Skip to main content

Non-Covalent Interactions of Porphyrinoids with Duplex DNA

  • Chapter
  • First Online:

Part of the book series: Topics in Heterocyclic Chemistry ((TOPICS,volume 34))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Br8CoTMPyP4:

Tetrakis-N-methylpyridyl-β-octabromo Co(II) porphyrin

CD:

Circular dichroism

cis-H2Pagg:

5,10-Bis(4-N-methylpyridyl)-15,20-diphenyl porphyrin

cis-H2TMPyPipP4:

5,10-Di[4-[1-(4-phenylpiperazine-yl)-acetyloxocarbonyl]- phenyl]-15,20-di(4-N-methylpyridiniumyl)porphine

CT-DNA:

Calf thymus DNA

Cu(2,3-tmtppa)4C:

N,N′,N″,N″-tetramethyltetra-2,3-pyridinoporphyrazinato copper(II)

Cu(3,4-tmtppa)4C:

N,N′,N″,N″-tetramethyltetra-3,4pyridinoporphyrazinato copper(II)

Cu(II)TMPyP4:

5,10,15,20-Tetrakis(4-N-methylpyridyl)Cu(II)porphyrin

CuPz8+:

2,3,7,8,12,13,17,18-Octakis(4-N-methylpyridyl)Cu(II) porphyra zine

DNA:

Deoxyribonucleic acid

Fe(III)TMPyP4:

5,10,15,20-Tetrakis(4-N-methylpyridyl)Fe(III)porphyrin

GeTMPyC:

5,10,15-(4-N-methylpyridyl)Ge(IV)corrole

GQ:

G-quadruplex

H2BisDMImP4:

5,15-Bis(1,3-dimethylimidazolium-2-yl)porphyrin

H2DPDPFPP:

5,15-(4-pyridyl)-10,20-(pentafluorophenyl)porphyrin

H2TButPyP4:

5,10,15,20-Tetrakis(4-N-n-butylpyridyl)porphyrin

H2TDMImP4:

Meso-tetrakis(1,3-dimethylimidazolium-2-yl)porphyrin

H2TDMPzP4:

Meso-tetrakis(1,2-dimethylpyrazolium-4-yl)porphyrin

H2TEtOHPyP4:

5,10,15,20-Tetrakis(4-N-(2-hydroxyethyl)pyridyl)porphyrin

H2TMAP:

5,10,15,20-Tetrakis(4-N,N′,N″-trimethylanilinium)porphyrin

H2TMPyC:

5,10,15-(4-N-methylpyridyl)corrole

H2TMPyCMP4:

5-(4-methoxycarbonylphenyl)-10,15,20-tris(4-N-methylpyridyl) porphyrin

H2TMPyCP4:

5-(4-Carboxyphenyl)-10,15,20-tris(4-N-methylpyridyl)porphyrin

H2TMPyP2:

5,10,15,20-Tetrakis(2-N-methylpyridyl)porphyrin

H2TMPyP4:

5,10,15,20-Tetrakis(4-N-methylpyridyl)porphyrin

H2TMPyPFc:

Tris(4-N-methylpyridiniumyl)mono(phenyl-OCH2CH2ferrocene) porphyrin

H2TMPyPipP4:

5-[4-[1-(4-phenylpiperazine-yl)-acetyloxocarbonyl]phenyl]-10,15,20-tris(4-N-methylpyridiniumyl)porphine

H2TMPyPP4:

5,10,15,20-Tetrakis(N-methyl-4-pyridin-4-yl-phenyl)porphyrin

H2TPPS4:

5,10,15,20-Tetrakis[4-sulfonatophenyl]porphyrin

H2TPrPyP4:

5,10,15,20-Tetrakis(4-N-propylpyridyl)porphyrin

H2TPrPyPP4:

5,10,15,20-Tetrakis{[4-(1-pyridyl)propoxy]phenyl}porphyrin

H2TSPc:

N,N′,N″,N‴-tetrasulfonated phthalocyanines

H2TϑF4TAP:

Meso-tetrakis [2,3,5,6-tetrafluoro-4-(2-trimethylammoniumethyl amine)phenyl]porphyrin

H2TϑOPP4:

Meso-tetrakis[4-[(3-trimethylaminopropyl)oxy]phenyl]porphine

H2TϑPyP4:

Meso-tetrakis[4-N-(3-trimethylaminopropyl)pyridyl]porphine

ICD:

Induced circular dichroism

LD:

Linear dichroism

m-H2TCP4− :

5,10,15,20-Tetrakis[3-(nido-carboranyl)phenyl]porphyrin

MnDMPyFPC:

5,15-(4-N-methylpyridyl)-10-(pentafluorophenyl)Mn(III)corrole

MnTDEtEstPyP4:

5,10,15,20-Tetrakis(4-N-diethylesterepyridyl)Mn(III)porphyrin

MnTMPyC:

5,10,15-(4-N-methylpyridyl)corroleMn(III)

MPIX:

Mesoporphyrin IX

NiTPPS4:

5,10,15,20-Tetrakis[4-sulfonatophenyl] Ni(II) porphyrin

NMM:

N-methylmesoporphyrin IX

NMR:

Nuclear magnetic resonance

p-H2TCP4− :

5,10,15,20-Tetrakis[4-(nido-carboranyl)phenyl]porphyrin

PDT:

Photodynamic therapy

poly(dA–dT):

Poly(deoxyadenylic-deoxythymidylic)acid

poly(dG–dC):

Poly(deoxyguanylic-deoxycytidylic) acid

RLS:

Resonance light scattering

RNA:

Ribonucleic acid

T m :

Melting temperature

trans-H2Pagg:

5,15-Bis(4-N-methylpyridyl)-10,20-diphenyl porphyrin

VCD:

Vibrational circular dichroism

Zn(II)TMPyP4:

5,10,15,20-Tetrakis(4-N-methylpyridyl)Zn(II)porphyrin

ZnPz8+:

