Skip to main content

Solute and Water Relations of Growing Plant Cells

  • Chapter
  • First Online:

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 6))

Abstract

Cell expansion requires the continuous uptake of water into cells, which in turn is driven through osmotic forces generated by accumulation of solutes. Herein, we assess the significance of water and solute transport across cell membranes as a rate-limiting step during cell expansion. Two membranes are considered, the tonoplast, which separates the largest intracellular storage compartment (vacuole) from the portion of the protoplasts where most enzymatic reactions take place (cytoplasm), and the plasma membrane, which constitutes the site of exchange between protoplasts and apoplast (cell wall). Most of the solutes that generate the bulk of osmolality are heterogeneously distributed between cells, tissues and cell compartments, and this heterogeneity must be taken into consideration in studies on growth. Because of differences in transmembrane potential at the plasma membrane (significantly negative) and tonoplast (close to zero), ion channels and transporters are likely to make different contributions to solute transport across these two membranes. The osmotic permeability of the tonoplast exceeds that of the plasma membrane by a factor of 100. This aids cell-internal osmotic equilibration and renders the plasma membrane rate-limiting for water uptake into cells or trans-cellular water transport. Candidate aquaporins, ion channels and transporters which could mediate solute and water transport specifically into growing cells are reviewed in this work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balk PA, de Boer AD (1999) Rapid stalk elongation in tulip (Tulipa gesneriana L. cv. Apeldoorn) and the combined action of cold-induced invertase and the water-channel protein gammaTIP. Planta 209:346–354

    Article  PubMed  CAS  Google Scholar 

  2. Barlow EWR (1986) Water relations in expanding leaves. Aust J Plant Physiol 13:45–58

    Google Scholar 

  3. Barrieu F, Chaumont F, Chrispeels MJ (1998) High expression of the tonoplast aquaporin ZmTIP1 in epidermal and conducting tissues of maize. Plant Physiol 117:1153–1163

    Article  PubMed  CAS  Google Scholar 

  4. Bauer CS, Hoth S, Haga K, Philippar K, Aoki N, Hedrich R (2000) Differential expression and regulation of K+ channels in the maize coleoptile: molecular and biophysical analysis of cells isolated from cortex and vasculature. Plant J 24:139–145

    Article  PubMed  CAS  Google Scholar 

  5. Bazzanella A, Lochmann H, Tomos AD, Bachmann K (1998) Determination of inorganic cations and anions in single plant cells by capillary zone electrophoresis. J Chrom A 809:231–239

    Article  CAS  Google Scholar 

  6. Biela A, Grote K, Otto B, Hoth S, Hedrich R, Kaldenhoff R (1999) The Nicotiana tabacum plasma membrane aquaporin NtAQP1 is mercury-insensitive and permeable for glycerol. Plant J 18:565–570

    Article  PubMed  CAS  Google Scholar 

  7. Bots M, Feron R, Uehlein N, Weterings K, Kaldenhoff R, Mariani T (2005) PIP1 and PIP2 aquaporins are differentially expressed during tobacco anther and stigma development. J Exp Bot 56:113–121

    PubMed  CAS  Google Scholar 

  8. Box S, Schachtman DP (2000) The effect of low concentrations of sodium on potassium uptake and growth of wheat. Aust J Plant Physiol 27:175–182

    CAS  Google Scholar 

  9. Boyer J (1985) Water transport. Ann Rev Plant Physiol. 36:473–516

    Google Scholar 

  10. Boyer JS, Silk WK (2004) Hydraulics of plant growth. Func Plant Biol 31:761–773

    Article  Google Scholar 

  11. Carden DE, Walker DJ, Flowers TJ, Miller AJ (2003) Single-cell measurements of the contributions of cytosolic Na+ and K+ to salt tolerance. Plant Physiol 131:676–683

    Article  PubMed  CAS  Google Scholar 

  12. Chaumont F, Barrieu F, Herman EM, Chrispeels MJ (1998) Characterization of a maize tonoplast aquaporin expressed in zones of cell division and elongation. Plant Physiol 117:1143–1152

    Article  PubMed  CAS  Google Scholar 

  13. Chaumont F, Barrieu F, Wojcik E, Chrispeels MJ, Jung R (2001) Aquaporins constitute a large and highly divergent protein family in maize. Plant Physiol 125:1206–1215

