Skip to main content

Somatic Embryogenesis of Pine Species: From Functional Genomics to Plantation Forestry

  • Chapter
  • First Online:

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 2))

Abstract

Several economically important tree species belong to the genus Pinus and many of them form the ecological base of forest ecosystems. Pine wood is an important raw material for the forest industry and many of the pine species have been involved in conventional tree improvement programmes. A lot of effort has been made in the development of vegetative propagation methods, especially somatic embryogenesis, in order to rapidly gain the benefits of traditional breeding to be utilized in reforestation. The economically relevant clonal plantation forestry presumes effective mass-propagation systems with high-quality somatic embryo plants. Today this is feasible only for Pinus banksiana Lamb., P. taeda L. and P. radiata D. Don. The recent progress in somatic embryo production and the challenges in functional genomics have increased the understanding of pine zygotic embryo development, leading to improved protocols for somatic embryogenesis. Therefore, clonal plantation forestry might become a reality for more pine species in the coming years. This chapter highlights the recent challenges in the functional genomics of pine embryogenesis. Possibilities for molecular breeding or utilization of somatic embryo plants in conventional breeding and in clonal plantations in line for sustainable forestry are also covered. The importance of cryopreservation for elite genotype preservation and as a storage method during progeny testing is discussed, as well as the use of ectomycorrhizal fungi during somatic embryo conversion in vitro and acclimatization ex vitro.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aronen T, Häggman H, Hohtola A (1994) Transient β-glucuronidase expression in Scots pine tissues derived from mature trees. Can J For Res 24:2006–2011

    CAS  Google Scholar 

  2. Aronen T, Hohtola A, Laukkanen H, Häggman H (1995) Seasonal changes in the transient expression of a 35S CaMV-GUS gene construct introduced into Scots pine buds. Tree Physiol 15:65–70

    Article  PubMed  Google Scholar 

  3. Aronen T, Häggman H (1995) Differences in Agrobacterium infections in silver birch and Scots pine. Eur J Forest Pathol 25:197–213

    Google Scholar 

  4. Aronen T, Häggman H, Salonen M (1996) Rooting of Scots pine fascicular shoots by Agrobacterium rhizogenes. For Genet 3:15–24

    Google Scholar 

  5. Aronen T, Nikkanen T, Häggman H (1998) Compatibility of different pollination techniques with microprojectile bombardment of Norway spruce and Scots pine pollen. Can J For Res 28:79–86

    Article  Google Scholar 

  6. Aronen TS, Nikkanen TO, Häggman HM (2003) The production of transgenic Scots pine (Pinus sylvestris L.) via the application of transformed pollen in controlled crossings. Transgenic Res 12:375–378

    Article  CAS  PubMed  Google Scholar 

  7. Attree SM, Denchev P, Kong L, Lobatcheva I, Folk R, Lawrence B (2004) Developing a commercial somatic embryogenesis (SE) production platform for conifers. In: Proceedings of the 2004 IUFRO joint conference of division 2. Forest genetics and tree breeding in the age of genomics: progress and future. 1–5 Nov 2004, Charleston, SC, p 142

    Google Scholar 

  8. Becwar MR, Blush TD, Brown DW, Chesick EE (1991) Multiple paternal genotypes in embryogenic tissue derived from individual immature loblolly pine seeds. Plant Cell Tissue Organ Cult 26:37–44

    Google Scholar 

  9. Bercetche J, Pâques M (1995) Somatic embryogenesis in maritime pine (Pinus pinaster). In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants, vol 3. Kluwer, Dordrecht, pp 221–242

    Google Scholar 

  10. Béguiristain T, Lapeyrie F (1997) Host plant stimulates hypaphorine accumulation in Pisolithus tinctorius hyphae during ectomycorrhizal infection while excreted fungal hypaphorine controls root hair development. New Phytol 136:525–532

    Google Scholar 

  11. Bishop-Hurley S, Gardner RC, Walter C (2003) Isolation and molecular characterization of genes expressed during somatic embryo development in Pinus radiata. Plant Cell Tissue Organ Cult 74:267–281