2,3,7,8,12,13,17,18-Octakis(4-N-methylpyridyl)Cu(II) porphyra zine

ZnTPPS4:

5,10,15,20-Tetrakis[4-sulfonatophenyl] Zn(II) porphyrin

References

  1. Neidle S, Balasubramanian S (2006) Quadruplex nucleic acids. The Royal Society of Chemistry, London

    Google Scholar 

  2. Belmont P, Constant J-F, Demeunynck M (2001) Nucleic acid conformation diversity: from structure to function and regulation. Chem Soc Rev 30:70–81

    CAS  Google Scholar 

  3. Seanger W (1988) Principles of nucleic acid structure. Springer, New York

    Google Scholar 

  4. Stryer L (1989) Biochimica. Zanichelli, Bologna

    Google Scholar 

  5. Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng Q (1998) Photodynamic therapy. J Natl Cancer Inst 90:889–905

    CAS  Google Scholar 

  6. Pandey RK, Zheng G (2000) Porphyrins as photosensitizer in photodynamic therapy. In: Guilard R, Kadish KM, Smith KM (eds) The porphyrin handbook. Academic, Boston

    Google Scholar 

  7. Dougherty TJ, Grindey GB, Fiel RJ, Weishaupt KR, Boyle DG (1975) Photoradiation therapy II. Cure of animal tumors with hematoporphyrin and light. J Natl Cancer Inst 55:115–121

    CAS  Google Scholar 

  8. Fiel RJ, Mark EH, Datta Gupta N (1975) Res Commun Chem Pathol Pharmacol 10:65–76

    CAS  Google Scholar 

  9. Boye E, Moan J (1980) The photodynamic effect of hematoporphyrin on DNA. J Photochem Photobiol 31:223–228

    CAS  Google Scholar 

  10. Fiel RJ, Datta-Gupta N, Mark EH, Howard JC (1981) Induction of DNA damage by porphyrin photosensitizers. Cancer Res 41:3543–3545

    CAS  Google Scholar 

  11. Croke DT, Perrouault L, Sari MA, Battioni JP, Mansuy D, Helene C, Le Doan T (1993) Structure-activity relationships for DNA photocleavage by cationic porphyrins. J Photochem Photobiol B 18:41–50

    CAS  Google Scholar 

  12. Levine HI, Fiel RJ, Billmeyer FW Jr (1976) Very low-angle light scattering. A characterization method for high-molecular-weight DNA. Biopolymers 15:1267–1281

    CAS  Google Scholar 

  13. Fiel RJ, Howard JC, Mark EH, Datta Gupta N (1979) Interaction of DNA with a porphyrin ligand: evidence for intercalation. Nucleic Acids Res 6:3093–3118

    CAS  Google Scholar 

  14. Sobell HM, Reddy BS, Bhandary KK, Jain SC, Sakore TD, Seshadri TP (1977) Cold springs. Harbor Sym 42:87–102

    Google Scholar 

  15. Li HJ, Crothers DM (1969) Relaxation studies of proflavine~DNA complex—kinetics of an intercalation reaction. J Mol Biol 39:461–477

    CAS  Google Scholar 

  16. McGhee JD, von Hippel PH (1975) Formaldehyde as a probe of DNA structure. I. Reaction with exocyclic amino groups of DNA bases. Biochemistry 14:1281–1296

    CAS  Google Scholar 

  17. Fiel RJ, Munson BR (1980) Binding of meso-tetra (4-N-methylpyridyl) porphine to DNA. Nucleic Acids Res 12:2835–2842

    Google Scholar 

  18. Waring M (1970) Variation of the supercoils in closed circular DNA by binding of antibiotics and drugs: evidence for molecular models involving intercalation. J Mol Biol 54:247–279

    CAS  Google Scholar 

  19. Clewell DB, Helinski DR (1969) Supercoiled circular DNA–protein complex in Escherichia coli: purification and induced conversion to an open circular DNA form. Proc Natl Acad Sci U S A 62:1159–1166

    CAS  Google Scholar 

  20. DeLeys RJ, Jackson DA (1976) Dye titrations of covalently closed supercoiled DNA analyzed by agarose gel electrophoresis. Biochem Biophys Res Commun 69:446–454

    CAS  Google Scholar 

  21. Pasternack RF, Garrity P, Ehrlich B, Davis CB, Gibbsl EJ, Orloff G, Giartosio A, Turano C (1986) The influence of ionic strength on the binding of a water soluble porphyrin to nucleic acids. Nucleic Acids Res 14:5919–5931

    CAS  Google Scholar 

  22. Norden B, Tjerneld F (1982) Structure of methylene blue–DNA complexes studied by linear and circular dichroism spectroscopy. Biopolymers 21:1713–1734

    CAS  Google Scholar 

  23. Giartosio A, Ferraro A, Lavaggi MV, Allegra P, Turano C (1984) The interaction of bisbenzimide with DNA. Physiol Chem Phys Med NMR 16(6):481–490

    CAS  Google Scholar 

  24. Pasternack RF, Gibbs EJ, Villafranca JJ (1983) Interactions of porphyrins with nucleic acids. Biochemistry 22:2406–2414

    CAS  Google Scholar 

  25. Pasternack RF, Gibbs EJ, Villafranca JJ (1983) Interactions of porphyrins with nucleic acids. Biochemistry 22:5409–5417

    CAS  Google Scholar 

  26. Kelly JM, Murphy MJ, McConnell DJ, Ohlligin C (1985) A comparative study of the interaction of 5,10,15,20-tetrakis (N-methylpyridinium-4-yl)porphyrin and its zinc complex with DNA using fluorescence spectroscopy and topoisomerisation. Nucleic Acids Res 13:167–184

    CAS  Google Scholar 

  27. Banville DL, Marzilli LG, Wilson WD (1983) 31P NMR and viscometric studies of the interaction of meso-tetra(4-N-methyl-pyridyl)porphine and its Ni(II) and Zn(II) derivatives with DNA. Biochem Biophys Res Commun 113:148–154

