Skip to main content

SNAREs in Plant Endocytosis and the Post-Golgi Traffic

  • Chapter
  • First Online:
  • 213 Accesses

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 1))

Abstract

In eukaryotic cells, the transport vesicles carry various cargo proteins from a donor compartment to a target compartment, and discharge the cargo into the target compartment by fusing with the membrane of the target compartment. SNARE molecules have a central role for initiating membrane fusion between transport vesicles and target membranes by forming a specific trans-SNARE complex in each transport step. In higher plants, the numbers of SNARE molecules are greater than those of yeast and mammals, suggesting a higher complexity of membrane traffic in higher plant cells. In this chapter, we will focus on the functions and subcellular localizations of plant SNARE molecules and discuss the complexity and evolution of endocytosis and the post-Golgi traffic in the higher plant cells.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anuntalabhochai S, Terryn N, Van Montagu M, Inze D (1991) Molecular characterization of an Arabidopsis thaliana cDNA encoding a small GTP-binding protein, Rha1. Plant J 1:167–174

    PubMed  Google Scholar 

  2. Assaad FF, Qiu JL, Youngs H, Ehrhardt D, Zimmerli L, Kalde M, Wanner G, Peck SC, Edwards H, Ramonell K, Somerville CR, Thordal-Christensen H (2004) The PEN1 syntaxin defines a novel cellular compartment upon fungal attack and is required for the timely assembly of papillae. Mol Biol Cell 15:5118–5129

    Article  PubMed  Google Scholar 

  3. Baluška F, Šamaj J, Hlavacka A, Kendrick-Jones J, Volkman D (2004) Actin-dependent fluid-phase endocytosis in inner cortex cells of maize root apices. J Exp Bot 55:463–473

    Article  PubMed  Google Scholar 

  4. Bassham DC, Sanderfoot AA, Kovaleva V, Zheng H, Raikhel NV (2000) AtVPS45 complex formation at the trans-Golgi network. Mol Biol Cell 11:2251–2265

    PubMed  Google Scholar 

  5. Battey NH, James NC, Greenland AJ, Brownlee C (1999) Exocytosis and endocytosis. Plant Cell 11:643–660

    Article  PubMed  Google Scholar 

  6. Bock JB, Matern HT, Peden AA, Scheller RH (2001) A genomic perspective on membrane compartment organization. Nature 409:839–841

    Article  PubMed  Google Scholar 

  7. Brodsky FM, Chen CY, Knuehl C, Towler MC, Wakeham DE (2001) Biological basket weaving: formation and function of clathrin-coated vesicles. Annu Rev Cell Dev Biol 17:517–568

    Article  PubMed  Google Scholar 

  8. Carter C, Pan S, Zouhar J, Avila EL, Girke T, Raikhel NV (2004) The vegetative vacuole proteome of Arabidopsis thaliana reveals predicted and unexpected proteins. Plant Cell 16:3285–3303

    Article  PubMed  Google Scholar 

  9. Collins NC, Thordal-Christensen H, Lipka V, Bau S, Kombrink E, Qiu JL, Huckelhoven R, Stein M, Freialdenhoven A, Somerville SC, Schulze-Lefert P (2003) SNARE-protein-mediated disease resistance at the plant cell wall. Nature 425:973–977

    Article  PubMed  Google Scholar 

  10. Cram WJ (1980) Pinocytosis in plants. New Phytol 84:1–17

    Google Scholar 

  11. Dacks JB, Doolittle WF (2002) Novel syntaxin gene sequences from Giardia, Trypanosoma and algae: implications for the ancient evolution of the eukaryotic endomembrane system. J Cell Sci 115:1635–1642

    PubMed  Google Scholar 

  12. Emans N, Zimmermann S, Fischer R (2002) Uptake of a fluorescent marker in plant cells is sensitive to brefeldin A and wortmannin. Plant Cell 14:71–86

    Article  PubMed  Google Scholar 

  13. Fasshauer D, Sutton RB, Brunger AT, Jahn R (1998) Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs. Proc Natl Acad Sci USA 95:15 781–15 786

    Article  Google Scholar 

  14. Filippini F, Rossi V, Galli T, Budillon A, D'Urso M, D'Esposito M (2001) Longins: a new evolutionary conserved VAMP family sharing a novel SNARE domain. Trends Biochem Sci 26:407–409

