. New Phytol 124:1–23

    PubMed  CAS  Google Scholar 

  20. Cosgrove DJ (1999) Enzymes and other agents that enhance cell wall extensibility. Annu Rev Plant Physiol Plant Mol Biol 50:391–417

    PubMed  CAS  Google Scholar 

  21. Cosgrove DJ (2000a) Expansive growth of plant cell walls. Plant Physiol Biochem 38:109–124

    PubMed  CAS  Google Scholar 

  22. Cosgrove DJ (2000b) Loosening of plant cell walls by expansins. Nature 407:321–326

    PubMed  CAS  Google Scholar 

  23. Cosgrove DJ (2001) Wall structure and wall loosening. A look backwards and forwards. Plant Physiol 125:131–134

    PubMed  CAS  Google Scholar 

  24. Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev 6:850–861

    CAS  Google Scholar 

  25. Cosgrove DJ, Van Volkenburgh E, Cleland RE (1984) Stress relaxation of cell walls and the yield threshold for growth: demonstration and measurement by micro-pressure probe and psychrometer techniques. Planta 162:46–52

    PubMed  CAS  Google Scholar 

  26. Cutillas-Iturralde A, Lorences EP (1997) Effect of xyloglucan oligosaccharides on growth, viscoelastic properties, and long-term extension of pea shoots. Plant Physiol 113:103–109

    PubMed  CAS  Google Scholar 

  27. Emons AM, Mulder BM (1999) The making of the architecture of the plant cell wall: How cells exploit geometry. Plant Biol 95:7215–7219

    Google Scholar 

  28. Emons AM, Mulder BM (2000) How the deposition of cellulose microfibrils builds cell wall architecture. Trends Plant Sci 5:35–40

    PubMed  CAS  Google Scholar 

  29. Fratzl P, Burgert I, Gupta HS (2004a) On the role of interface polymers for the mechanics of natural polymeric composites. Phys Chem Chem Phys 6:5575–5579

    CAS  Google Scholar 

  30. Fratzl P, Burgert I, Keckes J (2004b) Mechanical model for the deformation of the wood cell wall. Z Metallkd 95:579–584

    CAS  Google Scholar 

  31. Fricke W, Chaumont F (2007) Solute and water relations of growing plant cells. In: Verbelen JP, Vissenberg K (eds) The expanding cell. Plant Cell Monographs, vol 5. Springer, Berlin Heidelberg New York (in press)

    Google Scholar 

  32. Fry-Wyssling A (1953) Submicroscopic morphology of protoplasm. Elsevier, Amsterdam, pp 279–292

    Google Scholar 

  33. Fry SC (1986) Cross-linking of matrix polymers in the growing cell walls of angiosperms. Ann Rev Plant Physiol 37:165–186

    CAS  Google Scholar 

  34. Fry SC (1989) Cellulases, hemicelluloses and auxin-stimulated growth – a possible relationship. Physiol Plant 75:532–536

    CAS  Google Scholar 

  35. Fry SC (1995) Polysaccharide-modifiying enzymes in the plant cell wall. Annu Rev Plant Physiol Plant Mol Biol 46:497–520

    CAS  Google Scholar 

  36. Fry SC, Smith RC, Renwick KF, Martin DJ, Hodge SK, Matthews KJ (1992) Xyloglucan endotransglycosylase, a new wall-loosening enzyme activity from plants. Biochem J 282:821–828

    PubMed  CAS  Google Scholar 

  37. Gertel ET, Green PB (1977) Cell growth pattern and wall fibrillar arrangement: experiments with Nitella. Plant Physiol 60:247–254

    PubMed  CAS  Google Scholar 

  38. Green PB (1960) Multinet growth in the cell wall of Nitella. J Biophys Biochem Cytol 7:289–296

    Article  PubMed  CAS  Google Scholar 

  39. Ha MA, Apperley DC, Jarvis MC (1997) Molecular rigidity in dry and hydrated onion cell walls. Plant Physiol 115:593–598

    PubMed  CAS  Google Scholar 

  40. Haasen P (1986) Physical metallurgy, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  41. Hayashi T (1989) Xyloglucans in the primary cell wall. Annu Rev Plant Physiol Plant Mol Biol 40:139–168

    CAS  Google Scholar 

  42. Hohl M, Schopfer P (1992) Physical extensibility of maize coleoptile cell walls: apparent plastic extensibility is due to elastic hysteresis. Planta 187:498–504

    Google Scholar 

  43. Hohl M, Schopfer P (1995) Rheological analysis of viscoelastic cell-wall changes in maize coleoptiles as affected by auxin and osmotic-stress. Physiol Plant 94:499–505