    CAS  Google Scholar 

  28. Lin M, Lee M, Yue KT, Marzilli LG (1993) DNA-porphyrin adducts. Five-coordination of DNA-bound VOTMpyP(4) in an aqueous environment: new perspectives on the V = O stretching frequency and DNA intercalation. Inorg Chem 32:3217–3226

    CAS  Google Scholar 

  29. Dougherty G (1988) Intercalation of tetracationic metalloporphyrins and related compounds into DNA. J Inorg Biochem 34:95–103

    CAS  Google Scholar 

  30. Bromley SD, Ward BW, Dabrowiak JC (1986) Cationic porphyrins as probes of DNA structure. Nucleic Acids Res 14:9133–9148

    CAS  Google Scholar 

  31. Carvlin MJ, Mark E, Fiel R, Howard JC (1983) Intercalative and nonintercalative binding of large cationic porphyrin ligands to polynucleotides. Nucleic Acids Res 11:6141–6154

    CAS  Google Scholar 

  32. Banville DL, Marzilli LG, Strickland JA, Wilson WD (1986) Comparison of the effects of cationic porphyrins on DNA properties: influence of GC content of native and synthetic polymers. Biopolymers 25:1837–1858

    CAS  Google Scholar 

  33. Eaton SS, Eaton GR (1975) Rotation of phenyl rings in metal complexes of substituted tetraphenylporphyrins. J Am Chem Soc 97:3660–3667

    CAS  Google Scholar 

  34. Eaton SS, Fiswild DM, Eaton GR (1978) Effect of para substituent on rates of phenyl ring rotation in gallium complexes of para-substituted tetraphenylporphyrins. Inorg Chem 17:1542–1545

    CAS  Google Scholar 

  35. Early TA, Kearns DR, Hillen W, Wells RD (1981) A 300- and 600-MHz proton nuclear magnetic resonance investigation of a 12 base pair deoxyribonucleic acid restriction fragment: relaxation behavior of the low-field resonances in water. Biochemistry 20:3756–3764

    CAS  Google Scholar 

  36. Strickland AJ, Marzilli LG, Wilson WD (1990) Binding of meso-tetrakis (N-methylpyridiniumyl) porphyrin isomers to DNA: quantitative comparison of the influence of charge distribution and copper (II) derivatization. Biopolymers 29:1307–1323

    CAS  Google Scholar 

  37. Park T, Shin JS, Han SW, Son J-K, Kim SK (2004) Stacking of meso-tetrakis(3-N-methylpyridiniumyl)porphyrin on poly[d(a-T)2]: importance of the distance between Porphyrin’s positive charges. J Phys Chem B 108:17106–17111

    CAS  Google Scholar 

  38. Ismail M, Rodger PM, Rodger A (2000) Drug self-assembly on DNA: sequence effects with trans-bis(4-N-methylpyridiniumyl) diphenyl porphyrin and Hoechst 33258. J Biomol Struct Dyn 11:335–348

    Google Scholar 

  39. Pasternack RF, Giannetto A, Pagano P, Gibbs EJ (1991) Self-assembly of porphyrin on nucleic acids and polypeptides. J Am Chem Soc 113:7799–7800

    CAS  Google Scholar 

  40. Pasternack RF, Bustamante C, Collings PJ, Giannetto A, Gibbs EJ (1993) Porphyrin assemblies on DNA as studied by a resonance light-scattering technique. J Am Chem Soc 115:5393–5399

    CAS  Google Scholar 

  41. Sari MA, Battioni JP, Dupre D, Mansuy D, Le Pecq JB (1988) Cationic porphyrin-DNA interactions: importance of the number and position of the charges. Biochem Pharmacol 37:1861–1862

    CAS  Google Scholar 

  42. Gibbs EJ, Tinoco I Jr, Maestre MF, Ellinas PA, Pasternack RF (1988) Self-assembly of porphyrins on nucleic acid templates. Biochem Biophys Res Commun 157:350–358

    CAS  Google Scholar 

  43. Jin B, Ahn JE, Ko JH, Wang W, Han SW, Kim SK (2008) Effect of the position and number of positive charges on the intercalation and stacking of porphyrin to poly[d(G-C)2], poly[d(A-T)2], and native DNA. J Phys Chem B 112:15875–15882

    CAS  Google Scholar 

  44. Jung JA, Lee SH, Jin B, Sohn Y, Kim SK (2010) Effect of number and position of positive charges on the stacking of porphyrins alone poly[d(a-T)2] at high binding densities. J Phys Chem B 114:7641–7648

    CAS  Google Scholar 

  45. Pasternack RF, Antebi A, Ehrlich B, Sidney D, Gibbs EJ, Bassner SL, Depoy LM (1984) Interactions of porphyrins with nucleotides and nucleic acids. J Mol Catal 23:235–242

    CAS  Google Scholar 

  46. Uno T, Bando M, Tanigawa M, Shimabayashi S (1997) Interactions of water-soluble porphyrin with DNA and RNA triplexes. J Inorg Biochem 67:116

    CAS  Google Scholar 

  47. Hong S, Huh S (2003) Spectroscopic studies on binding interactions of cationic porphyrin derivatives with double helical d(CGCGAATTCGCG)2. Bull Korean Chem Soc 24:137–140

    CAS  Google Scholar 

  48. Chen X, Liu M (2003) Induced chirality of binary aggregates of oppositely charged water-soluble porphyrins on DNA matrix. J Inorg Biochem 94:106–113

    CAS  Google Scholar 

  49. Pasternack RF, Ewen S, Rao A, Meyer AS, Freedman MA, Collings PJ, Frey SL, Ranen MC, de Paola JC (2001) Interaction of copper(II) porphyrins with DNA. Inorg Chim Acta 317:59–71

    CAS  Google Scholar 

  50. Gibbs EJ, Maurer MC, Zhang JH, Reiff WM, Hill DT, Malicka-Blaszkiewicz M, McKinnie RE, Liu HQ, Pasternack RF (1988) Interactions of porphyrins with purified DNA and more highly organized structures. J Inorg Biochem 32:39–65