    Article  PubMed  Google Scholar 

  15. Friml J, Wisniewska J, Benkova E, Mendgen K, Palme K (2002) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415:806–809

    PubMed  Google Scholar 

  16. Galway ME, Rennie PJ, Fowke LC (1993) Ultrastructure of the endocytotic pathway in glutaraldehyde-fixed and high-pressure frozen=freeze-substituted protoplasts of white spruce (Picea glauca). J Cell Sci 106:847–858

    PubMed  Google Scholar 

  17. Galweiler L, Guan C, Muller A, Wisman E, Mendgen K, Yephremov A, Palme K (1998) Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282:2226–2230

    Article  PubMed  Google Scholar 

  18. Geelen D, Leyman B, Batoko H, Di Sansabastiano GP, Moore I, Blatt MR (2002) The abscisic acid-related SNARE homolog NtSyr1 contributes to secretion and growth: evidence from competition with its cytosolic domain. Plant Cell 14:387–406

    Article  PubMed  Google Scholar 

  19. Geldner N, Anders N, Wolters H, Keicher J, Kornberger W, Muller P, Delbarre A, Ueda T, Nakano A, Jurgens G (2003) The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112:219–230

    Article  PubMed  Google Scholar 

  20. Gonzalez LC Jr, Weis W, Scheller RH (2001) A novel snare N-terminal domain revealed by the crystal structure of Sec22b. J Biol Chem 276:24 203–24 211

    Google Scholar 

  21. Griffing LR (1991) Comparisons of Golgi structure and dynamics in plant and animal cells. J Electron Microsc Tech 17:179–199

    Article  PubMed  Google Scholar 

  22. Halperin W (1969) Ultrastructural localization of acid phosphatase in cultured cells of Daucus carota. Planta 88:91–102

    Article  Google Scholar 

  23. Hara-Nishimura I, Shimada T, Hatano K, Takeuchi Y, Nishimura M (1998) Transport of storage proteins to protein storage vacuoles is mediated by large precursor-accumulating vesicles. Plant Cell 10:825–836

    Article  PubMed  Google Scholar 

  24. Heese M, Gansel X, Sticher L, Wick P, Grebe M, Granier F, Jurgens G (2001) Functional characterization of the KNOLLE-interacting t-SNARE AtSNAP33 and its role in plant cytokinesis. J Cell Biol 155:239–249

    Article  PubMed  Google Scholar 

  25. Hillmer S, Depta H, Robinson DG (1986) Confirmation of endocytosis in higher plant protoplasts using lectin-gold conjugates. Eur J Cell Biol 41:142–149

    Google Scholar 

  26. Hillmer S, Freundt H, Robinson DG (1988) The partially coated reticulum and its relationship to the Golgi apparatus in higher plants. Eur J Cell Biol 47:206–212

    Google Scholar 

  27. Hillmer S, Movafeghi A, Robinson DG, Hinz G (2001) Vacuolar storage proteins are sorted in the cis-cisternae of the pea cotyledon Golgi apparatus. J Cell Biol 152:41–50

    Article  PubMed  Google Scholar 

  28. Hohl I, Robinson DG, Chrispeels MJ, Hinz G (1996) Transport of storage proteins to the vacuole is mediated by vesicles without a clathrin coat. J Cell Sci 109:2539–2550

    PubMed  Google Scholar 

  29. Holstein SE (2002) Clathrin and plant endocytosis. Traffic 3:614–620

    Article  PubMed  Google Scholar 

  30. Joachim S, Robinson DG (1984) Endocytosis of cationic ferritin by bean leaf protoplasts. Eur J Cell Biol 34:212–216

    PubMed  Google Scholar 

  31. Jürgens G (2004) Membrane Trafficking in Plants. Annu Rev Cell Dev Biol 20:481–504

    Article  PubMed  Google Scholar 

  32. Jürgens G, Geldner N (2002) Protein secretion in plants: from the trans-Golgi network to the outer space. Traffic 3:605–613