    Article  PubMed  CAS  Google Scholar 

  14. Chaumont F, Moshelion M, Daniels MJ (2005) Regulation of plant aquaporin activity. Biol Cell 97:749–764

    Article  PubMed  CAS  Google Scholar 

  15. Cherel I (2004) Regulation of K+ channel activities in plants: from physiological to molecular aspects. J Exp Bot 55:337–351

    Article  PubMed  CAS  Google Scholar 

  16. Cosgrove DJ (1993) How do plant cell walls extend? Plant Physiol 102:1–6

    PubMed  CAS  Google Scholar 

  17. Cosgrove DJ, Li LC, Cho HT, Hoffmann-Benning S, Moore RC, Blecker D (2002) The growing world of expansins. Plant Cell Physiol 43:1436–1444

    Article  PubMed  CAS  Google Scholar 

  18. Cramer GR (1992) Kinetics of Maize Leaf Elongation. 2. Responses of a Na-Excluding Cultivar and a Na-Including Cultivar to Varying Na/Ca Salinities. J Exp Bot 43:857–864

    Google Scholar 

  19. Cuin TA, Miller AJ, Laurie SA, Leigh RA (2003) Potassium activities in cell compartments of salt-grown barley leaves. J Exp Bot 54:657–661

    Article  PubMed  CAS  Google Scholar 

  20. de Souza IRP, MacAdam JW (1998) A transient increase in apoplastic peroxidase activity precedes decrease in elongation rate of B73 maize (Zea mays) leaf blades. Physiologia Plantarum 104:556–562

    Article  Google Scholar 

  21. Delane R, Greenway H, Munns R, Gibbs J (1982) Ion concentration and carbohydrate status of the elongating leaf tissue of Hordeum vulgare growing at high external NaCl. I. Relationship between solute concentration and growth. J Exp Bot 33:557–573

    CAS  Google Scholar 

  22. Dennison KL, Robertson WR, Lewis BD, Hirsch RE, Sussman MR, Spalding EP (2001) Functions of AKT1 and AKT2 potassium channels determined by studies of single and double mutants of Arabidopsis. Plant Physiol 127:1012–1019

    Article  PubMed  CAS  Google Scholar 

  23. Dordas C, Chrispeels MJ, Brown PH (2000) Permeability and channel-mediated transport of boric acid across membrane vesicles isolated from squash roots. Plant Physiol 124:1349–1362

    Article  PubMed  CAS  Google Scholar 

  24. Eisenbarth DA, Weig AR (2005) Dynamics of aquaporins and water relations during hypocotyl elongation in Ricinus communis L. seedlings. J Exp Bot 56:1831–1842

    Article  PubMed  CAS  Google Scholar 

  25. Fetter K, Van Wilder V, Moshelion M, Chaumont F (2004) Interactions between Plasma Membrane Aquaporins Modulate Their Water Channel Activity. Plant Cell 16:215–228

    Article  PubMed  CAS  Google Scholar 

  26. Frensch J (1997) Primary responses of root and leaf elongation to water deficits in the atmosphere and soil solution. J Exp Bot 48:985–999

    Article  CAS  Google Scholar 

  27. Fricke W (1997) Cell turgor, osmotic pressure and water potential in the upper epidermis of barley leaves in relation to cell location and in response to NaCl and air humidity. J Exp Bot 48:45–58

    CAS  Google Scholar 

  28. Fricke W (2002a) Biophysical limitation of cell elongation in cereal leaves. Ann Bot 90:157–167

    Article  PubMed  Google Scholar 

  29. Fricke W (2002b) Biophysical limitation of leaf cell elongation in source-reduced barley. Planta 215:327–338

    Article  PubMed  CAS  Google Scholar 

  30. Fricke W (2004a) Rapid and tissue-specific accumulation of solutes in the growth zone of barley leaves in response to salinity. Planta 219:515–525

    PubMed  CAS  Google Scholar 

  31. Fricke W (2004b) Solute sorting in grass leaves: the transpiration stream. Planta 219:507–514

    PubMed  CAS  Google Scholar 

  32. Fricke W, Akhiyarova G, Wei W, Alexandersson E, Miller A, Kjellbom PO, Richardson A, Wojciechowski T, Schreiber L, Veselov D, Kudoyarova G, Volkov V (2006) The short-term growth response to salt of the developing barley leaf. J Exp Bot 57:1079–1095

