Skip to main content

Ring Expansions of β-Lactams and β-(thio)lactones

  • Chapter
  • First Online:
Synthesis of 4- to 7-membered Heterocycles by Ring Expansion

Part of the book series: Topics in Heterocyclic Chemistry ((TOPICS,volume 41))

Abstract

The skeleton of β-lactams and β-lactones is present in biologically active compounds. For example, the β-lactam ring is present in classical antibiotics such as penicillins and cephalosporins. On the other hand, there are several natural products containing a β-lactone moiety, with interesting inhibitory activity. In addition, both fragments are very useful synthetic intermediates for the preparation of cyclic and acyclic compounds. The ring strain present in both motifs is involved in this versatile reactivity. This chapter is devoted to the synthesis of five- to seven-membered heterocycles by ring expansion of β-lactams and β-lactones. Different methodologies have been described, and the mechanism for the formation of the products has been discussed. In addition, the applicability of some of the processes has been demonstrated by the synthesis of fragments of natural or biologically relevant compounds. The contributions presented in this chapter have been selected mainly from the developments achieved in the last decade.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Bn:

Benzyl

Boc:

t-Butoxycarbonyl

DBU:

1,8-Diazabicyclo[5.4.0]undec-7-ene

DCE:

1,1-Dichloroethane

DIAD:

Diisopropyl azodicarboxylate

DIBAL:

Diisobutylaluminium hydride

DIPEA:

Diisopropylethylamine

DMAP:

4-Dimethylaminopyridine

DMSO:

Dimethyl sulfoxide

dpm:

Dipivaloylmethanato

EDA:

Ethyl diazoacetate

EDG:

Electron donating group

EDTA:

Ethylenediaminetetraacetic acid

EWG:

Electron withdrawing group

FMOC:

9-Fluorenylmethoxycarbonyl

HMDS:

Hexamethyldisilazide

Ipy2BF4 :

Bis(pyridine)iodonium tetrafluoroborate

LDA:

Lithium diisopropylamide

Lys:

Lysine

NBS:

N-Bromosuccinimide

NIS:

N-Iodosuccinimide

Orn:

Ornithine

p-ABSA:

4-Acetamidobenzenesulfonyl azide

PMB:

p-Methoxybenzyl

PMP:

p-Methoxyphenyl

PPY:

4-Pyrrolidinopyridine

PTSA:

p-Toluenesulfonic acid

TBAF:

Tetra n-butylammonium fluoride

TBCA:

Tribromoisocyanuric acid

TF:

Trifluoromethanesulfonyl

TFA:

Trifluoroacetic acid

TMS:

Trimethylsilyl

Tph:

2-Thiophenyl

Ts:

p-Toluenesulfonyl

References

  1. Marchand-Brynaert J, Brulé C (2008) Penicillins. In: Katritzky AR, Ramsden CA, Scriven EFV, Taylor R (eds) Four-membered heterocycles together with all fused systems containing a four-membered heterocyclic ring, vol 2, Comprehensive heterocyclic chemistry III. Elsevier, Oxford, pp 173–238

    Google Scholar 

  2. Alcaide B, Almendros P, Aragoncillo C (2008) Cephalosporins. In: Katritzky AR, Ramsden CA, Scriven EFV, Taylor R (eds) Four-membered heterocycles together with all fused systems containing a four-membered heterocyclic ring, vol 2, Comprehensive heterocyclic chemistry III. Elsevier, Oxford, pp 111–172

    Google Scholar 

  3. Mehta PD, Sengar NPS, Pathak AK (2010) 2-Azetidinone – a new profile of various pharmacological activities. Eur J Med Chem 45:5541–5560

    Article  CAS  Google Scholar 

  4. Ojima I, Zuniga ES, Seitz JD (2013) Advances in the use of enantiopure β-lactams for the synthesis of biologically active compounds of medicinal interests. In: Banik BK (ed) β-Lactams: unique structures of distinction for novel molecules, vol 30, Topics in heterocyclic chemistry. Springer, Berlin/Heidelberg, pp 1–64