    CAS  Google Scholar 

  44. Jarvis MC (1992) Control of thickness of collenchyma cell walls by pectins. Planta 187:218–220

    CAS  Google Scholar 

  45. Keckes J, Burgert I, Frühmann K, Müller M, Kölln K, Hamilton M, Burghammer M, Roth SV, Stanzl-Tschegg SE, Fratzl P (2003) Cell-wall recovery after irreversible deformation of wood. Nat Mater 2:810–814

    PubMed  CAS  Google Scholar 

  46. Keegstra K, Talmadge KW, Bauer WD, Albersheim P (1973) The structure of plant cell walls III: a model of the walls of suspension-cultured sycamore cells based on the interconnections of the macromolecular components. Plant Physiol 51:188–196

    PubMed  CAS  Google Scholar 

  47. Kerstens S, Decraemer WF, Verbelen JP (2001) Cell walls at the plant surface behave mechanically like fiber-reinforced composite materials. Plant Physiol 127:381–385

    PubMed  CAS  Google Scholar 

  48. Kutschera U, Briggs WR (1987) Differential effect of auxin on in vivo extensibility of cortical cylinder and epidermis in Pea internodes. Plant Physiol 84:1361–1366

    PubMed  CAS  Google Scholar 

  49. Kutschera U, Schopfer P (1986a) Effect of auxin and abscisic acid on cell wall extensibility in maize coleoptiles. Planta 167:527–535

    CAS  Google Scholar 

  50. Kutschera U, Schopfer P (1986b) In-vivo measurement of cell-wall extensibility in maize coloeptiles: effects of auxin and abscisic acid. Planta 169:437–442

    CAS  Google Scholar 

  51. Lindsay SE, Fry SC (2007) Redox and wall-restructuring. In: Verbelen JP, Vissenberg K (eds) The expanding cell. Plant Cell Monographs, vol 5. Springer, Berlin Heidelberg New York (in press)

    Google Scholar 

  52. Liszkay A, Kenk B, Schopfer P (2003) Evidence for the involvement of cell wall peroxidase in the generation of hydroxyl radicals mediating extension growth. Planta 217:658–667

    PubMed  CAS  Google Scholar 

  53. Lockhart JA (1965) An analysis of irreversible plant cell elongation. J Theor Biol 8:264–275

    PubMed  CAS  Google Scholar 

  54. Madson M, Dunand C, Li XM, Verma R, Vanzin GF, Calplan J, Shoue DA, Carpita NC, Reiter WD (2003) The mur3 gene of Arabidopsis encodes a xyloglucan galactosyltransferase that is evolutionarily related to animal exostosins. Plant Cell 15:1662–1670

    PubMed  CAS  Google Scholar 

  55. Marga F, Grandbois M, Cosgrove DJ, Baskin TI (2005) Cell wall extension results in the coordinate seperation of parallel microfibrils: evidence from scanning electron microscopy and atomic force microscopy. Plant J 43:181–190

    PubMed  CAS  Google Scholar 

  56. McCann MC, Roberts K (1991) Architecture of the primary cell wall. In: Loyd CW (ed) The cytosceletal basis of plant growth and form. Academic, New York, pp 109–129

    Google Scholar 

  57. McCann MC, Wells B, Roberts K (1992) Complexitiy in the spatial localization and length distribution of plant cell-wall matrix polysaccharides. J Microsc 166:123–136

    CAS  Google Scholar 

  58. McNeil M, Darvill AG, Fry SC, Albersheim P (1984) Structure and function of the primary cell walls of plants. Ann Rev Biochem 53:625–663

    PubMed  CAS  Google Scholar 

  59. McQueen-Mason SJ, Cosgrove DJ (1995) Expansin mode of action on cell walls. Plant Physiol 107:87–100

    PubMed  CAS  Google Scholar 

  60. McQueen-Mason SJ, Durachko DM, Cosgrove DJ (1992) Two endogenous proteins that induce cell wall extension in plants. Plant Cell 4:1425–1433

    PubMed  CAS  Google Scholar 

  61. McQueen-Mason SJ, Le NT, Brocklehurst D (2007) Expansins. In: Verbelen JP, Vissenberg K (eds) The expanding cell. Plant Cell Monographs, vol 5. Springer, Berlin Heidelberg New York (in press)

    Google Scholar 

  62. Métraux JP, Richmond PA, Taiz L (1980) Control of cell elongation in Nitella by endogenous cell wall pH gradients. Plant Physiol 65:204–210

    PubMed  Google Scholar 

  63. Nakahori K, Katou K, Okamoto H (1991) Auxin changes both the extensibility and the yield threshod of the cell wall of Vigna hypocotyls. Plant Cell Physiol 32:121–129