    Article  PubMed  CAS  Google Scholar 

  33. Fricke W, Flowers TJ (1998) Control of leaf cell elongation in barley. Generation rates of osmotic pressure and turgor, and growth-associated water potential gradients. Planta 206:53–65

    Article  CAS  Google Scholar 

  34. Fricke W, Hinde PS, Leigh RA, Tomos AD (1995) Vacuolar Solutes in the Upper Epidermis of Barley Leaves - Intercellular Differences Follow Patterns. Planta 196:40–49

    Article  CAS  Google Scholar 

  35. Fricke W, Leigh RA, Tomos AD (1994a) Concentrations of Inorganic and Organic Solutes in Extracts from Individual Epidermal, Mesophyll and Bundle-Sheath Cells of Barley Leaves. Planta 192:310–316

    CAS  Google Scholar 

  36. Fricke W, Leigh RA, Tomos AD (1994b) Epidermal Solute Concentrations and Osmolality in Barley Leaves Studied at the Single-Cell Level - Changes Along the Leaf Blade, During Leaf Aging and Nacl Stress. Planta 192:317–323

    CAS  Google Scholar 

  37. Fricke W, Leigh RA, Tomos AD (1996) The intercellular distribution of vacuolar solutes in the epidermis and mesophyll of barley leaves changes in response to NaCl. J Exp Bot 47:1413–1426

    CAS  Google Scholar 

  38. Fricke W, Peters WS (2002) The biophysics of leaf growth in salt-stressed barley. A study at the cell level. Plant Physiol 129:374–388

    Article  PubMed  CAS  Google Scholar 

  39. Fricke W, Pritchard E, Leigh RA, Tomes AD (1994c) Cells of the Upper and Lower Epidermis of Barley (Hordeum-Vulgare L) Leaves Exhibit Distinct Patterns of Vacuolar Solutes. Plant Physiol 104:1201–1208

    PubMed  CAS  Google Scholar 

  40. Fry SC (1998) Oxidative scission of plant cell wall polysaccharides by ascorbate-induced hydroxyl radicals. Biochem J 332(Pt 2):507–515

    PubMed  CAS  Google Scholar 

  41. Gerbeau P, Guclu J, Ripoche P, Maurel C (1999) Aquaporin Nt-TIPa can account for the high permeability of tobacco cell vacuolar membrane to small neutral solutes. Plant J 18:577–587

    Article  PubMed  CAS  Google Scholar 

  42. Hachez C, Zelazny E, Chaumont F (2006a) Modulating the expression of aquaporin genes in planta: A key to understand their physiological functions? Biochim Biophys Acta 1758:1142–1156

    Article  PubMed  CAS  Google Scholar 

  43. Hachez C, Moshelion M, Zelazny E, Cavez D, Chaumont F (2006b) Localization and quantification of plasma membrane aquaporin expression in maize primary root: a clue to understanding their role as cellular plumbers. Plant Mol Biol 62:305–323

    Article  PubMed  CAS  Google Scholar 

  44. Hanba YT, Shibasaka M, Hayashi Y, Hayakawa T, Kasamo K, Terashima I, Katsuhara M (2004) Overexpression of the barley aquaporin HvPIP2;1 increases internal CO2conductance and CO2assimillation in the leaves of transgenic rice plants. Plant Cell Physiol 45:521–529

    Article  PubMed  CAS  Google Scholar 

  45. Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant Cellular and Molecular Responses to High Salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  PubMed  CAS  Google Scholar 

  46. Henzler T, Steudle E (2000) Transport and metabolic degradation of hydrogen peroxide in Chara corallina: model calculations and measurements with the pressure probe suggest transport of H2O2across water channels. J Exp Bot 51:2053–2066

    Article  PubMed  CAS  Google Scholar 

  47. Higuchi T, Suga S, Tsuchiya T, Hisada H, Morishima S, Okada Y, Maeshima M (1998) Molecular cloning, water channel activity and tissue specific expression of two isoforms of radish vacuolar aquaporin. Plant Cell Physiol 39:905–913

    PubMed  CAS  Google Scholar 

  48. Hill AE, Shachar-Hill B, Shachar-Hill Y (2004) What are aquaporins for? J Memb Biol 197:1–32

    Article  CAS  Google Scholar 

  49. Hirsch RE, Lewis BD, Spalding EP, Sussman MR (1998) A role for the AKT1 potassium channel in plant nutrition. Science 280:918–921