    Chapter  Google Scholar 

  5. Alcaide B, Almendros P, Aragoncillo C (2007) β-Lactams: versatile building blocks for the stereoselective synthesis of non-β-lactam products. Chem Rev 107:4437–4492

    Article  CAS  Google Scholar 

  6. Liu DZ, Wang F, Liao TG, Tang JG, Steglich W, Zhu HJ, Liu JK (2006) Vibralactone: a lipase inhibitor with an unusual fused β-lactone produced by cultures of the basidiomycete Boreostereum vibrans. Org Lett 8:5749–5752

    Article  CAS  Google Scholar 

  7. Feling RH, Buchanan GO, Mincer TJ, Kauffman CA, Jensen PR, Fenical W (2003) Salinosporamide A: a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus salinospora. Angew Chem Int Ed 42:355–357

    Article  CAS  Google Scholar 

  8. Normand M, Kirillov E, Carpentier JF, Guillame SM (2012) Cyclodextrin-centered polyesters: controlled ring-opening polymerization of cyclic esters from β-cyclodextrin-diol. Macromolecules 45:1122–1130

    Article  CAS  Google Scholar 

  9. Aubry S, Sasaki K, Eloy L, Aubert G, Retailleau P, Cresteil T, Crich D (2011) Exploring the potential of the β-thiolactones in bioorganic chemistry. Org Biomol Chem 9:7134–7143

    Article  CAS  Google Scholar 

  10. Aubry S, Aubert G, Cresteil T, Crich D (2012) Synthesis and biological investigation of the β-thiolactone and β-lactam analogs of tetrahydrolipstatin. Org Biomol Chem 10:2629–2632

    Article  CAS  Google Scholar 

  11. Noel A, Delpech B, Crich D (2012) Comparison of the reactivity of β-thiolactones and β-lactones toward ring-opening by thiols and amines. Org Biomol Chem 10:6480–6483

    Article  CAS  Google Scholar 

  12. Noel A, Delpech B, Crich D (2014) Chemistry of the β-thiolactones: substituent and solvent effects on thermal decomposition and comparison with the β-lactones. J Org Chem 79:4068–4077

    Article  CAS  Google Scholar 

  13. Alcaide B, Almendros P, Cabrero G, Ruiz MP (2008) I2-Catalyzed enantioselective ring expansion of β-lactams to γ-lactams through a novel C3–C4 bond cleavage. Direct entry to protected 3,4-dihydroxypyrrolidin-2-one derivatives. Chem Commun 615–617

    Google Scholar 

  14. Alcaide B, Almendros P, Cabrero G, Callejo R, Ruiz MP, Arnó M, Domingo LR (2010) Ring expansion versus cyclization in 4-oxoazetidine-2-carbaldehydes catalyzed by molecular iodine: experimental and theoretical study in concert. Adv Synth Catal 352:1688–1700

    Article  CAS  Google Scholar 

  15. Alcaide B, Almendros P, Cabrero G, Ruiz MP (2005) Organocatalytic ring expansion of β-lactams to γ-lactams through a novel N1-C4 bond cleavage. Direct synthesis of enantiopure succinimide derivatives. Org Lett 7:3981–3984

    Article  CAS  Google Scholar 

  16. Alcaide B, Almendros P, Cabrero G, Ruiz MP (2007) Direct organocatalytic synthesis of enantiopure succinimides from β-lactam aldehydes through ring expansion promoted by azolium salt precatalysts. Chem Commun 4788–4790

    Google Scholar 

  17. Li GQ, Li Y, Dai L, You SL (2007) N-Heterocyclic carbine catalyzed ring expansion of 4-formyl-β-lactams: synthesis of succinimide derivatives. Org Lett 9:3519–3521

    Google Scholar 

  18. Domingo LR, Burell MJ, Arnó M (2009) Understanding the mechanism of the N-heterocyclic carbine-catalyzed ring-expansion of 4-formyl-β-lactams to succinimide derivatives. Tetrahedron 65:3432–3440