    CAS  Google Scholar 

  64. Niklas KJ (1992) Plant biomechanics. University of Chicago Press, Chicago

    Google Scholar 

  65. Nishitani K, Vissenberg K (2007) Roles of the XTH protein family in the expanding cell. In: Verbelen JP, Vissenberg K (eds) The expanding cell. Plant Cell Monographs, vol 5. Springer, Berlin Heidelberg New York (in press)

    Google Scholar 

  66. Nolte T, Schopfer P (1997) Viscoelastic versus plastic cell wall extensibility in growing seedling organs: a contribution to avoid some misconceptions. J Exp Bot 48:2103–2107

    CAS  Google Scholar 

  67. Nonami H, Boyer JS (1990) Wall extensibility and cell hydraulic conductivity decrease in enlarging stem tissues at low water potentials. Plant Physiol 93:1610–1619

    PubMed  CAS  Google Scholar 

  68. O'Looney N, Fry SC (2005) A simple apparatus for measuring long-term extension of plant cell walls subjected to tensile stress. Plant Biosyst 139:102–106

    Google Scholar 

  69. Passioura JB (1994) The physical chemistry of the primary cell wall: implications for the control of expansion rate. J Exp Bot 45:1675–1682

    CAS  Google Scholar 

  70. Pauly M, Albersheim P, Darvill AG, York WS (1999) Molecular domains of the cellulose/xyloglucan network in the cell walls of higher plants. Plant J 20:629–639

    PubMed  CAS  Google Scholar 

  71. Pena MJ, Ryden P, Madson M, Smith AC, Carpita NC (2004) The galactose residues of xyloglucan are essential to maintain mechanical strength of the primary cell walls in Arabidopsis during growth. Plant Physiol 134:443–451

    PubMed  CAS  Google Scholar 

  72. Peters WS, Hagemann W, Tomos D (2000) What makes plants different? Principles of extracellular matrix function in soft plant tissues. Comp Biochem Physiol A 125:151–167

    CAS  Google Scholar 

  73. Preston R (1974) The physical biology of plant cell walls. Chapmann and Hall, London, UK

    Google Scholar 

  74. Preston RD (1982) The case of multinet growth in growing walls of plant cells. Planta 155:356–363

    Google Scholar 

  75. Pritchard J, Hetherington PR, Fry SC, Tomos AD (1993) Xyloglucan endotransglycosylase activity, microfibril orienation and the profiles of cell wall properties along growing regions of maize roots. J Exp Bot 44:1281–1289

    CAS  Google Scholar 

  76. Pritchard J, Jones RGW, Tomos AD (1990) Measurement of yield threshold and cell wall extensibility of intact wheat roots under different ionic, osmotic and temperature treatments. J Exp Bot 41:669–675

    Google Scholar 

  77. Proseus TE, Boyer JS (2005) Turgor pressure moves polysaccharides into growing cell walls of Chara corallina. Ann Bot 95:967–979

    PubMed  Google Scholar 

  78. Proseus TE, Zhu G-L, Boyer JS (2000) Turgor, temperature and the growth of plant cells: using Chara corallina. as a model system. J Exp Bot 51:1481–1494

    PubMed  CAS  Google Scholar 

  79. Proseus TE, Ortega JKE, Boyer JS (1999) Separating growth from elastic deformation during cell enlargement. Plant Physiol 119:775–784

    PubMed  CAS  Google Scholar 

  80. Rayle DL, Cleland RE (1972) The in-vitro acid-growth response: relation to in-vivo growth responses and auxin action. Planta 104:282–296

    CAS  Google Scholar 

  81. Rayle DL, Cleland RE (1992) The acid growth theory of auxin-induced elongation is alive and well. Plant Physiol 99:1271–1274

    PubMed  CAS  Google Scholar 

  82. Reiterer A, Jakob HF, Stranzl-Tschegg SE, Fratzl P (1998) Spiral angle of elementary cellulose fibrils in cell walls of Picea abies determined by small-angle X-ray scattering. Wood Sci Technol 32:335–345

    CAS  Google Scholar 

  83. Richmond PA (1983) Patterns of cellulose microfibril deposition and rearrangement in Nitella: in vivo analysis by a birefringance index. J Appl Polym Sci: Applied Polymer Symposium 37:107–122

    CAS  Google Scholar 

  84. Roelofson PA (1965) Ultrastructure of the wall in growing cells and its relation to the direction of the growth. Adv Bot Res 2:69–149

    Article  Google Scholar 

  85. Ryden P, Sugimoto-Shirasu K, Smith AC, Findlay K, Reiter W-D, McCann MC (2003) Tensile properties of Arabidopsis cell walls depend on both a xyloglucan cross-linked microfibrillar network and rhamnogalacturonan II-borate complexes. Plant Physiol 123:1033–1040

    Google Scholar 

  86. Schindler TM (1998) The new view of the primary cell wall. Z Pflanzenernähr Bodenk 161:499–508

    CAS  Google Scholar 

  87. Schopfer P (2001) Hydroxyl radical-induced cell wall loosening in vitro and in vivo: implications for the control of elongation growth. Plant J 28:679–688