    Article  PubMed  CAS  Google Scholar 

  50. Hollenbach B, Dietz KJ (1995) Molecular-Cloning of Emip, a Member of the Major Intrinsic Protein (Mip) Gene Family, Preferentially Expressed in Epidermal-Cells of Barley Leaves. Bot Acta 108:425–431

    CAS  Google Scholar 

  51. Hsiao TC, Xu LK (2000) Sensitivity of growth of roots versus leaves to water stress: biophysical analysis and relation to water transport. J Exp Bot 51:1595–1616

    Article  PubMed  CAS  Google Scholar 

  52. Hu Y, Schmidhalter U (1998) Spatial distributions of inorganic ions and sugars contributing to osmotic adjustment in the elongating wheat leaf under saline soil conditions. Aust J Plant Physiol 25:591–597

    Article  CAS  Google Scholar 

  53. Huang J, Takano T, Akita S (2000) Expression of alpha-expansin genes in young seedlings of rice (Oryza sativa L.). Planta 211:467–473

    Article  PubMed  CAS  Google Scholar 

  54. Hukin D, Doering-Saad C, Thomas CR, Pritchard J (2002) Sensitivity of cell hydraulic conductivity to mercury is coincident with symplasmic isolation and expression of plasmalemma aquaporin genes in growing maize roots. Planta 215:1047–1056

    Article  PubMed  CAS  Google Scholar 

  55. Johanson U, Karlsson M, Johansson I, Gustavsson S, Sjovall S, Fraysse L, Weig AR, Kjellbom P (2001) The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol 126:1358–1369

    Article  PubMed  CAS  Google Scholar 

  56. Johansson I, Karlsson M, Johanson U, Larsson C, Kjellbom P (2000) The role of aquaporins in cellular and whole plant water balance. Biochim Biophys Acta 1465:324–342

    Article  PubMed  CAS  Google Scholar 

  57. Johansson I, Karlsson M, Shukla VK, Chrispeels MJ, Larsson C, Kjellbom P (1998) Water transport activity of the plasma membrane aquaporin PM28A is regulated by phosphorylation. Plant Cell 10:451–459

    Article  PubMed  CAS  Google Scholar 

  58. Kaldenhoff R, Kolling A, Meyers J, Karmann U, Ruppel G, Richter G (1995) The blue light-responsive AthH2 gene of Arabidopsis thaliana is primarily expressed in expanding as well as in differentiating cells and encodes a putative channel protein of the plasmalemma. Plant J 7:87–95

    Article  PubMed  CAS  Google Scholar 

  59. Karley AJ, Leigh RA, Sanders D (2000a) Differential ion accumulation and ion fluxes in the mesophyll and epidermis of barley. Plant Physiol 122:835–844

    Article  PubMed  CAS  Google Scholar 

  60. Karley AJ, Leigh RA, Sanders D (2000b) Where do all the ions go? The cellular basis of differential ion accumulation in leaf cells. Trends Plant Sci 5:465–470

    Article  PubMed  CAS  Google Scholar 

  61. Kehr J (2001) High resolution spatial analysis of plant systems. Curr Opin Plant Biol 4:197–201

    Article  PubMed  CAS  Google Scholar 

  62. Koroleva OA, Farrar JF, Tomos AD, Pollock CJ (1997) Patterns of solute in individual mesophyll, bundle sheath and epidermal cells of barley leaves induced to accumulate carbohydrate. New Phytol 136:97–104

    Article  CAS  Google Scholar 

  63. Leigh RA, Storey R (1993) Intercellular Compartmentation of Ions in Barley Leaves in Relation to Potassium Nutrition and Salinity. J Exp Bot 44:755–762

    CAS  Google Scholar 

  64. Leigh RA, Tomos AD (1993) Ion Distribution in Cereal Leaves - Pathways and Mechanisms. Philos T Roy Soc B 341:75–86

    CAS  Google Scholar 

  65. Leigh RA, Wyn Jones RG (1986) Cellular compartmentation in plant nutrition: The selective cytoplasm and the promiscuous vacuole. Adv Plant Nutr 2:249–279

    Google Scholar 

  66. Loque D, Ludewig U, Yuan L, von Wiren N (2005) Tonoplast Intrinsic Proteins AtTIP2;1 and AtTIP2;3 Facilitate NH3 Transport into the Vacuole. Plant Physiol 137:671–680