    CAS  Google Scholar 

  12. Bishop-Hurley S, Zabkievicz L, Grace L, Gardner RC, Wagner A, Walter C (2001) Conifer genetic engineering: transgenic Pinus radiata (D. Don) and Picea abies (karst) plants are resistant to the herbicide Buster. Plant Cell Rep 20:235–243

    CAS  Google Scholar 

  13. Bogunic F, Muratovic E, Brown SC, Siljak-Yakovlev S (2003) Genome size and base composition of five Pinus species from the Balkan region. Plant Cell Rep 22:59–63

    Article  CAS  PubMed  Google Scholar 

  14. Bommineni VR, Chibbar RN, Datla RSS, Tsang EWT (1993) Transformation of white spruce (Picea galuca) somatic embryos by microprojectile bombardment. Plant Cell Rep 13:17–23

    Article  CAS  Google Scholar 

  15. Cairney J, Buell R, Pullman J, Quackenbush J (2003) Genomics of embryogenesis in loblolly pine. In: Abstracts of the IUFRO tree biotechnology meeting, Umeå, Sweden, 7–12 June 2003

    Google Scholar 

  16. Cairney J, Xu N, Pullman GS, Ciavatta VT, Johns B (1999) Natural and somatic embryo development in loblolly pine: gene expression studies using differential display and DNA arrays. Appl Biochem Biotechnol 77–79:5–17

    Google Scholar 

  17. Cánovas FM, Dumas-Gaudot E, Recorbet G, Jorrin J, Mock H-P, Rossignol M (2004) Plant proteome analysis. Proteomics 4:285–298

    Article  PubMed  CAS  Google Scholar 

  18. Ciavatta VT, Egertsdotter U, Clapham D, von Arnold S, Cairney J (2002) A promoter from the loblolly pine PtNIP1;1 gene directs expression in an early-embryogenesis and suspensor-specific fashion. Planta 215:694–698

    Article  CAS  PubMed  Google Scholar 

  19. Ciavatta VT, Morillon R, Pullman GS, Chrispeels MJ, Cairney J (2001) An aquaglyceroporin is abundantly expressed early in the development of the suspensor and the embryo proper of loblolly pine. Plant Physiol 127:1556–1567

    Article  CAS  PubMed  Google Scholar 

  20. Cyr DR, Klimaszewska K (2002) Conifer somatic embryogenesis: II. Applications. Dendrobiologia 48:41–49

    Google Scholar 

  21. DeVerno LL, Park YS, Bonga JM, Barrett JD (1999) Somaclonal variation in cryopreserved embryogenic clones of white spruce (Picea glauca (Moench) Voss). Plant Cell Rep 18:239–261

    Article  Google Scholar 

  22. Díez J, Manjon JL, Kovács GM, Celestino C, Toribio M (2000) Mycorrhization of in vitro plants from somatic embryos of cork oak (Quercus suber L.). Appl Soil Ecol 15:119–123

    Article  Google Scholar 

  23. Diouf D (2003) Genetic transformation of forest trees. Afr J Biotechnol 2:328–333

    CAS  Google Scholar 

  24. Ditengou FA, Béguiristain T, Lapeyrie F (2000) Root hair elongation is inhibited by hypaphorine, the indole alkaloid from the ectomycorrhizal fungus Pisolithus tinctorius, and restored by indole-3-acetic acid. Planta 211:722–728

    Article  CAS  PubMed  Google Scholar 

  25. Domon J-M, Dumas B, Lainé E, Meyer Y, Alain D, David H (1995) Three glycosylated polypeptides secreted by several embryogenic cell cultures of pine show highly specific serological affinity to antibodies directed against the wheat germin apoprotein monomer. Plant Physiol 108:141–148

    Article  CAS  PubMed  Google Scholar 

  26. Dong J-Z, Dunstan D (1997) Characterization of cDNAs representing five abscisic acid-responsive genes associated with somatic embryogenesis in Picea glauca, and their responses to abscisic acid stereostructure. Planta 203:448–453