    Article  CAS  Google Scholar 

  19. Alcaide B, Almendros P, Cabrero G, Ruiz MP (2012) Stereoselective cyanation of 4-formyl and 4-imino-β-lactams: application to the synthesis of polyfunctionalized γ-lactams. Tetrahedron 68:10761–10768

    Article  CAS  Google Scholar 

  20. Van Bradandt W, De Kimpe N (2005) Diastereoselective ring expansion of β-lactams toward γ-lactams via N-acyliminium intermediates. J Org Chem 70:3369–3374

    Article  Google Scholar 

  21. Dekeukeleire S, D’hooghe M, De Kimpe N (2009) Diastereoselective synthesis of bicyclic γ-lactams via ring expansion of monocyclic β-lactams. J Org Chem 74:1644–1649

    Article  CAS  Google Scholar 

  22. Van Bradant W, De Kimpe N (2005) Electrophile-induced ring expansions of β-lactams toward γ-lactams. J Org Chem 70:8717–8722

    Article  Google Scholar 

  23. Alcaide B, Almendros P, Luna A, Torres MR (2010) Divergent reactivity of 2-azetidinone-tethered allenols with electrophilic reagents: controlled ring expansion versus spirocyclization. Adv Synth Catal 352:621–626

    Article  CAS  Google Scholar 

  24. Alcaide B, Almendros P, Luna A, Cembellín S, Arnó M, Domingo LR (2011) Controlled rearrangement of lactam-tethered allenols with brominating reagents: a combined experimental and theoretical study on α- versus β-keto lactam formation. Chem Eur J 17:11559–11566

    Article  CAS  Google Scholar 

  25. Alcaide B, Almendros P, Quirós MT (2011) Accessing skeletal diversity under iron catalysis using substrate control: formation of pyrroles versus lactones. Adv Synth Catal 353:585–594

    Article  CAS  Google Scholar 

  26. Li G, Huang X, Zhang L (2008) Platinum-catalyzed formation of cyclic-ketone-fused indoles from N-(2-alkynylphenyl-β-lactams). Angew Chem Int Ed 47:346–349

    Article  CAS  Google Scholar 

  27. Liu L, Wang Y, Zhang L (2012) Formal synthesis of 7-methoxymitosene and synthesis of its analog via a key PtCl2-catalyzed cycloisomerization. Org Lett 14:3736–3739

    Article  CAS  Google Scholar 

  28. Coates RM, MacManus PA (1982) Expeditious synthesis of 1,3-dihydro-1H-pyrrolo[1,2-a]indoles, pyrroloindole quinones, and related heterocycles via Nenitzescy-type condensation of quinone monoketals with exocyclic enamino esters. J Org Chem 47:4822–4824

    Article  CAS  Google Scholar 

  29. Wender PA, Cooper CB (1987) Diastereoselective deoxymercuration in cyclic system. A remarkable assistance by the neighboring carbonate group. Tetrahedron Lett 26:1207–1210

    Google Scholar 

  30. Peng Y, Yu M, Zhang L (2008) Au-catalyzed synthesis of 5,6-dihydro-8H-indolizin-7-ones from N-(pent-2-en-4-ynyl)-β-lactams. Org Lett 10:5187–5190

    Article  CAS  Google Scholar 

  31. Xing J, Wang XR, Yan CX, Cheng Y (2011) Interaction of β-lactam carbenes with 3,6-diphenyltetrazines: a five-step cascade reaction for the direct construction of indeno[2,1-b]pyrrol-2-ones. J Org Chem 76:4746–4752

    Article  CAS  Google Scholar 

  32. Wang XR, Xing J, Yan CX, Cheng Y (2012) The reaction of β-lactam carbenes with 3,6-dipyidyltetrazines: switch of reaction pathways by 2-pyridyl and 4-pyridyl substituents of tetrazines. Org Biomol Chem 10:970–977