    Article  PubMed  Google Scholar 

  33. Kargul J, Gansel X, Tyrrell M, Sticher L, Blatt MR (2001) Protein-binding partners of the tobacco syntaxin NtSyr1. FEBS Lett 508:253–258

    Article  PubMed  Google Scholar 

  34. Kato T, Morita MT, Fukaki H, Yamauchi Y, Uehara M, Niihama M, Tasaka M (2002) SGR2, a phospholipase-like protein, and ZIG=SGR4, a SNARE, are involved in the shoot gravitropism of Arabidopsis. Plant Cell 14:33–46

    Article  PubMed  Google Scholar 

  35. Kotzer AM, Brandizzi F, Neumann U, Paris N, Moore I, Hawes C (2004) AtRabF2b (Ara7) acts on the vacuolar trafficking pathway in tobacco leaf epidermal cells. J Cell Sci 117:6377–6389

    Article  PubMed  Google Scholar 

  36. Lauber MH, Waizenegger I, Steinmann T, Schwarz H, Mayer U, Hwang I, Lukowitz W, Jurgens G (1997) The Arabidopsis KNOLLE protein is a cytokinesis-specific syntaxin. J Cell Biol 139:1485–1493

    Article  PubMed  Google Scholar 

  37. Lee GJ, Sohn EJ, Lee MH, Hwang I (2004) The Arabidopsis rab5 homologs rha1 and ara7 localize to the prevacuolar compartment. Plant Cell Physiol 45:1211–1220

    Article  Google Scholar 

  38. Leyman B, Geelen D, Blatt MR (2000) Localization and control of expression of Nt-Syr1, a tobacco SNARE protein. Plant J 24:369–381

    Article  PubMed  Google Scholar 

  39. Leyman B, Geelen D, Quintero FJ, Blatt MR (1999) A tobacco syntaxin with a role in hormonal control of guard cell ion channels. Science 283:537–540

    Article  PubMed  Google Scholar 

  40. Low PS, Chandra S (1994) Endocytosis in Plants. Annu Rev Plant Physiol Plant Mol Biol 43:609–631

    Article  Google Scholar 

  41. Lukowitz W, Mayer U, Jurgens G (1996) Cytokinesis in the Arabidopsis embryo involves the syntaxin-related KNOLLE gene product. Cell 84:61–71

    Article  PubMed  Google Scholar 

  42. Matsuoka K, Bassham DC, Raikhel NV, Nakamura K (1995) Different sensitivity to wortmannin of two vacuolar sorting signals indicates the presence of distinct sorting machineries in tobacco cells. J Cell Biol 130:1307–1318

    Article  PubMed  Google Scholar 

  43. Mayer U, Torres Ruiz RA, Berleth T, Misera S, Jurgens G (1991) Mutations affecting body organization in the Arabidopsis embryo. Nature 353:402–407

    Article  Google Scholar 

  44. Mellman I (1996) Endocytosis and molecular sorting. Annu Rev Cell Dev Biol 12:575–625

    Article  PubMed  Google Scholar 

  45. Mironov AA, Weidman P, Luini A (1997) Variations on the intracellular transport theme: maturing cisternae and trafficking tubules. J Cell Biol 138:481–484

    Article  PubMed  Google Scholar 

  46. Morita MT, Kato T, Nagafusa K, Saito C, Ueda T, Nakano A, Tasaka M (2002) Involvement of the vacuoles of the endodermis in the early process of shoot gravitropism in Arabidopsis. Plant Cell 14:47–56

    Article  PubMed  Google Scholar 

  47. Muller A, Guan C, Galweiler L, Tanzler P, Huijser P, Marchant A, Parry G, Bennett M, Wisman E, Palme K (1998) AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO J 17:6903–6911

    Article  PubMed  Google Scholar 

  48. Muller I, Wagner W, Volker A, Schellmann S, Nacry P, Kuttner F, Schwarz-Sommer Z, Mayer U, Jurgens G (2003) Syntaxin specificity of cytokinesis in Arabidopsis. Nat Cell Biol 5:531–534

    Article  PubMed  Google Scholar 

  49. Nebenfuhr A (2002) Vesicle traffic in the endomembrane system: a tale of COPs, Rabs and SNAREs. Curr Opin Plant Biol 5:507–512