    Article  CAS  PubMed  Google Scholar 

  27. Dong J-Z, Dunstan DI (2000) Molecular biology of somatic embryogenesis in conifers. In: Jain SM, Minocha SC (eds) Molecular biology of woody plants, vol 1. Kluwer, Dordrecht, pp 51–87

    Google Scholar 

  28. Ellis DD, McCabe DE, McInnis S, Ramachandran R, Russell DR, Wallace KM, Martinelli BJ, Roberts DR, Raffa KF, McCown BH (1993) Stable transformation of Picea glauca by particle bombardment. Biotechnology (NY) 11:84–89

    CAS  Google Scholar 

  29. Engelmann F (1997) Importance of desiccation for cryopreservation of recalcitrant seed and vegetatively propagated species. Plant Genet Resour Newsl 112:9–18

    Google Scholar 

  30. Engelmann F (2004) Plant cryopreservation: progress and prospects. In Vitro Cell Dev Biol Plant 40:427–433

    Article  Google Scholar 

  31. Fernando DD, Owens JN, Misra S (2000) Transient gene expression in pine pollen tubes following particle bombardment. Plant Cell Rep 19:224–228

    Article  CAS  Google Scholar 

  32. Fillatti JJ, Selmer J, McCown B, Haissig B, Comai L (1987) Agrobacterium-mediated transformation and regeneration of Populus. Mol Gen Genet 206:192–199

    Article  CAS  Google Scholar 

  33. Ford CS, Jone NB, van Staden J (2000) Cryopreservation and plant regeneration from somatic embryos of Pinus patula. Plant Cell Rep 19:610–615

    Article  CAS  Google Scholar 

  34. Footitt S, Ingouff M, Clapham D, von Arnold S (2003) Expression of the viviparous 1 (Pavp1) and p34cdc2 protein kinase (cdc2Pa) genes during somatic embryogenesis in Norway spruce (Picea abies [L.] Karst). J Exp Bot 54:1711–1719

    Article  CAS  PubMed  Google Scholar 

  35. Fourré JL, Berger P, Niquet L, André P (1997) Somatic embryogenesis and somaclonal variation in Norway spruce: morphogenetic, cytogenetic and molecular approaches. Theor Appl Genet 94:159–169

    Google Scholar 

  36. Garin E, Isabel N, Plourde A (1998) Screening of large numbers of seed families of Pinus strobus L. for somatic embryogenesis from immature and mature zygotic embryos. Plant Cell Rep 18:37–43

    Article  CAS  Google Scholar 

  37. Gupta PK, Durzan DJ, Finkle BJ (1987) Somatic polyembryogenesis in embryogenic cell masses of Picea abies (Norway spruce) and Pinus taeda (loblolly pine) after thawing from liquid nitrogen. Can J For Res 17:1130–1134

    Google Scholar 

  38. Häggman H, Aronen T (1998) Transgene expression in regenerating cotyledons and embryogenic cultures of Scots pine. J Exp Bot 49:1147–1156

    Google Scholar 

  39. Häggman H, Aronen T (2000) Agrobacterium rhizogenes for rooting recalcitrant woody plants. In: Jain SM, Minocha SC (eds) Molecular biology of woody plants, vol 2. Kluwer, Dordrecht, pp 47–78

    Google Scholar 

  40. Häggman HM, Aronen TS, Nikkanen TO (1997) Gene transfer by particle bombardment to Norway spruce and Scots pine pollen. Can J For Res 27:928–935

    Article  Google Scholar 

  41. Häggman HM, Aronen TS, Ryynänen LA (2000) Cryopreservation of embryogenic cultures of conifers. In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants, vol 6. Kluwer, Dordrecht, pp 707–728

    Google Scholar 

  42. Häggman H, Ryynänen L, Aronen T (2001) Cryopreservation of forest tree germplasm. In: Sorvari S, Karhu S, Kanervo E, Pihakaski S. Proceedings of the 4th international symposium on in vitro culture and horticultural breeding. Acta Hortic 560:121–124