    Article  CAS  Google Scholar 

  33. Mollet K, Goossens H, Piens N, Catak S, Waroquier M, Törnroos KW, Van Speybroeck V, D’hooghe M, De Kimpe N (2013) Synthesis of 2-hydroxy-1,4-oxazin-3-ones through ring transformation of 3-hydroxy-4-(1,2-dihydroxyethyl)-β-lactams and a study of their reactivity. Chem Eur J 19:3383–3396

    Article  CAS  Google Scholar 

  34. D’hooghe M, Dejaegher Y, De Kimpe N (2008) Synthesis of trans-4-aryl-3-(3-chloropropyl)azetidin-2-ones and their transformation into trans- and cis-2-aryklpiperidine-3-carboxylates. Tetrahedron 64:4575–4584

    Article  Google Scholar 

  35. Shirode NM, Likhite AP, Gumaste V, Rakeed A, Deshmukh AS (2008) Synthesis of (3S,4R)-4-benzylamino-3-methoxypiperidine, an important intermediate for (3S,4R)-cisapride. Tetrahedron 64:7191–7198

    Article  CAS  Google Scholar 

  36. Van Deale GHP, De Bruyn MFL, Sommen FM, Janssen M, Van Nueten JM, Schuurkes JAJ, Niemegeers CJE, Leysen JE (1986) Synthesis of cisapride, a gastrointestinal stimulant derived from cis-4-amino-3-methoxypiperidine. Drug Dev Res 8:225–232

    Article  Google Scholar 

  37. Brain CT, Chen A, Nelson A, Tanikkul N, Thomas EJ (2010) Synthesis of macrocyclic precursors of lankacidins using Stille reactions of 4-(2-iodo-alkenyl)azetidinones and related compounds for ring closure. Tetrahedron 66:6613–6625

    Article  CAS  Google Scholar 

  38. Cheung LLW, Yudin AK (2009) Synthesis of aminocyclobutanes through ring expansion of N-vinyl-β-lactams. Org Lett 11:1281–1284

    Article  CAS  Google Scholar 

  39. Cheung LLW, Yudin AK (2010) Synthesis of highly substituted cyclobutane fused-ring systems from N-vinyl β-lactams through a one-pot domino process. Chem Eur J 16:4100–4109

    Article  CAS  Google Scholar 

  40. Anand A, Mehra V, Kumar V (2013) Triflic acid mediated Fries rearrangement of 3-dienyl-2-azetidinones: facile synthesis of 3-(but-2-enylidene)quinolin-4-(3H)-ones. Synlett 24:865–867

    Article  CAS  Google Scholar 

  41. Hu Y, Fu X, Barry BD, Bi X, Dong D (2012) Regiospecific β-lactam ring-opening/recyclization reactions of N-aryl-3-spirocyclic-β-lactams catalyzed by a Lewis-Brønsted acids combined superacid catalyst system: a new entry to 3-spirocyclic quinolin-4(1H)-ones. Chem Commun 48:690–692

    Article  CAS  Google Scholar 

  42. Singh P, Bhargava G, Kumar V, Mahajan MP (2010) Diastereoselective approach to novel octahydroisoquinolones and an extension to its one-pot synthesis. Tetrahedron Lett 51:4272–4274

    Article  CAS  Google Scholar 

  43. Mehra V, Kumar V (2013) Facile, diastereoselective synthesis of functionally enriched hexahydroisoquinolines, hexahydroisoquinolones and hexahydroisochromones via inter-/intramolecular amidolysis of C–3 functionalized 2–azetidinones. Tetrahedron 69:3857–3866

    Article  CAS  Google Scholar 

  44. Raj R, Mehra V, Singh P, Kumar V, Bhargava G, Mahajan MP, Handa S, Slaughter LM (2011) β-Lactam-synthon-interceded, facile, one-pot, diastereoselective synthesis of functionalized tetra/octahydroisoquinolone derivatives. Eur J Org Chem 2697–2704