    Article  PubMed  Google Scholar 

  50. Neuhaus JM, Rogers JC (1998) Sorting of proteins to vacuoles in plant cells. Plant Mol Biol 38:127–144

    Article  PubMed  Google Scholar 

  51. Nielsen E (2005) Rab GTPases in plant endocytosis (in this volume). Springer, Berlin Heidelberg New York

    Google Scholar 

  52. Niihama M, Uemura T, Chieko S, Nakano A, Sato MH, Tasaka M, Morita MT (2005) Conversion of functional specificity in Qb-SNARE VTI11 homologues of Arabidopsis. Curr Biol (in press)

    Google Scholar 

  53. Nishizawa N, Mori S (1977) Invagination of plasmalemma: Its role in the absorption of macromolecules in rice roots. Plant Cell Physiol 18:767–782

    Google Scholar 

  54. Nuhse TS, Boller T, Peck SC (2003) A plasma membrane syntaxin is phosphorylated in response to the bacterial elicitor flagellin. J Biol Chem 278:45 248–45 254

    Article  Google Scholar 

  55. Pelham HR, Rothman JE (2000) The debate about transport in the Golgi–-two sides of the same coin? Cell 102:713–719

    Article  PubMed  Google Scholar 

  56. Phillips GD, Preshaw C, Steer MW (1988) Dictyosome vesicle production and plasma membrane turnover in auxin-stimulated outer epidermal cells of coleoptile segments from Avena sativa (L.). Protoplasma 145:59–65

    Article  Google Scholar 

  57. Pryer NK, Wuestehube LJ, Schekman R (1992) Vesicle-mediated protein sorting. Annu Rev Biochem 61:471–516

    Article  PubMed  Google Scholar 

  58. Record RD, Griffing LR (1988) Convergence of endocytis and lysosomal pathways in soybean protoplasts. Planta 176:425–432

    Article  Google Scholar 

  59. Rojo E, Gillmor CS, Kovaleva V, Somerville CR, Raikhel NV (2001) VACUOLELESS1 is an essential gene required for vacuole formation and morphogenesis in Arabidopsis. Dev Cell 1:303–310

    Article  PubMed  Google Scholar 

  60. Rojo E, Zouhar J, Kovaleva V, Hong S, Raikhel NV (2003) The AtC-VPS protein complex is localized to the tonoplast and the prevacuolar compartment in Arabidopsis. Mol Biol Cell 14:361–369

    Article  PubMed  Google Scholar 

  61. Rossi V, Banfield DK, Vacca M, Dietrich LE, Ungermann C, D'Esposito M, Galli T, Filippini F (2004) Longins and their longin domains: regulated SNAREs and multifunctional SNARE regulators. Trends Biochem Sci 29:682–688

    Article  PubMed  Google Scholar 

  62. Rothman JE, Wieland FT (1996) Protein sorting by transport vesicles. Science 272:227–234

    PubMed  Google Scholar 

  63. Saint-Jore-Dupas C, Gomord V, Paris N (2004) Protein localization in the plant Golgi apparatus and the trans-Golgi network. Cell Mol Life Sci 61:159–171

    Article  PubMed  Google Scholar 

  64. Šamaj J (2005) Methods and molecular tools to study endocytosis in plants–-an overview (in this volume). Springer, Berlin Heidelberg New York

    Google Scholar 

  65. Šamaj J, Baluška F, Voigt B, Schlicht M, Volkmann D, Menzel D (2004) Endocytosis, actin cytoskeleton and signalling. Plant Physiol 135:1150–1161

    Article  PubMed  Google Scholar 

  66. Šamaj J, Read ND, Volkmann D, Menzel D, Baluška F (2005) The endocytic network in plants. Trends Cell Biol 15:425–433

    Google Scholar 

  67. Samuels AL, Bisalputra T (1990) Endocytosis in elongating root cells of Lobelia erinus. J Cell Sci 97:157–165

    Google Scholar 

  68. Sanderfoot AA, Assaad FF, Raikhel NV (2000) The Arabidopsis genome. An abundance of soluble N-ethylmaleimide-sensitive factor adaptor protein receptors. Plant Physiol 124:1558–1569