    PubMed  CAS  Google Scholar 

  88. Schopfer P, Liszkay A, Bechtold M, Frahry G, Wagner A (2002) Evidence that hydroxyl radicals mediate auxin-induced extension growth. Planta 214:821–828

    PubMed  CAS  Google Scholar 

  89. Sellen DB (1983) The response of mechanically anisotropic cylindrical cells to multiaxial stress. J Exp Bot 34:681–687

    Google Scholar 

  90. Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, Osborne E, Paredez A, Persson S, Raab T, Vorwerk S, Youngs H (2004) Toward a systems approach to understanding plant cell walls. Science 306:2206–2211

    PubMed  CAS  Google Scholar 

  91. Suslov D, Verbelen JP (2006) Cellulose orientation determines mechanical anisotropy in onion epidermis cell walls. J Exp Bot 57:2183–2192

    PubMed  CAS  Google Scholar 

  92. Taiz L (1984) Plant cell expansion: regulation of cell wall mechanical properties. Ann Rev Plant Physiol 35:585–657

    CAS  Google Scholar 

  93. Takeda T, Furata Y, Awano T, Mizuno K, Mitsuishi Y, Hayashi T (2002) Suppression and acceleration of cell elongation by integration of xyloglucans in pea stem segments. Proc Natl Acad Sci USA 99:9055–9060

    PubMed  CAS  Google Scholar 

  94. Talbott LD, Ray PM (1992) Molecular size and separability features of Pea cell wall polysaccharides. Plant Physiol 98:357–368

    PubMed  CAS  Google Scholar 

  95. Tepfer M, Cleland RE (1979) A comparison of acid-induced cell wall loosening in Valonia ventricosa and in oat coleoptiles. Plant Physiol 63:898–902

    PubMed  CAS  Google Scholar 

  96. Thompson DS (2005) How do cell walls regulate plant growth. J Exp Bot 56:2275–2285

    PubMed  CAS  Google Scholar 

  97. Tomos D, Pritchard J (1994) Biophysical and biochemical control of cell expansion in roots and leaves. J Exp Bot 45:1721–1731

    CAS  Google Scholar 

  98. Vanzin GF, Madson M, Carpita NC, Raikhel NV, Keegstra K, Reiter WD (2002) The mur2 mutant of Arabidopsis thaliana lacks fucosylated xyloglucan because of a lesion in fucosyltransferase AtFUT1. Proc Natl Acad Sci USA 99:3340–3345

    PubMed  CAS  Google Scholar 

  99. Veytsmann BA, Cosgrove DJ (1998) A model of cell wall expansion based on thermodynamics of polymer networks. Biophysical J 75:2240–2250

    Article  Google Scholar 

  100. Vincent JFV (1990) Structural biomaterials. Princeton University Press, Princeton, New Jersey

    Google Scholar 

  101. Vincken JP, York WS, Beldman G, Voragen AGJ (1997) Two general branching patterns of xyloglucan, XXXG and XXGG. Plant Physiol 114:9–13

    PubMed  CAS  Google Scholar 

  102. Whitney SEC, Gidley MJ, McQueen-Mason SJ (2000) Probing expansion action using cellulose/hemicellulose composites. Plant J 22:327–334

    PubMed  CAS  Google Scholar 

  103. Wilson RH, Smith AC, Kacurakova M, Saunders PK, Wellner N, Waldron KW (2000) The mechanical properties and molecular dynamics of plant cell wall polysaccharides studied by Fourier-transform infrared spectroscopy. Plant Physiol 124:397–405

    PubMed  CAS  Google Scholar 

  104. Yamamoto R, Masuda Y (1971) Stress relaxation properties of the Avena coleoptile cell wall. Physiol Plant 25:330–335

    CAS  Google Scholar 

  105. Yamamoto R, Shinozaki K, Masuda Y (1970) Stress-relaxation properties of plant cell walls with special reference to auxin action. Plant Cell Physiol 11:947–956

    CAS  Google Scholar 

  106. Zwieniecki MA, Melcher PJ, Holbrook NM (2001) Hydrogel control of xylem hydraulic resistance in plants. Science 291:1059–1062

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Tobias I. Baskin for helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingo Burgert .

Editor information

Jean-Pierre Verbelen Kris Vissenberg

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Burgert, I., Fratzl, P. (2006). Mechanics of the Expanding Cell Wall. In: Verbelen, JP., Vissenberg, K. (eds) The Expanding Cell. Plant Cell Monographs, vol 6. Springer, Berlin, Heidelberg . https://doi.org/10.1007/7089_2006_076

Download citation

Publish with us

Policies and ethics