    Article  PubMed  CAS  Google Scholar 

  67. Ludevid D, Hofte H, Himelblau E, Chrispeels MJ (1992) The Expression Pattern of the Tonoplast Intrinsic Protein Gamma-Tip in Arabidopsis-Thaliana Is Correlated with Cell Enlargement. Plant Physiol 100:1633–1639

    Article  PubMed  CAS  Google Scholar 

  68. Luu DT, Maurel C (2005) Aquaporins in a challenging environment: molecular gears for adjusting plant water status. Plant Cell Env 28:85–96

    Article  CAS  Google Scholar 

  69. Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440:688–691

    Article  PubMed  CAS  Google Scholar 

  70. Ma S, Quist TM, Ulanov A, Joly R, Bohnert HJ (2004) Loss of TIP1;1 aquaporin in Arabidopsis leads to cell and plant death. Plant J 40:845–859

    Article  PubMed  CAS  Google Scholar 

  71. Maeshima M (1990) Development of Vacuolar Membranes During Elongation of Cells in Mung Bean Hypocotyls. Plant Cell Physiol 31:311–317

    CAS  Google Scholar 

  72. Martre P, Bogeat-Triboulot MB, Durand JL (1999) Measurement of a growth-induced water potential gradient in tall fescue leaves. New Phytol 142:435–439

    Article  Google Scholar 

  73. Marty F (1997) The biogenesis of vacuoles: insights from microscopy. In: Leigh RAaS, D. (ed) The Plant Vacuoles. Academic Press, San Diego CA, p 1–42

    Google Scholar 

  74. Maser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJ, Sanders D, Harper JF, Tchieu J, Gribskov M, Persans MW, Salt DE, Kim SA, Guerinot ML (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126:1646–1667

    Article  PubMed  CAS  Google Scholar 

  75. Maurel C (1997) Aquaporins and Water Permeability of Plant Membranes. Annu Rev Plant Physiol Plant Mol Biol 48:399–429

    Article  PubMed  CAS  Google Scholar 

  76. Maurel C, Javot H, Lauvergeat V, Gerbeau P, Tournaire C, Santoni V, Heyes J (2002) Molecular physiology of aquaporins in plants. Int Rev Cytol 215:105–148

    Article  PubMed  CAS  Google Scholar 

  77. Maurel C, Kado RT, Guern J, Chrispeels MJ (1995) Phosphorylation regulates the water channel activity of the seed-specific aquaporin alpha-TIP. Embo J 14:3028–3035

    PubMed  CAS  Google Scholar 

  78. Maurel C, Tacnet F, Guclu J, Guern J, Ripoche P (1997) Purified vesicles of tobacco cell vacuolar and plasma membranes exhibit dramatically different water permeability and water channel activity. Proc Natl Acad Sci USA 94:7103–7108

    Article  PubMed  CAS  Google Scholar 

  79. Miyamoto N, Katsuhara M, Ookawa T, Kasamo K, Hirasawa T (2005) Hydraulic conductivity and aquaporins of cortical cells in gravitropically bending roots of Pisum sativum L. Plant Prod Sci 8:515–524

    Article  CAS  Google Scholar 

  80. Miyamoto N, Ookawa T, Takahashi H, Hirasawa T (2002) Water uptake and hydraulic properties of elongating cells in hydrotropically bending roots of Pisum sativum L. Plant Cell Physiol 43:393–401

    Article  PubMed  CAS  Google Scholar 

  81. Morillon R, Lassalles JP (1999) Osmotic water permeability of isolated vacuoles. Planta 210:80–84

    Article  PubMed  CAS  Google Scholar 

  82. Niemietz CM, Tyerman SD (1997) Characterization of Water Channels in Wheat Root Membrane Vesicles. Plant Physiol 115:561–567

    PubMed  CAS  Google Scholar 

  83. Nonami H, Wu Y, Boyer JS (1997) Decreased Growth-Induced Water Potential (A Primary Cause of Growth Inhibition at Low Water Potentials). Plant Physiol 114:501–509

    PubMed  CAS  Google Scholar 

  84. O'Brien M, Bertrand C, Matton DP (2002) Characterization of a fertilization-induced and developmentally regulated plasma-membrane aquaporin expressed in reproductive tissues, in the wild potato Solanum chacoense Bitt. Planta 215:485–493

    Article  PubMed  CAS  Google Scholar 

  85. Otto B, Kaldenhoff R (2000) Cell-specific expression of the mercury-insensitive plasma-membrane aquaporin NtAQP1 from Nicotiana tabacum. Planta 211:167–172