    Google Scholar 

  43. Häggman HM, Ryynänen LA, Aronen TS, Krajnakova J (1998) Cryopreservation of embryogenic cultures of Scots pine. Plant Cell Tissue Organ Cult 54:45–53

    Google Scholar 

  44. Häggman H, Jokela A, Krajnakova J, Kauppi A, Niemi K, Aronen T (1999) Somatic embryogenesis of Scots pine: cold treatment and characteristics of explants affecting induction. J Exp Bot 50:1769–1778

    Google Scholar 

  45. Handley LW, Becwar MR, Chesick EE, Coke JE, Godbey AP, Rutter MR (1995) Research and development of commercial tissue culture systems in loblolly pine. Tappi J 78:169–175

    Google Scholar 

  46. Hanson B, Engler D, Moy Y, Newman B, Ralston E, Gutterson N (1999) A simple method to enrich an Agrobacterium-transformed population for plants containing only T-DNA sequences. Plant J 19:727–734

    Article  CAS  PubMed  Google Scholar 

  47. Hargreaves CL, Grace LJ, Holden DG (2002) Nurse culture for efficient recovery of cryopreserved Pinus radiata D. Don embryogenic cell lines. Plant Cell Rep 21:40–45

    CAS  Google Scholar 

  48. Hargreaves C, Smith DR (1992) Cryopreservation of Pinus radiata embryogenic tissue. International Plant Propagators' Society combined proceedings 42:327–333

    Google Scholar 

  49. Hay I, Lachance D, von Aderkas P, Charest PJ (1994) Transient chimeric gene expression in pollen of five conifer species following microparticle bombardment. Can J For Res 24:2417–2423

    Google Scholar 

  50. Herschbach C, Kopriva S (2002) Transgenic trees as tools in tree and plant physiology. Trees 16:250–261

    Article  CAS  Google Scholar 

  51. Hizume M, Shibata F, Matsusaki Y, Garajova Z (2002) Chromosome identification and comparative karyotypic analyses of four Pinus species. Theor Appl Genet 105:491–497

    PubMed  Google Scholar 

  52. Hjortswang HI, Sundås Larsson A, Bharathan G, Bozhkov PV, von Arnold S, Vahala T (2002) KNOTTED1-like homeobox genes of a gymnosperm, Norway spruce, expressed during somatic embryogenesis. Plant Physiol Biochem 40:837–843

    Article  CAS  Google Scholar 

  53. Huang Y, Diner AM, Karnosky DF (1991) Agrobacterium rhizogenes-mediated genetic transformation and regeneration of a conifer Larix decidua. In Vitro Cell Dev Biol Plant 27:201–207

    Google Scholar 

  54. Ingouff M, Farbos I, Wiweger M, von Arnold S (2003) The molecular characterization of PaHB2, a homeobox gene of the HD-GL2 family expressed during embryo development in Norway spruce. J Exp Bot 54:1343–1350

    Article  CAS  PubMed  Google Scholar 

  55. Jargeat P, Rekangalt D, Verner MC, Gay G, Debaud JC, Marmeisse R, Fraissinet-Tachet L (2003) Characterization and expression analyses of a nitrate transporter and nitrite reductase genes, two members of a gene cluster for nitrate assimilation from the symbiotic basidiomycete Hebeloma cylindrosporum. Curr Genet 43:199–205

    CAS  PubMed  Google Scholar 

  56. Javelle A, Morel M, Rodriguez-Pastrana BR, Andre B, Marini MA, Brun A, Chalot M (2003) Molecular characterization, function and regulation of ammonium transportes (Amt) and ammonium-metabolizing enzymes (GS, NADP-GDH) in the ectomycorrhizal fungus Hebeloma cylindrosporum. Mol Plant Microbe Interact 17:202–215

    Google Scholar 

  57. Jones NB, van Staden J (1995) Plantlet production from somatic embryos of Pinus patula. J Plant Physiol 145:519–525

    CAS  Google Scholar 

  58. Jurgens G (2001) Apical–basal pattern of embryo formation in Arabidopsis embryogenesis. EMBO J 20:3609–3616

    Article  CAS  PubMed  Google Scholar 

  59. Kartha K, Fowke L, Leung N, Caswell K, Hakman I (1988) Induction of somatic embryos and plantlets from cryopreserved cell cultures of white spruce (Picea glauca). J Plant Physiol 132:529–539