    Article  PubMed  Google Scholar 

  69. Sanderfoot AA, Kovaleva V, Bassham DC, Raikhel NV (2001) Interactions between Syntaxins Identify at Least Five SNARE Complexes within the Golgi=Prevacuolar System of the Arabidopsis Cell. Mol Biol Cell 12:3733–3743

    PubMed  Google Scholar 

  70. Sanderfoot AA, Kovaleva V, Zheng H, Raikhel NV (1999) The t-SNARE AtVAM3p resides on the prevacuolar compartment in Arabidopsis root cells. Plant Physiol 121:929–938

    Article  PubMed  Google Scholar 

  71. Sanderfoot AA, Raikhel NV (1999) The specificity of vesicle trafficking: coat proteins and SNAREs. Plant Cell 11:629–642

    Article  PubMed  Google Scholar 

  72. Sanderfoot AA, Raikhel NV (2003) In: Somerville C and Meyerowits E (eds) The secretory system of Arabidopsis. American Society of Plant Biologist, Rockville, MD, pp 1–24

    Google Scholar 

  73. Sato MH, Nakamura N, Ohsumi Y, Kouchi H, Kondo M, Hara-Nishimura I, Nishimura M, Wada Y (1997) The AtVAM3 encodes a syntaxin-related molecule implicated in the vacuolar assembly in Arabidopsis thaliana. J Biol Chem 272:24 530–24 535

    Article  PubMed  Google Scholar 

  74. Schindelman G, Morikami A, Jung J, Baskin TI, Carpita NC, Derbyshire P, McCann MC, Benfey PN (2001) COBRA encodes a putative GPI-anchored protein, which is polarly localized and necessary for oriented cell expansion in Arabidopsis. Genes Dev 15:1115–1127

    Article  PubMed  Google Scholar 

  75. Shah K, Russinova E, Gadella TW Jr, Willemse J, De Vries SC (2002) The Arabidopsis kinase-associated protein phosphatase controls internalization of the somatic embryogenesis receptor kinase 1. Genes Dev 16:1707–1720

    Article  PubMed  Google Scholar 

  76. Sheung KL, Tse YC, Jiang L, Oliviusson P, Heinzerling O, Robinson DG (2005) Plant prevacuolar compartments and endocytosis (in this volume). Springer, Berlin Heidelberg New York

    Google Scholar 

  77. Somsel Rodman J, Wandinger-Ness A (2000) Rab GTPases coordinate endocytosis. J Cell Sci 113:183–192

    PubMed  Google Scholar 

  78. Steinmann T, Geldner N, Grebe M, Mangold S, Jackson CL, Paris S, Galweiler L, Palme, K, Jurgens G (1999) Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF. Science 286:316–318

    Article  PubMed  Google Scholar 

  79. Surpin M, Zheng H, Morita MT, Saito C, Avila E, Blakeslee JJ, Bandyopadhyay A, Kovaleva V, Carter D, Murphy A, Tasaka M, Raikhel N (2003) The VTI family of SNARE proteins is necessary for plant viability and mediates different protein transport pathways. Plant Cell 15:2885–2899

    Article  PubMed  Google Scholar 

  80. Swarup R, Friml J, Marchant A, Ljung K, Sandberg G, Palme K, Bennett M (2001) Localization of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex. Genes Dev 15:2648–2653

    Article  PubMed  Google Scholar 

  81. Tanchak MA, Fowke LC (1987) The morphology of multivesicular bodies in soybean protoplasts and their role in endocytosis. Protoplasma 138:173–182

    Article  Google Scholar 

  82. Tanchak MA, Griffing LR, Mersey BG, Fowke LC (1984) Endocytosis of cationized ferritin by coated vesicles of soybean protoplasts. Planta 162:481–486

    Article  Google Scholar 

  83. Tanchak MA, Rennie PJ, Fowke LC (1988) Ultrastructure of the partially coated reticulum and dictyosomes during endocytosis by soybean protoplasts. Planta 175:433–431

    Article  Google Scholar 

  84. Toyooka K, Okamoto T, Minamikawa T (2001) Cotyledon cells of Vigna mungo seedlings use at least two distinct autophagic machineries for degradation of starch granules and cellular components. J Cell Biol 154:973–982

