Skip to main content

Conformationally Flexible Guanidine–(Thio)Urea Bifunctional Organocatalysts

  • Chapter
  • First Online:

Part of the book series: Topics in Heterocyclic Chemistry ((TOPICS,volume 50))

Abstract

Enzymes can exhibit diverse catalytic functions by exploiting conformational changes in response to various external stimuli. An intriguing property of enzymes is that they can attain rate acceleration relative to competing reaction pathway occurring via other conformations. Inspired by these flexible but well-regulated functions of enzymes, we have developed the conformationally flexible guanidine-(thio)urea bifunctional organocatalyst. In this chapter, we describe some asymmetric reactions and very unique entropy-driven reactions catalyzed by guanidine-(thio)urea bifunctional organocatalyst.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Schreiner PR (2003) Metal-free organocatalysis through explicit hydrogen bonding interactions. Chem Soc Rev 32(5):289–296. doi:10.1039/B107298f

    Article  CAS  Google Scholar 

  2. Takemoto Y (2005) Recognition and activation by ureas and thioureas: stereoselective reactions using ureas and thioureas as hydrogen-bonding donors. Org Biomol Chem 3(24):4299–4306. doi:10.1039/b511216h

    Article  CAS  Google Scholar 

  3. Akiyama T, Itoh J, Fuchibe K (2006) Recent progress in chiral brønsted acid catalysis. Adv Synth Catal 348(9):999–1010. doi:10.1002/adsc.200606074

    Article  CAS  Google Scholar 

  4. Connon SJ (2006) Organocatalysis mediated by (thio)urea derivatives. Chemistry 12(21):5418–5427. doi:10.1002/chem.200501076

    Article  Google Scholar 

  5. Taylor MS, Jacobsen EN (2006) Asymmetric catalysis by chiral hydrogen-bond donors. Angew Chem Int Ed 45(10):1520–1543. doi:10.1002/anie.200503132

    Article  CAS  Google Scholar 

  6. Doyle AG, Jacobsen EN (2007) Small-molecule H-bond donors in asymmetric catalysis. Chem Rev 107(12):5713–5743. doi:10.1021/cr068373r

    Article  CAS  Google Scholar 

  7. Palomo C, Oiarbide M, Lopez R (2009) Asymmetric organocatalysis by chiral Bronsted bases: implications and applications. Chem Soc Rev 38(2):632–653. doi:10.1039/b708453f

    Article  CAS  Google Scholar 

  8. Connon S (2009) The design of novel, synthetically useful (thio)urea-based organocatalysts. Synlett 2009(03):0354–0376. doi:10.1055/s-0028-1087557

    Article  Google Scholar 

  9. Leow D, Tan CH (2009) Chiral guanidine catalyzed enantioselective reactions. Chem Asian J 4(4):488–507. doi:10.1002/asia.200800361

    Article  CAS  Google Scholar 

  10. Nagasawa K, Sohtome Y (2009) The design of chiral double hydrogen bonding networks and their applications to catalytic asymmetric carbon-carbon and carbon-oxygen bond-forming reactions. Synlett 2010(01):1–22. doi:10.1055/s-0029-1218542

    Article  Google Scholar 

  11. Sohtome Y, Nagasawa K (2012) Dynamic asymmetric organocatalysis: cooperative effects of weak interactions and conformational flexibility in asymmetric organocatalysts. Chem Commun 48(63):7777–7789. doi:10.1039/c2cc31846f

    Article  CAS  Google Scholar 

  12. Boruwa J, Gogoi N, Saikia PP, Barua NC (2006) Catalytic asymmetric Henry reaction. Tetrahedron Asymmetry 17(24):3315–3326. doi:10.1016/j.tetasy.2006.12.005

    Article  CAS  Google Scholar 

  13. Palomo C, Oiarbide M, Laso A (2007) Recent advances in the catalytic asymmetric nitroaldol (Henry) reaction. Eur J Org Chem 2007(16):2561–2574. doi:10.1002/ejoc.200700021

    Article  Google Scholar 

  14. Alvarez-Casao Y, Marques-Lopez E, Herrera RP (2011) Organocatalytic enantioselective Henry reactions. Symmetry 3(4):220–245. doi:10.3390/sym3020220

    Article  CAS  Google Scholar 

  15. Sohtome Y, Takemura N, Takada K, Takagi R, Iguchi T, Nagasawa K (2007) Organocatalytic asymmetric nitroaldol reaction: cooperative effects of guanidine and thiourea functional groups. Chem Asian J 2(9):1150–1160. doi:10.1002/asia.200700145

    Article  CAS  Google Scholar 

  16. Takada K, Takemura N, Cho K, Sohtome Y, Nagasawa K (2008) Asymmetric organocatalytic nitroaldol reaction of α-keto esters: stereoselective construction of chiral tertiary alcohols at subzero temperature. Tetrahedron Lett 49(10):1623–1626. doi:10.1016/j.tetlet.2008.01.030

    Article  CAS  Google Scholar 

  17. Takada K, Nagasawa K (2009) Enantioselective Aza-Henry reaction with acyclic guanidine-thiourea bifunctional organocatalyst. Adv Synth Catal 351(3):345–347. doi:10.1002/adsc.200800692

    Article  CAS  Google Scholar 

  18. Odagi M, Furukori K, Watanabe T, Nagasawa K (2013) Asymmetric α-hydroxylation of tetralone-derived β-ketoesters by using a guanidine-urea bifunctional organocatalyst in the presence of cumene hydroperoxide. Chemistry 19(49):16740–16745. doi:10.1002/chem.201303006