    CAS  Google Scholar 

  60. Khuri S, Bakker FT, Dunwell JM (2001) Phylogeny, function and evolution of the cupins, a structurally conserved, functionally diverse superfamily of proteins. Mol Biol Evol 18:593–605

    CAS  Google Scholar 

  61. Kim SR, Lee J, Jun SH, Park S, Kang HG, Kwon S, An G (2003) Transgene structures in T-DNA inserted rice plants. Plant Mol Biol 52:761–773

    CAS  PubMed  Google Scholar 

  62. Kinlaw CS, Neale DB (1997) Complex gene families in pine genomes. Trends Plant Sci 2:356–359

    Article  Google Scholar 

  63. Klimaszewska K, Park YS, Overton C, Maceacheron I, Bonga JM (2001) Optimized somatic embryogenesis in Pinus strobus L. In Vitro Cell Dev Biol Plant 37:392–399

    Google Scholar 

  64. Komulainen P, Brown GR, Mikkonen M, Karhu A, García-Gil MR, O'Malley D, Lee B, Neale DB, Savolainen O (2003) Comparing EST-based genetic maps between Pinus sylvestris and Pinus taeda. Theor Appl Genet 107:667–678

    Article  CAS  PubMed  Google Scholar 

  65. Kriebel HB (1985) DNA sequence components of Pinus strobus nuclear genome. Can J For Res 15:1–4

    CAS  Google Scholar 

  66. Kumar S, Fladung M (2001) Gene stability in transgenic aspen (Populus). II. Molecular characterization of variable expression of transgene in wild and hybrid aspen. Planta 213:731–740

    Article  CAS  PubMed  Google Scholar 

  67. Lainé E, Pascale B, David A (1992) Recovery of plants from cryopreserved embryogenic cell suspensions of Pinus caribaea. Plant Cell Rep 11:295–298

    Google Scholar 

  68. Lambilliotte R, Cooke R, Samson D, Fizames C, Gaymard F, Plassard C, Tatry MV, Berger C, Laudie M, Legeai F, Karsenty E, Delseny M, Zimmerman S, Sentenac H (2004) Large-scale identification of genes in the fungus Hebeloma cylindrosporum paves the way to molecular analyses of ectomycorrhizal symbiosis. New Phytol 164:505–513

    Article  CAS  Google Scholar 

  69. Lelu MA, Bastien C, Drugeault A, Gouez LM, Klimaszewska K (1999) Somatic embryogenesis and plantlet development in Pinus sylvestris and Pinus pinaster on the medium with and without growth regulators. Physiol Plantarum 105:719–728

    Article  CAS  Google Scholar 

  70. Levee V, Garin E, Klimaszewska K, Seguin A (1999) Stable genetic transformation of white pine (Pinus strobus L.) after cocultivation of embryogenic tissues with Agrobacterium tumefaciens. Mol Breed 5:429–440

    CAS  Google Scholar 

  71. Malabadi RB, Choudhury H, Tandon P (2002) Plant regeneration via somatic embryogenesis in Pinus kesiya (Royle ex. Grod.). Appl Biol Res 4:1–10

    Google Scholar 

  72. Malabadi RB, van Staden J (2005) Somatic embryogenesis from vegetative shoot apices of mature trees of Pinus patula. Tree Physiol 25:11–16

    PubMed  Google Scholar 

  73. Martinussen I, Bate N, Weterings K, Junttila O, Twell D (1995) Analysis of gene regulation in growing pollen tubes of angiosperms and gymnosperm species using microprojectile bombardment. Physiol Plantarum 93:445–450

    Article  CAS  Google Scholar 

  74. Mathur G, Alkutkar VA, Nadgauda RS (2003) Cryopreservation of embryogenic culture of Pinus roxburghii. Biol Plantarum 46:205–210