    Google Scholar 

  45. Singh P, Raj R, Bhargava G, Hendricks DT, Handa S, Slaughter LM, Kumar V (2012) β-Lactam synthon-interceded diastereoselective synthesis of functionalized octahydroindole-based molecular scaffolds and their in vitro cytotoxic evaluation. Eur J Med Chem 58:513–518

    Article  CAS  Google Scholar 

  46. Fang Y, Rogness DC, Larock RC, Shi F (2012) Formation of acridones by ethylene extrusion in the reaction of arynes with β-lactams and dihydroquinolinones. J Org Chem 77:6262–6270

    Article  CAS  Google Scholar 

  47. Vincent G, Williams RM (2007) Asymmetric total synthesis of (−)-cribrostatin 4 (renieramycin H). Angew Chem Int Ed 46:1517–1520

    Article  CAS  Google Scholar 

  48. Lane JW, Chen Y, Williams RM (2005) Asymmetric total syntheses of (−)-jorumycin, (−)-renieramycin G, 3-epi-jorumycin, and 3-epi-remieramycin G. J Am Chem Soc 127:12684–12690

    Article  CAS  Google Scholar 

  49. Jin W, Metobo S, Williams RM (2003) Synthetic studies on ecteinascidin-743: constructing a versatile pentacyclic intermediate for the synthesis of ecteinascidins and saframycins. Org Lett 5:2095–2098

    Article  CAS  Google Scholar 

  50. Núñez-Villanueva D, Bonache MA, Infantes L, García-López MT, Martín-Martínez M, González-Muñiz R (2011) Quaternary α, α-2-oxoazepane α-amino acids: synthesis from ornithine-derived β-lactams and incorporation into model dipeptides. J Org Chem 76:6592–6603

    Article  Google Scholar 

  51. King FD, Caddick S (2012) The acid-mediated ring opening/cyclisation reaction of N-benzyl-α-aryl-azetidinones. Tetrahedron 68:9350–9354

    Article  CAS  Google Scholar 

  52. Csomós P, Fodor L, Csámpai A, Sohár P (2010) Exceptional isolation of both imine and enamine desmotropes of 4,1-benzothiazepines. Tetrahedron 66:3207–3213

    Article  Google Scholar 

  53. Fodor L, Csomós P, Csámpai A, Sohár P (2010) A convenient synthesis of 1,4-benzothiazepines from 1,3-benzothiazines via the ring transformation of β-lactam-condensed 1,3-benzothiazine derivatives. Synthesis 2943–2948

    Google Scholar 

  54. Fodor L, Csomós P, Holczbauer T, Kálman A, Csámpai A, Sohár P (2011) Expected and unexpected reactions of 1,3-benzothiazine derivatives, I. Ring transformation of β-lactam-condensed 1,3-benzothiazines into 4,5-dihydro-1,4-benzothiazepines and indolo-1,4-indolo-1,4-benzothiazepines. Tetrahedron Lett 52:224–227

    Article  CAS  Google Scholar 

  55. Fodor L, Csomós P, Csámpai A, Sohár P (2012) Novel indole syntheses by ring transformation of β-lactam-condensed 1,3-benzothiazines into indolo[2,3-b][1,4]benzothiazepines and indolo[3,2-c]isoquinolines. Tetrahedron 68:851–856

    Article  CAS  Google Scholar 

  56. Mulzer J, Brüntrup G (1979) Stereospecific synthesis of γ-lactones by dyotropic Wagner-Meerwein rearrangement. Angew Chem Int Ed 18:793–794

    Article  Google Scholar 

  57. Ren W, Bian Y, Zhang Z, Shang H, Zhang P, Chen Y, Yang Z, Luo T, Tang Y (2012) Enantioselective and collective syntheses of xanthanolides involving a controllable dyotropic rearrangement of cis-β-lactones. Angew Chem Int Ed 51:6984–6988

    Article  CAS  Google Scholar 

  58. Purohit VC, Matla AS, Romo D (2008) Concise synthesis of spirocyclic, bridged γ-butyrolactones via stereospecific, dyotropic rearrangements of β-lactones involving 1,2-acyl and δ-lactone migrations. J Am Chem Soc 130:10478–10479