    Article  CAS  Google Scholar 

  19. Odagi M, Furukori K, Yamamoto Y, Sato M, Iida K, Yamanaka M, Nagasawa K (2015) Origin of stereocontrol in guanidine-bisurea bifunctional organocatalyst that promotes α-hydroxylation of tetralone-derived β-ketoesters: asymmetric synthesis of β- and γ-substituted tetralone derivatives via organocatalytic oxidative kinetic resolution. J Am Chem Soc 137(5):1909–1915. doi:10.1021/ja511149y

    Article  CAS  Google Scholar 

  20. Watanabe T, Odagi M, Furukori K, Nagasawa K (2014) Asymmetric α-hydroxylation of a lactone with vinylogous pyridone by using a guanidine-urea bifunctional organocatalyst: catalytic enantioselective synthesis of a key intermediate for (20S)-camptothecin analogues. Chemistry 20(2):591–597. doi:10.1002/chem.201303633

    Article  CAS  Google Scholar 

  21. Cui LQ, Dong ZL, Liu K, Zhang C (2011) Design, synthesis, structure, and dehydrogenation reactivity of a water-soluble o-iodoxybenzoic acid derivative bearing a trimethylammonium group. Org Lett 13(24):6488–6491. doi:10.1021/ol202777h

    Article  CAS  Google Scholar 

  22. Yang T-F, Wang K-Y, Li H-W, Tseng Y-C, Lien T-C (2012) Synthesis of substituted α-tetralones and substituted 1-naphthols via regioselective ring expansion of 1-acyl-1-indanol skeleton. Tetrahedron Lett 53(5):585–588. doi:10.1016/j.tetlet.2011.11.103

    Article  CAS  Google Scholar 

  23. Schmidt TJ, Vossing S, Klaes M, Grimme S (2007) An aryldihydronaphthalene lignan with a novel type of ring system and further new lignans from linum perenne L. Planta Med 73(15):1574–1580. doi:10.1055/s-2007-993748

    Article  CAS  Google Scholar 

  24. Ballini R, Bosica G, Fiorini D, Palmieri A, Petrini M (2005) Conjugate additions of nitroalkanes to electron-poor alkenes: recent results. Chem Rev 105(3):933–971. doi:10.1021/cr040602r

    Article  CAS  Google Scholar 

  25. Christoffers J, Koripelly G, Rosiak A, Rössle M (2007) Recent advances in metal-catalyzed asymmetric conjugate additions. Synthesis 2007(9):1279–1300. doi:10.1055/s-2007-966005

    Article  Google Scholar 

  26. Vicario J, Badía D, Carrillo L (2007) Organocatalytic enantioselective Michael and hetero-Michael reactions. Synthesis 2007(14):2065–2092. doi:10.1055/s-2007-983747

    Article  Google Scholar 

  27. Horitsugi N, Kojima K, Yasui K, Sohtome Y, Nagasawa K (2014) Asymmetric Michael reaction of nitroolefins with β-dicarbonyl compounds catalysed by 1,3-diamine-tethered guanidine-thiourea bifunctional organocatalysts. Asian J Org Chem 3(4):445–448. doi:10.1002/ajoc.201402002

    Article  CAS  Google Scholar 

  28. Sohtome Y, Horitsugi N, Takagi R, Nagasawa K (2011) Enantioselective phospha-Michael reaction of diphenyl phosphonate with nitroolefins utilizing conformationally flexible guanidinium/bisthiourea organocatalyst: assembly-state tunability in asymmetric organocatalysis. Adv Synth Catal 353(14–15):2631–2636. doi:10.1002/adsc.201100219

    Article  CAS  Google Scholar 

  29. Metcalf WW, van der Donk WA (2009) Biosynthesis of phosphonic and phosphinic acid natural products. Annu Rev Biochem 78:65–94. doi:10.1146/annurev.biochem.78.091707.100215

    Article  CAS  Google Scholar 

  30. Garzan A, Jaganathan A, Salehi Marzijarani N, Yousefi R, Whitehead DC, Jackson JE, Borhan B (2013) Solvent-dependent enantiodivergence in the chlorocyclization of unsaturated carbamates. Chemistry 19(27):9015–9021. doi:10.1002/chem.201300189

    Article  CAS  Google Scholar 

  31. Bures J, Dingwall P, Armstrong A, Blackmond DG (2014) Rationalization of an unusual solvent-induced inversion of enantiomeric excess in organocatalytic selenylation of aldehydes. Angew Chem Int Ed 53(33):8700–8704. doi:10.1002/anie.201404327

    Article  CAS  Google Scholar 

  32. Sohtome Y, Tanaka S, Takada K, Yamaguchi T, Nagasawa K (2010) Solvent-dependent enantiodivergent Mannich-type reaction: utilizing a conformationally flexible guanidine/bisthiourea organocatalyst. Angew Chem Int Ed 49(48):9254–9257. doi:10.1002/anie.201005109

    Article  CAS  Google Scholar 

  33. Sohtome Y, Shin B, Horitsugi N, Takagi R, Noguchi K, Nagasawa K (2010) Entropy-controlled catalytic asymmetric 1,4-type Friedel-Crafts reaction of phenols using conformationally flexible guanidine/bisthiourea organocatalyst. Angew Chem Int Ed 49(40):7299–7303. doi:10.1002/anie.201003172

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuo Nagasawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nagasawa, K., Odagi, M., Kato, M. (2015). Conformationally Flexible Guanidine–(Thio)Urea Bifunctional Organocatalysts. In: Selig, P. (eds) Guanidines as Reagents and Catalysts I. Topics in Heterocyclic Chemistry, vol 50. Springer, Cham. https://doi.org/10.1007/7081_2015_170

Download citation

Publish with us

Policies and ethics