    Article  Google Scholar 

  75. Merkle SA, Dean JFD (2000) Forest tree biotechnology. Curr Opin Biotechnol 11:298–302

    Article  CAS  PubMed  Google Scholar 

  76. Miguel C, Goncalves S, Tereso S, Marum L, Maroco J, Oliveira MM (2004) Somatic embryogenesis from 20 open-pollinated families of Portuguese plus trees of maritime pine. Plant Cell Tissue Organ Cult 76:121–130

    CAS  Google Scholar 

  77. Nehls U, Kleber R, Wiese J, Hampp R (1999) Isolation and characterization of a general amino acid permease from the ectomycorrhizal fungus Amanita muscaria. New Phytol 144:343–349

    CAS  Google Scholar 

  78. Neutelings G, Domon J, Membre N, Bernier F, Meyer Y, David A, David H (1998) Characterization of a germin-like protein gene expressed in somatic and zygotic embryos of pine (Pinus caribaea Morelet). Plant Mol Biol 38:1179–1190

    Article  CAS  PubMed  Google Scholar 

  79. Niemi K, Häggman H (2002) Pisolithus tinctorius promotes germination and forms mycorrhizal structures in Scots pine somatic embryos in vitro. Mycorrhiza 12:263–267

    Article  PubMed  Google Scholar 

  80. Niemi K, Julkunen-Tiitto R, Tegelberg R, Häggman H (2005) Light sources with different spectra affect root and mycorrhiza formation of Scots pine in vitro. Tree Physiol 25:123–128

    PubMed  Google Scholar 

  81. Niemi K, Scagel C, Häggman H (2004) Application of ectomycorrhizal fungi in vegetative propagation of conifers. Plant Cell Tissue Organ Cult 78:83–91

    Google Scholar 

  82. Niemi K, Vuorinen T, Ernstsen A, Häggman H (2002) Ectomycorrhizal fungi and exogenous auxins influence root and mycorrhiza formation of Scots pine hypocotyl cuttings in vitro. Tree Physiol 22:1231–1239

    CAS  PubMed  Google Scholar 

  83. Niskanen AM, Lu J, Seitz S, Keinonen K, von Weissenberg K, Pappinen A (2004) Effect of parent genotype on somatic embryogenesis of Scots pine (Pinus sylvestris). Tree Physiol 24:1259–1265

    PubMed  Google Scholar 

  84. Normand L, Bärtschi H, Debaud JC, Gay G (1996) Rooting and acclimation of micropropagated cuttings of Pinus pinaster and Pinus sylvestris are enhanced by the ectomycorrhizal fungus Hebeloma cylindrosporum. Physiol Plantarum 98:759–766

    Article  CAS  Google Scholar 

  85. Park YS (2002) Implementation of conifer somatic embryogenesis in clonal forestry: technical requirements and deployment considerations. Ann For Sci 59:651–656

    Article  Google Scholar 

  86. Peña L, Séguin A (2001) Recent advances in the genetic transformation of trees. Trends Biotechnol 12:500–506

    Google Scholar 

  87. Percy RE, Klimaszewska K, Cyr DR (2000) Evaluation of somatic embryogenesis for clonal propagation of western white pine. Can J For Res 30:1867–1876

    Article  Google Scholar 

  88. Perry DJ, Furnier G (1996) Pinus banksiana has at least seven expressed alcohol dehydrogenase genes in two linked groups. Proc Natl Acad Sci USA 93:13020–13023

    Article  CAS  PubMed  Google Scholar 

  89. Piola F, Rohr R, von Aderkas P (1995) Controlled mycorrhizal initiation as a means to improve root development in somatic embryo plantlets of hybrid larch. Physiol Plantarum 95:575–580

    Article  CAS  Google Scholar 

  90. Pullman GS, Johnson S, Peter G, Cairney J, Xu N (2003a) Improving loblolly pine somatic embryo maturation: comparison of somatic and zygotic embryo morphology, germination, and gene expression. Plant Cell Rep 21:747–758