    CAS  Google Scholar 

  51. Guliaev AB, Leontis NB (1999) Cationic 5,10,15,20-tetrakis(N-methylpyridinium-4-yl)porphyrin fully intercalates at 5′-CG-3′ steps of duplex DNA in solution. Biochemistry 38:15425–15437

    CAS  Google Scholar 

  52. Lugo-Ponce P, McMillin DR (2000) DNA-binding studies of Cu(T4), a bulky cationic porphyrin. Coord Chem Rev 208:169–191

    CAS  Google Scholar 

  53. Tabata M, Sarker AK, Nyarko E (2003) Enhanced conformational changes in DNA in the presence of mercury (II), cadmium (II) and lead (II) porphyrins. J Inorg Biochem 94:50–58

    CAS  Google Scholar 

  54. Tjahjono DH, Akutsu T, Yoshioka N, Inoue H (1999) Cationic porphyrins bearing diazolium rings: synthesis and their interaction with calf thymus DNA. Biochim Biophys Acta 1472:333–343

    CAS  Google Scholar 

  55. Tjahjono DH, Mima S, Akutsu T, Yoshioka N, Inoue H (2001) Interaction of metallopyrazoliumylporphyrins with calf thymus DNA. J Inorg Biochem 85:219

    CAS  Google Scholar 

  56. Ward B, Skorobogaty A, Dabrowiak JC (1986) DNA binding specificity of a series of cationic metalloporphyrin complexes. Biochemistry 25:7827–7833

    CAS  Google Scholar 

  57. Ford K, Fox KR, Neidle S, Waring MJ (1987) DNA sequence preferences for an intercalating porphyrin compound revealed by footprinting. Nucleic Acids Res 15:2221–2234

    CAS  Google Scholar 

  58. Geacintov NE, Ibanez V, Rougee M, Bensasson RV (1987) Orientation and linear dichroism characteristics of porphyrin-DNA complexes. Biochemistry 26:3087–3092

    CAS  Google Scholar 

  59. Lee Y-A, Lee S, Cho T-S, Kim C, Han SW, Kim SK (2002) Binding Mode of meso-tetrakis(N-methylpyridinium-4-yl)porphyrin to poly[d(I-C)2]: effect of amino group at the minor groove of poly[d(G-C)2] on the porphyrin-DNA interaction. J Phys Chem B 106:11351–11355

    CAS  Google Scholar 

  60. Shen Y, Myslinski P, Treszczanowicz T, Liu U, Koningstein JA (1992) Picosecond laser-induced fluorescence polarization studies of mitoxantrone and tetrakisporphine/DNA complexes. J Phys Chem 96:7782–7787

    CAS  Google Scholar 

  61. Lui Y, Koningstein JA, Yevdokimov Y (1991) Relative cross section and time-resolved fluorescence of porphyrin–DNA complexes. Can J Chem 69:1791–1795

    Google Scholar 

  62. Dougherty G, Pillbrow JR, Skorobogaty A, Smith TD (1985) Electron spin resonance spectroscopic and spectrophotometric investigation of the binding of tetracationic porphyrins and porphyrazines with calf thymus DNA. Unequivocal evidence for intercalation. J Chem Soc Faraday Trans 81:1739–1759

    CAS  Google Scholar 

  63. Greiner SP, Kreilick RW, Marzilli LG (1992) Model for the porphyrin-DNA binding site: ENDOR investigations of Cu-porphyrins binding to DNA. J Biomol Struct Dyn 9:837–851

    CAS  Google Scholar 

  64. Hudson BP, Sou J, Berger DJ, McMillin DR (1992) Luminescence studies of the intercalation of Cu(Tmpyp4) into DNA. J Am Chem Soc 114:8997–9002

    CAS  Google Scholar 

  65. Dougherty G, Pasternack RF (1992) Base pair selectivity in the binding of copper (II) tetrakis(4-n-methylpyridyl)porphine to polynucleotides under closely packed conditions. Biophys Chem 44:11–19

    CAS  Google Scholar 

  66. Bujte K, Nakamoto K (1990) Interaction of water-soluble Cu(II), Ni(II), and Co(III) porphyrins with polynucleotides. J Inorg Biochem 39:75–92

    Google Scholar 

  67. Bujte K, Schneider JH, Kim JJ, Wang Y, Ikuta S, Nakamoto K (1989) Interactions of water-soluble porphyrins with hexadeoxyribonucleotides: resonance raman, UV–visible and 1H NMR studies. J Inorg Biochem 37:119–134

    Google Scholar 

  68. Nonaka Y, Lu DS, Dwivedi A, Strommen DP, Nakamoto K (1990) Ir and Raman spectroscopic studies on coulombic interaction between water-soluble porphyrins and nucleic acids. Biopolymers 29:999–1004

    CAS  Google Scholar 

  69. Schneider JH, Odo J, Nakamoto K (1988) Interaction of water-soluble metalloporphyrins with nucleic acids studied by resonance Raman spectroscopy. Nucleic Acids Res 16:10323–10338

    CAS  Google Scholar 

  70. Yue KT, Lui M, Gray TA, Marzilli LG (1991) Nickel(II) porphyrin binding to anionic biopolymers investigated by resonance Raman and optical Spectroscopy. Inorg Chem 30:3214–3222

    CAS  Google Scholar 

  71. Prochazka M, Turpin P-Y, Stepanek J, Bok J (1999) Metallation kinetics of a free base porphyrin in surface-enhanced resonance Raman scattering active Ag colloid system as a probe of porphyrin–nucleic acids interaction. J Mol Struct 482–483:221–224

    Google Scholar 

  72. Pasternack RF, Gibbs EJ (1996) Metal ions in biological systems. In: Sigel A, Sigel H (eds) Probing of nucleic acids by metal complexes of small molecules, vol 33. Marcel Decker, New York, pp 367–397

    Google Scholar 

  73. Novy J, Urbanova M, Volka K (2005) Vibrational and electronic circular dichroism and absorption spectral study of the DNA–5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrin interaction. J Mol Struct 748:17–25