    Article  CAS  Google Scholar 

  59. Leverett CA, Purohit VC, Johnson AG, Davis RL, Tantillo DJ, Romo D (2012) Dyotropic rearrangements of fused tricyclic β-lactones: application to the synthesis of (−)-curcumanolide A and (−)-curcumalactone. J Am Chem Soc 134:13348–13356

    Article  CAS  Google Scholar 

  60. Davis RL, Leverett CA, Romo D, Tantillo DJ (2011) Switching between concerted and stepwise mechanisms for dyotropic rearrangements of β-lactones leading to spirocyclic bridged γ-butyrolactones. J Org Chem 76:7167–7174

    Article  CAS  Google Scholar 

  61. Zhang W, Romo D (2007) Transformation of fused bicyclic and tricyclic β-lactones to fused γ-lactones and 3(2H)-furanones via ring expansions and O−H insertions. J Org Chem 72:8939–8942

    Article  CAS  Google Scholar 

  62. Clarke PA, Santos S, Martin WHC (2007) Combining pot, atom and step economy (PASE) in organic synthesis. Synthesis of tetrahydropyran-4-ones. Green Chem 9:438–440

    Article  CAS  Google Scholar 

  63. Clarke PA, Santos S, Mistry N, Burroughs L, Humpries AC (2011) The asymmetric Maitland–Japp reaction and its application to the construction of the C1–C19 bis-pyran unit of phorboxazole B. Org Lett 13:624–627

    Article  CAS  Google Scholar 

  64. Matsunaga H, Ikeda K, Iwamoto K-I, Suzuki Y, Sato M (2009) A one-pot synthesis of 3-arylglutaric anhydrides by reaction of ketene with aromatic aldehydes and ketones. Tetrahedron Lett 50:2334–2336

    Article  CAS  Google Scholar 

  65. Dombray T, Blanc A, Weibel JM, Pale P (2010) Gold (I)-catalyzed cycloisomerization of β-alkynylpropiolactones to substituted α-pyrones. Org Lett 12:5362–5365

    Article  CAS  Google Scholar 

  66. Liu G, Romo D (2011) Total synthesis of (+)-omphadiol. Angew Chem Int Ed 50:7537–7540

    Article  CAS  Google Scholar 

  67. Clarke PA, Zaytsev AV, Morgan TW, Whitwood AC, Wilson C (2008) One-pot synthesis of functionalized piperid-4-ones: a four-component condensation. Org Lett 10:2877–2880

    Article  CAS  Google Scholar 

  68. Sadequl MS, Ishigami K, Watanabe H (2007) Synthesis of (−)-mellein, (+)-ramulosin, and related natural products. Tetrahedron 63:1074–1079

    Article  Google Scholar 

  69. Uchida K, Ishigami K, Watanabe H, Kitahara T (2007) Synthesis of an insecticidal tetrahydroisocoumarin, (3R,4S,4aR)-4,8-dihydroxy-3-methyl-3,4,4a,5-tetrahydro-1H-2-benzopyran-1-one. Tetrahedron 63:1281–1287

    Article  CAS  Google Scholar 

  70. Alizadeh A, Zohreh N, Zhu L-G (2009) One-pot and stereoselective synthesis of 2,3-dihydro-1,5-benzodiazepin-2-one with a phosphonylidene or phosphono-succinate substituent. Tetrahedron 65:2684–2688

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Benito Alcaide , Pedro Almendros or Cristina Aragoncillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Alcaide, B., Almendros, P., Aragoncillo, C. (2015). Ring Expansions of β-Lactams and β-(thio)lactones. In: D’hooghe, M., Ha, HJ. (eds) Synthesis of 4- to 7-membered Heterocycles by Ring Expansion. Topics in Heterocyclic Chemistry, vol 41. Springer, Cham. https://doi.org/10.1007/7081_2015_153

Download citation

Publish with us

Policies and ethics