    Google Scholar 

  91. Pullman GS, Namjoshi K, Zhang Y (2003b) Somatic embryogenesis in loblolly pine (Pinus taeda L.): improving culture initiation with abscisic acid and silver nitrate. Plant Cell Rep 22:85–95

    Google Scholar 

  92. Rommens CM, Humara JM, Ye J, Yan H, Richael C, Zhang L, Perry R, Swords K (2004) Crop improvement through modification of the plant's own genome. Plant Physiol 135:421–431

    Article  CAS  PubMed  Google Scholar 

  93. Sasa M, Krogstrup P (1991) Ectomycorrhizal formation in plantlets derived from somatic embryos of Sitka spruce. Scand J For Res 6:129–136

    Article  Google Scholar 

  94. Sax K, Sax HJ (1933) Chromosome number and morphology in the conifers. J Arnold Arbor 14:356–375

    Google Scholar 

  95. Smith S, Read D (eds) (1997) Mycorrhizal symbiosis, 2nd edn. Academic Press, San Diego

    Google Scholar 

  96. Smith DR, Warr A, Grace L, Walter C, Hargreaves CL (1994) Somatic embryogenesis joins the plantation forestry revolution in New Zealand. In: Proceedings of the TAPPI 1994 biological sciences symposium, pp 19–24

    Google Scholar 

  97. Stasolla C, Bozhkov P, Tzu-Ming C, van Zyl L, Egertsdotter U, Suarez MF, Craig D, Wolfinger RD, von Arnold S, Sederoff RR (2004) Variation in transcript abundance during somatic embryogenesis in gymnosperms. Tree Physiol 24:1073–1085

    CAS  PubMed  Google Scholar 

  98. Stasolla C, van Zyl L, Egertsdotter U, Craig D, Liu W, Sederoff RR (2003) The effects of polyethylene glycol on gene expression of developing white spruce somatic embryos. Plant Physiol 131:49–60

    Article  CAS  PubMed  Google Scholar 

  99. Stoger E, Fink C, Pfosser M, Heberle-Bors E (1995) Plant transformation by particle bombardment of embryogenic pollen. Plant Cell Rep 14:273–278

    Google Scholar 

  100. Supriyanto M, Rohr R (1994) In vitro regeneration of plantlets of Scots pine (Pinus sylvestris) with mycorrhizal roots from subcultured callus initiated from needle adventitious buds. Can J Bot 72:1144–1150

    Article  Google Scholar 

  101. Sutton B (1999) The need for planted forests and an example of radiata pine. New Forest 17:95–109

    Article  Google Scholar 

  102. Sutton B (2002) Commercial delivery of genetic improvement to conifer plantations using somatic embryogenesis. Ann For Sci 59:657–661

    Article  Google Scholar 

  103. Tang W, Guo Z (2001) In vitro propagation of loblolly pine via direct somatic organogenesis from mature cotyledons and hypocotyls. Plant Growth Regul 33:25–31

    Article  Google Scholar 

  104. Tang W, Guo Z, Ouyang F (2001a) Plant regeneration from embryogenic cultures initiated from mature loblolly pine zygotic embryos. In Vitro Cell Dev Biol Plant 37:558–563

    Google Scholar 

  105. Tang W, Harris LC, Outhavong V, Newton RJ (2004) Antioxidants enhance in vitro plant regeneration by inhibiting the accumulation of peroxidase in Virginia pine (Pinus virginia Mill.). Plant Cell Rep 22:871–877

    Article  CAS  PubMed  Google Scholar 

  106. Tang W, Sederoff R, Whetten R (2001b) Regeneration of transgenic loblolly pine (Pinus taeda L.) from zygotic embryos transformed with Agrobacterium tumefaciens. Planta 213:981–989

    Google Scholar 

  107. Tang W, Tian Y (2003) Transgenic loblolly pine (Pinus taeda L.) plants expressing a modified delta-endotoxin gene from Bacillus thuringiensis with enhanced resistance to Dendrolimus punctatus Walker and Crypyothelea formosicola Staud. J Exp Bot 54:835–844