    CAS  Google Scholar 

  74. Novy J, Urbanova M, Volka K (2007) Electronic and vibrational circular dichroism spectroscopic study of non-covalent interactions of meso-5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrin with (dG–dC)10 and (dA–dT)10. Vib Spectr 43:71–77

    CAS  Google Scholar 

  75. Novy J, Urbanova M (2007) Vibrational and electronic circular dichroism study of the interactions of cationic porphyrins with (dG–dC)10 and (dA–dT)10. Biopolymers 4:349–358

    Google Scholar 

  76. Lipscomb LA, Zhou FX, Presnell SR, Woo RJ, Peek ME, Plaskon RR, Williams LD (1996) Structure of DNA-porphyrin complex. Biochemistry 35:2818–2823

    CAS  Google Scholar 

  77. McMillin DR, McNett KM (1998) Photoprocesses of copper complexes that bind to DNA. Chem Rev 98:1201–1220

    Google Scholar 

  78. Strickland JA, Banville DL, Wilson WD, Marzilli LG (1987) Metalloporphyrin effects on properties of DNA polymers. Inorg Chem 26:3398–3406

    CAS  Google Scholar 

  79. Cho DW, Jeong DH, Ko JH, Kim SK, Yoon MJ (2005) Raman spectroscopic studies on interactions of water soluble cationic oxovanadyl (IV) meso-tetrakis(1-methylpyridium-4-yl) porphyrin with nucleic acids. J Photochem Photobiol 174:207–213

    CAS  Google Scholar 

  80. Liu Y, Koningstein A (1993) Structure studies of H2TMpyP4 and ZnTMpyP4 bound to DNA using laser-induced dichroism in solution. J Phys Chem 97:6155–6160

    CAS  Google Scholar 

  81. Kuroda R, Tanaka H (1994) DNA–porphyrin interactions probed by induced CD spectroscopy. J Chem Soc Chem Commun 1575–1576

    Google Scholar 

  82. Nitta Y, Kuroda R (2006) Quantitative analysis of DNA–porphyrin interactions. Biopolymers 81:376–391

    CAS  Google Scholar 

  83. Park TG, Ko JH, Ryoo AY, Kim J-M, Cho DW, Kim SK (2006) Binding modes of V(=O)meso-tetrakis(N-methylpyridinium-4-yl) porphyrin to various synthetic DNAs studied by polarized spectroscopy. Biochim Biophys Acta 1760:388–394

    CAS  Google Scholar 

  84. Ohyama T, Mita H, Yamamoto Y (2005) Binding of 5,10,15,20-tetrakis(N-methylpyridinium-4-yl)-21H,23Hporphyrin to an AT-rich region of a duplex DNA. Biophys Chem 113:53–59

    CAS  Google Scholar 

  85. Carvlin MJ, Datta-Gupta N, Fiel RJ (1982) Circular dichroism spectroscopy of a cationic porphyrin bound to DNA. Biochem Biophys Res Commun 108:66–73

    CAS  Google Scholar 

  86. Pasternack RF, Gibbs EJ (1993) Porphyrin assembly formation on helical biopolymers. J Inorg Organomet Polym 3:77–88

    CAS  Google Scholar 

  87. Pasternack RF, Goldsmith JI, Szep S, Gibbs EJ (1998) A spectroscopic and thermodynamic study of porphyrin/DNA supramolecular assemblies. Biophys J 75:1024–1031

    CAS  Google Scholar 

  88. Lee S, Jeon SH, Kim B-J, Han SW, Jang HG, Kim SK (2001) Classification of CD and absorption spectra in the Soret band of H2TMPyP bound to various synthetic polynucleotides. Biophys Chem 92:35–45

    CAS  Google Scholar 

  89. Pasternack RF, Collings PJ (1995) Resonance light scattering: a new technique for studying chromophore aggregation. Science 269:935–939

    CAS  Google Scholar 

  90. Collings PJ, Gibbs EJ, Starr TE, Vafek O, Yee C, Pomerance LA, Pasternack RF (1999) Resonance light scattering and its application in determining the size, shape, and aggregation number for supramolecular assemblies of chromophores. J Phys Chem B 103:8474–8481

    CAS  Google Scholar 

  91. Monsù Scolaro L, Romeo A, Pasternack RF (2004) Tuning porphyrin/DNA supramolecular assemblies by competitive binding. J Am Chem Soc 126:7178–7179

    Google Scholar 

  92. Schuster GB (2000) Long-range charge transfer in DNA: transient structural distortions control the distance dependence. Acc Chem Res 33:253–260

    CAS  Google Scholar 

  93. Giese B (2002) Long-distance electron transfer through DNA. Annu Rev Biochem 71:51–70

    CAS  Google Scholar 

  94. Giese B (2002) Electron transfer in DNA. Curr Opin Chem Biol 6:612–618

    CAS  Google Scholar 

  95. Wagenknecht H-A (2003) Reductive electron transfer and transport of excess electrons in DNA. Angew Chem Int Ed 42:2454–2460

    CAS  Google Scholar 

  96. Lewis FD (2005) DNA molecular photonics. Photochem Photobiol 81:65–72

    CAS  Google Scholar 

  97. Wagenknecht H-A (2006) Electron transfer processes in DNA: mechanisms, biological relevance and applications in DNA analytics. Nat Prod Rep 23:973–1006

    CAS  Google Scholar 

  98. Boon EM, Barton JK (2002) Charge transport in DNA. Curr Opin Struct Biol 12:320–329

    CAS  Google Scholar 

  99. Núñez ME, Holmquist GP, Barton JK (2001) Evidence for DNA charge transport in the nucleus. Biochemistry 40:12465–12471

    Google Scholar 

  100. Núñez ME, Noyes KT, Barton JK (2002) Oxidative charge transport through DNA in nucleosome core particles. Chem Biol 9:403–415