    Article  PubMed  CAS  Google Scholar 

  86. Outlaw WH, Zhang SQ (2001) Single-cell dissection and microdroplet chemistry. J Exp Bot 52:605–614

    Article  PubMed  CAS  Google Scholar 

  87. Ozga JA, van Huizen R, Reinecke DM (2002) Hormone and seed-specific regulation of pea fruit growth. Plant Physiol 128:1379–1389

    Article  PubMed  CAS  Google Scholar 

  88. Palmer SJ, Davies WJ (1996) An analysis of relative elemental growth rate, epidermal cell size and xyloglucan endotransglycosylase activity through the growing zone of ageing maize leaves. J Exp Bot 47:339–347

    CAS  Google Scholar 

  89. Peters WS, Tomos AD (1996) The history of tissue tension. Ann Bot 77:657–665

    Article  PubMed  CAS  Google Scholar 

  90. Philippar K, Fuchs I, Luthen H, Hoth S, Bauer CS, Haga K, Thiel G, Ljung K, Sandberg G, Bottger M, Becker D, Hedrich R (1999) Auxin-induced K+ channel expression represents an essential step in coleoptile growth and gravitropism. Proc Natl Acad Sci USA 96:12186–12191

    Article  PubMed  CAS  Google Scholar 

  91. Phillips AL, Huttly AK (1994) Cloning of two gibberellin-regulated cDNAs from Arabidopsis thaliana by subtractive hybridization: expression of the tonoplast water channel, gamma-TIP, is increased by GA3. Plant Mol Biol 24:603–615

    Article  PubMed  CAS  Google Scholar 

  92. Pilot G, Gaymard F, Mouline K, Cherel I, Sentenac H (2003) Regulated expression of Arabidopsis shaker K+ channel genes involved in K+ uptake and distribution in the plant. Plant Mol Biol 51:773–787

    Article  PubMed  CAS  Google Scholar 

  93. Pritchard J (1994) The Control of Cell Expansion in Roots. New Phytol 127:3–26

    Article  CAS  Google Scholar 

  94. Pritchard J (1996) Aphid stylectomy reveals an osmotic step between sieve tube and cortical cells in barley roots. J Exp Bot 47:1519–1524

    CAS  Google Scholar 

  95. Reidy B, Nosberger J, Fleming A (2001) Differential expression of XET-related genes in the leaf elongation zone of F. pratensis. J Exp Bot 52:1847–1856

    Article  PubMed  CAS  Google Scholar 

  96. Reisen D, Loborgne-Castel N, Ozalp C, Chaumont F, Marty F (2003) Expression of a cauliflower tonoplast aquaporin tagged with GFP in tobacco suspension cells correlates with an increase in cell size. Plant Mol Biol 52:387–400

    Article  PubMed  CAS  Google Scholar 

  97. Rose JK, Braam J, Fry SC, Nishitani K (2002) The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: current perspectives and a new unifying nomenclature. Plant Cell Physiol 43:1421–1435

    Article  PubMed  CAS  Google Scholar 

  98. Ruan YL, Llewellyn DJ, Furbank RT (2001) The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and K+ transporters and expansin. Plant Cell 13:47–60

    Article  PubMed  CAS  Google Scholar 

  99. Sakurai J, Ishikawa F, Yamaguchi T, Uemura M, Maeshima M (2005) Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant Cell Physiol 46:1568–1577

    Article  PubMed  CAS  Google Scholar 

  100. Santa-Maria GE, Rubio F, Dubcovsky J, Rodriguez-Navarro A (1997) The HAK1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter. Plant Cell 9:2281–2289

    Article  PubMed  CAS  Google Scholar 

  101. Schachtman DP (2000) Molecular insights into the structure and function of plant K+ transport mechanisms. BBA-Biomembranes 1465:127–139

    PubMed  CAS  Google Scholar 

  102. Schaffner AR (1998) Aquaporin function, structure, and expression: are there more surprises to surface in water relations? Planta 204:131–139

    Article  PubMed  CAS  Google Scholar 

  103. Schnyder H, Seo S, Rademacher IF, Kuhbauch W (1990) Spatial-Distribution of Growth-Rates and of Epidermal-Cell Lengths in the Elongation Zone During Leaf Development in Lolium-Perenne L. Planta 181:423–431