    CAS  PubMed  Google Scholar 

  108. Tang W, Whetten R, Sederoff R (2001c) Genotypic control of high-frequency adventitious shoot regeneration via somatic organogenesis in loblolly pine. Plant Sci 161:267–272

    Google Scholar 

  109. Touchell DH, Chiang VL, Tsai CJ (2002) Cryopreservation of embryogenic cultures of Picea mariana (black spruce) using vitrification. Plant Cell Rep 21:118–124

    CAS  Google Scholar 

  110. Tranvan H, Habricot Y, Jeannette E, Gay G, Sotta B (2000) Dynamics of symbiotic establishment between an IAA-overproducing mutant of the ectomycorrhizal fungus Hebeloma cylindrosporum and Pinus pinaster. Tree Physiol 20:123–129

    PubMed  Google Scholar 

  111. Tsai CJ, Hubscher SL (2004) Cryopreservation in Populus functional genomics. New Phytol 164:73–81

    Article  CAS  Google Scholar 

  112. van der Leede-Plegt LM, van de Ven BCE, Schilder M, Franken J, van Tunen A (1995) Development of a pollen-mediated transformation method for Nicotiana glutinosa. Transgenic Res 4:77–86

    Article  Google Scholar 

  113. van Zyl L, Bozhkov PV, Clapham DH, Sederoff RR, von Arnold S (2003) Up, down and up again is a signature global gene expression pattern at the beginning of gymnosperm embryogenesis. Gene Expr Patterns 3:83–91

    Google Scholar 

  114. van Zyl L, von Arnold S, Bozhkov P, Chen Y, Egertsdotter U, MacKay J, Sederoff RR, Shen J, Zelena L, Clapham DH (2002) Heterologous array analysis in Pinaceae: hybridization of Pinus taeda cDNA arrays with cDNA from needles and embryogenic cultures of P. taeda, P. sylvestris or Picea abies. Comp Funct Genomics 3:306–318

    PubMed  Google Scholar 

  115. Wagner A, Moody J, Grace L, Walter C (1997) Stable transformation of Pinus radiata based on selection with Hygromycin B. NZ J For Sci 27:280–288

    CAS  Google Scholar 

  116. Walter C (2004) Genetic engineering in conifer forestry: technical and social considerations. In Vitro Cell Dev Biol Plant 40:434–441

    Article  Google Scholar 

  117. Walter C, Grace LJ, Wagner A, White DWR, Walden A, Donaldson SS, Hinton H, Gardner RC, Smith DR (1998) Stable transformation and regeneration of transgenic plants of Pinus radiata D. Don. Plant Cell Rep 17:460–468

    Article  CAS  Google Scholar 

  118. Wenck A, Quinna M, Whetten R, Pullman GS, Sederoff RR (1999) High-efficiency Agrobacterium-mediated transformation of Norway spruce (Picea abies) and loblolly pine (Pinus taeda). Plant Mol Biol 39:407–416

    CAS  PubMed  Google Scholar 

  119. Wipf D, Benjdia M, Tegeder M, Fommer WB (2002) Characterization of a general amino acid permease from Hebeloma cylindrosporum. FEBS Lett 528:119–124

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank Prof. James Graham from the Citrus Research and Education Center, University of Florida, for valuable comments on the manuscript and Mr. Jouko Lehto from the Finnish Forest Research Institute, Punkaharju Research Station, for the photos in Figs. 1 and 2a. We acknowledge the research funding from the Academy of Finland (grants 105214 to H.H., 202415 to K.N. and 53440 to T.S.) and from the Finnish Cultural Foundation (a grant to K.N.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hely Häggman .

Editor information

A. Mujib Jozef Šamaj

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Häggman, H., Vuosku, J., Sarjala, T., Jokela, A., Niemi, K. Somatic Embryogenesis of Pine Species: From Functional Genomics to Plantation Forestry. In: Mujib, A., Šamaj, J. (eds) Somatic Embryogenesis. Plant Cell Monographs, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7089_032

Download citation

Publish with us

Policies and ethics