    Google Scholar 

  101. Jin B, Min KS, Han SW, Kim SK (2009) DNA-binding geometry dependent energy transfer from4,6-diamidino-2-phenylindole to cationic porphyrins. Biophys Chem 144:38–45

    CAS  Google Scholar 

  102. Kim YR, Gong L, Park J, Jang YJ, Ji K, Kim SK (2012) Binding geometry of m-meso-tetrakis(n-methylpyridinium-4-yl)porphyrin to DNA and their efficiency as an acceptor in DNA mediated energy transfer. J Phys Chem B 116:2330–2337

    CAS  Google Scholar 

  103. Raner G, Ward B, Dabrowiak JC (1988) Interaction of cationic manganese porphyrins with DNA. A binding model. J Coord Chem 19:17–23

    CAS  Google Scholar 

  104. Ward B, Skorobogaty A, Dabrowiak JC (1986) DNA cleavage specificity of a group of cationic metalloporphyrins. Biochemistry 25:6875–7883

    CAS  Google Scholar 

  105. Gray TA, Yue KT, Marzilli LG (1991) Effect of N-alkyl substituents on the DNA binding properties of meso-tetrakis (4-N-alkylpyridinium-4-yl) porphyrins and their nickel derivatives. J Inorg Biochem 41:205–219

    CAS  Google Scholar 

  106. Yun BH, Jeon SH, Cho T-S, Yi SY, Sehlstedt U, Kim SK, Hwa YB, Sun H (1998) Binding mode of porphyrins to poly[d(A-T)2] and poly[d(G-C)2]. Biophys Chem 70:1–10

    CAS  Google Scholar 

  107. Clark GR, Squire CJ, Gray EJ, Leupin W, Neidle S (1996) Designer DNA binding drugs: the crystal structure of a meta-hydroxy analog of Hoechst 33258 bound to d(CGCGAATTCGCG)2. Nucleic Acids Res 24:4882–4889

    CAS  Google Scholar 

  108. Satz AL, White CM, Beerman TA, Bruice TC (2001) Double-stranded DNA binding characteristics and subcellular distribution of a minor groove binding diphenyl ether bisbenzimidazole. Biochemistry 40:6465–6474

    CAS  Google Scholar 

  109. Jia T, Jiang Z-X, Wang K, Li Z-Y (2006) Binding and photocleavage of cationic porphyrin–phenylpiperazine hybrids to DNA. Biophys Chem 119:295–302

    CAS  Google Scholar 

  110. Kang J, Wu H, Lu X, Wang Y, Zhou L (2005) Study on the interaction of new water-soluble porphyrin with DNA. Spectrochimica Acta A 61:2041–2047

    Google Scholar 

  111. Lee M-J, Jin B, Lee HM, Jung MJ, Kim SK, Kim J-M (2008) Direct stacking of non-metallic planar porphyrin to DNA. Bull Korean Chem Soc 29:1533–1538

    CAS  Google Scholar 

  112. Mukundan NE, Petho G, Dixon DW, Kim MS, Marzilli LG (1994) Interactions of an electron-rich tetracationic tentacle porphyrin with calf thymus DNA. Inorg Chem 33:4676–4687

    CAS  Google Scholar 

  113. Mukundan NE, Petho G, Dixon DW, Kim MS, Marzilli LG (1995) DNA-tentacle porphyrin interactions: AT over GC selectivity exhibited by an outside binding self-stacking porphyrin. Inorg Chem 34:3677–3687

    CAS  Google Scholar 

  114. Petho G, Elliott N B, Kim M S, Lin M, Dixon D W, Marzilli L G J (1993) Evidence for formation of DNA-bound protonated porphyrin adducts even at pH 7. Chem Soc Chem Commun 1547–1548

    Google Scholar 

  115. Marzilli LG, Petho G, Lin M, Kim MS, Dixon DW (1992) Tentacle porphyrins: DNA interactions. J Am Chem Soc 114:7575–7577

    CAS  Google Scholar 

  116. McClure JE, Baudouin L, Mansuy D, Marzilli LG (1997) Interactions of DNA with a new electron-deficient tentacle porphyrin: meso-tetrakis[2,3,5,6-tetrafluoro-4-(2-trimethylammoniumethyl-amine)phenyl]porphyrin. Biopolymers 42:203–217

    CAS  Google Scholar 

  117. Manono J, Marzilli PA, Fronczek FR, Marzilli LG (2009) New porphyrins bearing pyridyl peripheral groups linked by secondary or tertiary sulfonamide groups: synthesis and structural characterization. Inorg Chem 48:5626–5635

    CAS  Google Scholar 

  118. Manono J, Marzilli PA, Marzilli LG (2009) New porphyrins bearing positively charged peripheral groups linked by a sulfonamide group to meso-tetraphenylporphyrin: interactions with calf thymus DNA. Inorg Chem 48:5636–5647

    CAS  Google Scholar 

  119. Kobuke Y, Miyagi H (1994) Supramolecular organization of imidazolyl-porphyrin to a slipped cofacial dimer. J Am Chem Soc 116:4111–4112

    CAS  Google Scholar 

  120. Milgrom LR, Dempsey PJF, Yahioglu G (1996) 5,10,15,20-Tetrakis(N-protected imidazol-2-yl)porphyrins. Tetrahedron 52:9877–9890

    CAS  Google Scholar 

  121. Bruix M, Elguero J, Meutermans W (1992) Synthesis and atropisomerism of meso-tetrapyrazolylporphyrins. J Chem Res (S) 370–371

    Google Scholar 

  122. Werner A, Sanchez-Migallon A, Fruchier A, Elguero J, Fernandez-Castano C, Foces-Foces C (1995) Porphyrins with four azole substituents in meso-positions: X-ray crystal structure of meso-tetrakis(1-benzylpyrazol-4-yl)porphyrin at 200 K. Tetrahedron 51:4779–4800

    CAS  Google Scholar 

  123. Tjahjono DH, Kartasasmita RE, Nawawi SM, Yoshioka TAN, Hidenari Inoue A (2006) Binding of tetrakis(pyrazoliumyl)porphyrin and its copper(II) and zinc(II) complexes to poly(dG–dC)2 and poly(dA–dT)2. J Biol Inorg Chem 11:527–538