    Article  Google Scholar 

  104. Schunmann PHD, Ougham HJ (1996) Identification of three cDNA clones expressed in the leaf extension zone and with altered patterns of expression in the slender mutant of barley: A tonoplast intrinsic protein, a putative structural protein and protochlorophyllide oxidoreductase. Plant Mol Biol 31:529–537

    Article  PubMed  CAS  Google Scholar 

  105. Schunmann PHD, Smith RC, Lang V, Matthews PR, Chandler PM (1997) Expression of XET-related genes and its relation to elongation in leaves of barley (Hordeum vulgare L.). Plant Cell Env 20:1439–1450

    Article  CAS  Google Scholar 

  106. Steudle E, Peterson CA (1998) How does water get trough roots? J Exp Bot 49:775–788

    Article  CAS  Google Scholar 

  107. Stiles KA, McClintick A, Van Volkenburgh E (2003) A developmental gradient in the mechanism of K+ uptake during light-stimulated leaf growth in Nicotiana tabacum L. Planta 217:587–596

    Article  PubMed  CAS  Google Scholar 

  108. Stiles KA, Van Volkenburgh E (2002) Light-regulated leaf expansion in two Populus species: dependence on developmentally controlled ion transport 10.1093/jxb/erf015. J Exp Bot 53:1651–1657

    Article  PubMed  CAS  Google Scholar 

  109. Storey R, Leigh RA (2004) Processes modulating calcium distribution in citrus leaves. An investigation using X-ray microanalysis with strontium as a tracer. Plant Physiol 136:3838–3848

    Article  PubMed  CAS  Google Scholar 

  110. Suga S, Imagawa S, Maeshima M (2001) Specificity of the accumulation of mRNAs and proteins of the plasma membrane and tonoplast aquaporins in radish organs. Planta 212:294–304

    Article  PubMed  CAS  Google Scholar 

  111. Suga S, Komatsu S, Maeshima M (2002) Aquaporin isoforms responsive to salt and water stresses and phytohormones in radish seedlings. Plant Cell Physiol 43:1229–1237

    Article  PubMed  CAS  Google Scholar 

  112. Thompson JE, Smith RC, Fry SC (1997) Xyloglucan undergoes interpolymeric transglycosylation during binding to the plant cell wall in vivo: evidence from 13C/3H dual labelling and isopycnic centrifugation in caesium trifluoroacetate. Biochem J 327(Pt 3):699–708

    PubMed  CAS  Google Scholar 

  113. Tomos AD, Hinde P, Richardson P, Pritchard J, Fricke W (1994) Microsampling and measurements of solutes in single cells. In: Harris N, Oparka KJ (eds) Plant Cell Biology—A practical approach. IRL Press, Oxford, p 297–314

    Google Scholar 

  114. Tomos AD, Leigh RA (1999) The pressure probe: A versatile tool in plant cell physiology. Ann Rev Plant Physiol Plant Mol Biol 50:447–472

    Article  CAS  Google Scholar 

  115. Tomos AD, Sharrock RA (2001) Cell sampling and analysis (SiCSA): metabolites measured at single cell resolution. J Exp Bot 52:623–630

    Article  PubMed  CAS  Google Scholar 

  116. Tornroth-Horsefield S, Wang Y, Hedfalk K, Johanson U, Karlsson M, Tajkhorshid E, Neutze R, Kjellbom P (2006) Structural mechanism of plant aquaporin gating. Nature 439:688–694

    Article  PubMed  CAS  Google Scholar 

  117. Tournaire-Roux C, Sutka M, Javot H, Gout E, Gerbeau P, Luu DT, Bligny R, Maurel C (2003) Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins. Nature 425:393–397

    Article  PubMed  CAS  Google Scholar 

  118. Tyerman SD, Niemietz CM, Bramley H (2002) Plant aquaporins: multifunctional water and solute channels with expanding roles. Plant Cell Env 25:173–194

    Article  CAS  Google Scholar 

  119. Uehlein N, Lovisolo C, Siefritz F, Kaldenhoff R (2003) The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions. Nature 425:734–737

    Article  PubMed  CAS  Google Scholar 

  120. Vallejo AJ, Peralta ML, Santa-Maria GE (2005) Expression of potassium-transporter coding genes, and kinetics of rubidium uptake, along a longitudinal root axis. Plant Cell Env 28:850–862