    Article  PubMed  Google Scholar 

  85. Tse YC, Mo B, Hillmer S, Zhao M, Lo SW, Robinson DG, Jiang L (2004) Identification of multivesicular bodies as prevacuolar compartments in Nicotiana tabacum BY-2 cells. Plant Cell 16:672–693

    Article  PubMed  Google Scholar 

  86. Ueda T, Nakano A (2002) Vesicular traffic: an integral part of plant life. Curr Opin Plant Biol 5:513–517

    Article  PubMed  Google Scholar 

  87. Ueda T, Uemura T, Sato MH, Nakano A (2004) Functional differentiation of endosomes in Arabidopsis cells. Plant J 40:783–789

    Article  PubMed  Google Scholar 

  88. Ueda T, Yamaguchi M, Uchimiya H, Nakano A (2001) Ara6, a plant-unique novel type Rab GTPase, functions in the endocytic pathway of Arabidopsis thaliana. EMBO J 20:4730–4741

    Article  PubMed  Google Scholar 

  89. Uemura T, Ueda T, Ohniwa RL, Nakano A, Takeyasu K, Sato MH (2004) Systematic analysis of SNARE molecules in Arabidopsis: dissection of the post-Golgi network in plant cells. Cell Struct Funct 29:49–65

    Article  PubMed  Google Scholar 

  90. Uemura T, Yoshimura SH, Takeyasu K, Sato MH (2002) Vacuolar membrane dynamics revealed by GFP-AtVam3 fusion protein. Genes Cells 7:743–753.

    Article  PubMed  Google Scholar 

  91. Ungar D, Hughson FM (2003) SNARE protein structure and function. Annu Rev Cell Dev Biol 19:493–517

    Article  PubMed  Google Scholar 

  92. Vernoud V, Horton AC, Yang Z, Nielsen E (2003) Analysis of the small GTPase gene superfamily of Arabidopsis. Plant Physiol 131:1191–1208

    Article  PubMed  Google Scholar 

  93. Voigt B, Timmers A, Šamaj J, Hlavacka A, Ueda T, Preuss M, Nielsen E, Mathur J, Emans N, Stenmark H, Nakano A, Baluška F, Menzel D (2005) Actin-based motility of endosomes is linked to the polar tip growth of root hairs. Eur J Cell Biol 84 (in press)

    Google Scholar 

  94. Waters MG, Hughson FM (2000) Membrane tethering and fusion in the secretory and endocytic pathways. Traffic 1:588–597

    Google Scholar 

  95. Yano D, Sato M, Saito C, Sato MH, Morita MT, Tasaka M (2003) A SNARE complex containing SGR3=AtVAM3 and ZIG=VTI11 in gravity-sensing cells is important for Arabidopsis shoot gravitropism. Proc Natl Acad Sci USA 100:8589–8594

    Article  PubMed  Google Scholar 

  96. Zheng H, Bednarek SY, Sanderfoot AA, Alonso J, Ecker JR, Raikhel NV (2002) NPSN11 is a cell plate-associated SNARE protein that interacts with the syntaxin KNOLLE. Plant Physiol 129:530–539

    Article  PubMed  Google Scholar 

  97. Zheng H, von Mollard GF, Kovaleva V, Stevens TH, Raikhel NV (1999) The plant vesicle-associated SNARE AtVTI1a likely mediates vesicle transport from the trans-Golgi network to the prevacuolar compartment. Mol Biol Cell 10:2251–2264

    PubMed  Google Scholar 

  98. Zhu J, Gong Z, Zhang C, Song CP, Damsz B, Inan G, Koiwa H, Zhu JK, Hasegawa PM, Bressan RA (2002) OSM1=SYP61: a syntaxin protein in Arabidopsis controls abscisic acid-mediated and non-abscisic acid-mediated responses to abiotic stress. Plant Cell 14:3009–3028

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masa H. Sato .

Editor information

Jozef Šamaj František Baluška Diedrik Menzel

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Sato, M.H., Ohniwa, R.L., Uemura, T. SNAREs in Plant Endocytosis and the Post-Golgi Traffic. In: Šamaj, J., Baluška, F., Menzel, D. (eds) Plant Endocytosis. Plant Cell Monographs, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7089_012

Download citation

Publish with us

Policies and ethics