    CAS  Google Scholar 

  124. Tjahjono DH, Suhendar PB, Yoshioka N, Inoue H (2010) Binding of nickel(II) tetrakis(dimethylpyrazolium-4-yl) porphyrin to poly(dG–dC)2 and poly(dA–dT)2. J Porph Phthal 14:305–313

    CAS  Google Scholar 

  125. Yamamoto T, Tjahjono DH, Yoshioka N, Inoue H (2003) Interaction of dicationic bis(imidazoliumyl) porphyrinatometals with DNA. Bull Chem Soc Jpn 76:1947–1955

    CAS  Google Scholar 

  126. Thornton NB, Wojtowicz H, Netzel T, Dixon DW (1998) Intramolecular quenching of porphyrin fluorescence by a covalently linked ferrocene in DNA scaffolding. J Phys Chem B 102:2101–2110

    CAS  Google Scholar 

  127. Garcia G, Sarrazy V, Sol V, Le Morvan C, Granet R, Alves S, Krausz P (2009) DNA photocleavage by porphyrin–polyamine conjugates. Bioorg Med Chem 17:767–776

    CAS  Google Scholar 

  128. He H, Tian T, Wang P, Wu L, Xu J, Zhou X, Zhang X, Cao X, Wu X (2004) Porphyrin–DNA cross-linking agent hybrids: chemical synthesis and biological studies. Bioorg Med Chem Lett 14:3013–3016

    CAS  Google Scholar 

  129. He H, Zhou Y, Liang F, Li D, Wu J, Yang L, Zhou X, Zhang X, Cao X (2006) Combination of porphyrins and DNA-alkylation agents: synthesis and tumor cell apoptosis induction. Bioorg Med Chem 14:1068–1077

    CAS  Google Scholar 

  130. Yang SI, Seth J, Strachan J-P, Gentemann S, Kim D, Holten D, Lindsey JS (1999) Tuning the building blocks for porphyrin-based photonic devices. J Porph Phthaloc 3:117–147

    CAS  Google Scholar 

  131. Narra M, Elliott P, Swavey S (2006) Synthesis, characterization and DNA interactions of 5,15-(4-pyridyl)-10,20-(pentafluorophenyl) porphyrin coordinated to two[Ru(bipy)2Cl] + groups. Inorg Chim Acta 359:2256–2262

    CAS  Google Scholar 

  132. Davia K, King D, Hong Y, Swavey S (2008) A porphyrin–ruthenium photosensitizer as a potential photodynamic therapy agent. Inorg Chem Commun 11:584–586

    CAS  Google Scholar 

  133. Craver E, McCrate A, Nielsen M, Swavey S (2010) Tris-ruthenium(II)/copper(II) multimetallic porphyrin: synthesis, characterization, DNA binding and supercoiled DNA photocleavage studies. Inorg Chim Acta 363:453–456

    CAS  Google Scholar 

  134. Lippard SJ (1995) Progress in inorganic chemistry: bioinorganic chemistry, vol 48. Wiley, Sydney

    Google Scholar 

  135. Xu Z, Swavey S (2011) Photoinduced DNA binding of a multi-metallic (Cu(II)/Ru(II)/Pt(II)) porphyrin complex. Inorg Chem Commun 14:882–883

    CAS  Google Scholar 

  136. Langa K, Anzenbacher P Jr, Kapusta P, Kral V, Kubat P, Wagnerova DM (2000) Long-range assemblies on poly(dG–dC)2 and poly(dA–dT)2: phosphonium cationic porphyrins and the importance of the charge. J Photochem Photobiol B 57:51–59

    Google Scholar 

  137. Kubat P, Lang K, Kral V, Anzenbacher P Jr (2002) Preprogramming of porphyrin-nucleic acid assemblies via variation of the alkyl/aryl substituents of phosphonium tetratolylporphyrins. J Phys Chem B 106:6784–6792

    CAS  Google Scholar 

  138. Yellappa S, Seetharamappa J, Rogers LM, Chitta R, Singhal RP, D’Souza F (2006) Binding, electrochemical activation, and cleavage of DNA by cobalt(II) tetrakis-N-methylpyridyl porphyrin and its β-pyrrole brominated derivative. Bioconjug Chem 17:1418–1425

    CAS  Google Scholar 

  139. Mettath S, Munson BR, Pandey RK (1999) DNA interaction and photocleavage properties of porphyrins containing cationic substituents at the peripheral position. Bioconjug Chem 10:94–102

    CAS  Google Scholar 

  140. Sari MA, Battioni JP, Dupre D, Mansuy D, Lepecq JB (1996) Mode of interaction and apparent binding constants of meso-tetraaryl porphyrins bearing between one and four positive charges with DNA. Biochem Biophys Res Commun 141:643–649

    Google Scholar 

  141. Sari MA, Battioni JP, Dupre D, Mansuy D, Lepecq JB (1990) Interaction of cationic porphyrins with DNA: importance of the number and position of the charges and minimum structural requirements for intercalation. Biochemistry 29:4205–4215

    CAS  Google Scholar 

  142. Sessler JL, Sansom PI, Kral V, O’Connor D, Iverson BL (1996) Sapphyrin−oligonucleotide conjugates. Novel sequence-specific DNA photomodifying agents with increased binding affinity. J Am Chem Soc 118:12322–12330

    CAS  Google Scholar 

  143. Magda D, Wright M, Miller RA, Sessler JL, Sansom PI (1995) Sequence-specific photocleavage of DNA by an expanded porphyrin with irradiation above 700 nm. J Am Chem Soc 117:3629–3630

    CAS  Google Scholar 

  144. Wan S, Parrish JA, Anderson RR, Madden M (1981) Transmittance of nonionizing radiation in human tissues. Photochem Photobiol 34:679–681