    Article  CAS  Google Scholar 

  121. van den Wijngaard PWJ, Sinnige MP, Roobeek I, Reumer A, Schoonheim PJ, Mol JNM, Wang M, De Boer AH (2005) Abscisic acid and 14-3-3 proteins control K+ channel activity in barley embryonic root. Plant J 41:43–55

    Article  PubMed  CAS  Google Scholar 

  122. Van Volkenburgh E (1999) Leaf expansion—an integrating plant behaviour. Plant Cell Env 22:1463–1473

    Article  Google Scholar 

  123. Vera-Estrella R, Barkla BJ, Bohnert HJ, Pantoja O (2004) Novel Regulation of Aquaporins during Osmotic Stress. Plant Physiol 135:2318–2329

    Article  PubMed  CAS  Google Scholar 

  124. Very AA, Sentenac H (2002) Cation channels in the Arabidopsis plasma membrane. Trends Plant Sci 7:168–175

    Article  PubMed  CAS  Google Scholar 

  125. Volkov V, Wang B, Dominy PJ, Fricke W, Amtmann A (2004) Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana, possesses effective mechanisms to discriminate between potassium and sodium. Plant Cell Env 27:1–14

    Article  CAS  Google Scholar 

  126. Volkov V, Hachez C, Moshelion M, Draye X, Chaumont F, Fricke W (2006) Water permeability differs between growing and non-growing barley leaf tissues. J Exp Bot (in press)

    Google Scholar 

  127. Walker DJ, Leigh RA, Miller AJ (1996) Potassium homeostasis in vacuolate plant cells. Proc Natl Acad Sci USA 93:10510–10514

    Article  PubMed  CAS  Google Scholar 

  128. Weaver CD, Roberts DM (1991) Phosphorylation of Nodulin-26 by a Calcium-Dependent Protein-Kinase. Faseb J 5:A426–A426

    Google Scholar 

  129. Wolfe J, Steponkus PL (1981) The stress-strain relation of the plasma membrane of isolated plant protoplasts. Biochim Biophys Acta 643:663–668

    Article  PubMed  CAS  Google Scholar 

  130. Xue ZY, Zhi DY, Xue GP, Zhang H, Zhao YX, Xia GM (2004) Enhanced salt tolerance of transgenic wheat (Tritivum aestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+. Plant Science 167:849–859

    Article  CAS  Google Scholar 

  131. Yokoyama R, Rose JKC, Nishitani K (2004) A surprising diversity and abundance of xyloglucan endotransglucosylase/hydrolases in rice. Classification and expression analysis. Plant Physiol 134:1088–1099

    Article  PubMed  CAS  Google Scholar 

  132. Zhang WH, Tyerman SD (1999) Inhibition of water channels by HgCl2 in intact wheat root cells. Plant Physiol 120:849–858

    Article  PubMed  CAS  Google Scholar 

  133. Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445

    Article  PubMed  CAS  Google Scholar 

  134. Zivanovic BD, Pang J, Shabala S (2005) Light-induced transient ion flux responses from maize leaves and their association with leaf growth and photosynthesis. Plant Cell Env 28:340–352

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Biotechnology and Biological Sciences Research Council (BBSRC, UK), the Leverhulme Trust (UK), The Royal Society London and The Royal Society Edinburgh (to W.F.) and by grants from the Belgian National Fund for Scientific Research (FNRS), the Interuniversity Attraction Poles Programme-Belgian Science Policy and the Communauté française de Belgique-Actions de Recherches Concertées (to F.C.). Wieland Fricke would like to thank Vadim Volkov (Paisley and Glasgow University), Alexandre Boscari (Paisley and Nice University), Mathilde Clément (Paisley and Nice University), Anna Amtmann (Glasgow University), Tony Miller (Rothamsted, Harpenden), Tim Flowers (Sussex University), Charles Hachez (Université catholique de Louvain, Belgium) and the entire aquaporin team at Lund University (in particularly Per Kjellbom and Erik Alexandersson) for their help and lots of discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Chaumont .

Editor information

Jean-Pierre Verbelen Kris Vissenberg

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fricke, W., Chaumont, F. (2006). Solute and Water Relations of Growing Plant Cells. In: Verbelen, JP., Vissenberg, K. (eds) The Expanding Cell. Plant Cell Monographs, vol 6. Springer, Berlin, Heidelberg . https://doi.org/10.1007/7089_2006_069

Download citation

Publish with us

Policies and ethics