    CAS  Google Scholar 

  145. Kral V, Furuta H, Shreder K, Lynch V, Sessler JL (1996) Protonated sapphyrins. Highly effective phosphate receptors. J Am Chem 118:1595–1607

    CAS  Google Scholar 

  146. Sessler JL, Andrievsky A, Sansom PI, Kral V, Iverson BL (1997) Enhanced DNA photocleavage and binding properties of sapphyrin–polyamine conjugates. Bioorg Med Chem Lett 7:1433–1436

    CAS  Google Scholar 

  147. Iverson BL, Shreder K, Kral V, Smith DA, Smith J, Sessler JL (1994) Interactions between expanded porphyrins and nucleic acids. Pure Appl Chem 66:845–850

    CAS  Google Scholar 

  148. Sessler JL, Burrell AK (1991) Expanded porphyrins. Top Curr Chem 161:177–273

    Google Scholar 

  149. Iverson BL, Shreder K, Kral V, Sansom P, Lynch V, Sessler JL (1996) Interaction of sapphyrin with phosphorylated species of biological interest. J Am Chem Soc 118:1608–1616

    CAS  Google Scholar 

  150. Gershman Z, Goldberg I, Gross Z (2007) DNA binding and catalytic properties of positively charged corroles. Angew Chem Int Ed 46:4320–4324

    CAS  Google Scholar 

  151. Liu HY, Liu LY, Zhang L, Ying X, Wang X-L, Jiang H-F, Chang C-W (2007) Oxidative DNA cleavage catalyzed by Mn(III) corroles. Chem J Chin Univ 28:1628–1630

    CAS  Google Scholar 

  152. Lu J, Liu HY, Shi L, Wang XL, Ying X, Zhang L, Ji LN, Zang LQ, Chang CK (2011) DNA cleavage mediated by water-soluble manganese corrole. Chin Chem Lett 22:101–104

    CAS  Google Scholar 

  153. D’Urso A, Nardis S, Pomarico G, Fragalà ME, Paolesse R, Purrello R (2013) Interaction of tricationic corroles with single/double helix of homopolymeric nucleic acids and DNA. J Am Chem Soc 135:8632–8638

    Google Scholar 

  154. Zenkevich E, Saguna E, Knyukshto V, Shulga A, Mironov A, Efremova O, Bonnett R, Songca SP, Kassem M (1996) Photophysical and photochemical properties of potential porphyrin and chlorin photosensitizers for PDT. J Photochem Photobiol B 33:171–180

    CAS  Google Scholar 

  155. Ricchelli F (1995) Photophysical properties of porphyrins in biological-membranes. J Photochem Photobiol B 29:109–118

    CAS  Google Scholar 

  156. Taima H, Okubo A, Yoshioka N, Inoue H (2006) DNA-binding properties and photocleavage activity of cationic water-soluble chlorophyll derivatives. Chem Eur J 12:6331–6340

    CAS  Google Scholar 

  157. Gantchev TG, Ali H, van Lier JE (1993) Interactions of chloroaluminium-tetramethyl-tetrapyridino-porphyrazine with DNA. Eur J Biochem 217:371–376

    CAS  Google Scholar 

  158. Asadi M, Safaei E, Ranjbar B, Hasani L (2005) A study on the binding of two water-soluble tetrapyridinoporphyrazinato copper(II) complexes to DNA. J Mol Struct 754:116–123

    CAS  Google Scholar 

  159. Anderson ME, Barrett AGM, Hoffman BM (1999) Super-charged porphyrazines: synthesis and physical properties of octacationic tetraazaporphyrins. Inorg Chem 38:6143–6151

    CAS  Google Scholar 

  160. Anderson ME, Barrett AGM, Hoffman BM (2000) Binding of octa-plus porphyrazines to DNA. J Inorg Biochem 80:257–260

    CAS  Google Scholar 

  161. Chatterjee SR, Srivastava TS, Kamat JP, Devasagayam TPA (1998) Photocleavage of plasmid pBR322 DNA by some anionic porphyrins. J Porphr P 2:337–343

    CAS  Google Scholar 

  162. Li Y, Geyer R, Sen D (1996) Recognition of anionic porphyrins by DNA aptamers. Biochemistry 35:6911–6922

    CAS  Google Scholar 

  163. Lavallee DK (1988) Porphyrin metalation reactions in biochemistry. Mol Struct Energ 9:279–314

    CAS  Google Scholar 

  164. Dailey HA, Fleming JE (1983) Bovine ferrochelatase. Kinetic analysis of inhibition by N-methylprotoporphyrin, manganese, and heme. J Biol Chem 258:11453–11459

    CAS  Google Scholar 

  165. Cochran AG, Schultz PG (1990) Antibody-catalyzed porphyrin metallation. Science 249:781–783

    CAS  Google Scholar 

  166. Schultz PG, Lerner RA (1995) From molecular diversity to catalysis: lessons from the immune system. Science 269:1835–1842

    CAS  Google Scholar 

  167. Lauceri R, Purrello R, Shetty SJ, Vicente MGH (2001) Interactions of anionic carboranylated porphyrins with DNA. J Am Chem Soc 123:5835–5836

    CAS  Google Scholar 

  168. Vicente MGH, Shetty SJ, Wickramasinghe A, Smith KM (2000) Syntheses of carbon–carbon linked carboranylated porphyrins for boron neutron capture therapy of cancer. Tetrahedron Lett 41:7623–7627

    CAS  Google Scholar 

  169. Haushalter RC, Rudolph RW (1978) Meso-tetracarboranyl porphyrins. J Am Chem Soc 100:4628–4629

    CAS  Google Scholar 

  170. Kahl SB, Joel DD, Nawrocky MM, Micca PL, Tran KP, Finkel GC, Slatkin DN (1990) Uptake of a nido-carboranylporphyrin by human glioma xenografts in athymic nude mice and by syngeneic ovarian carcinomas in immunocompetent mice. Proc Natl Acad Sci U S A 87:7265–7269

    CAS  Google Scholar 

  171. Miura M, Gabel D, Oenbrink G, Fairchild RG (1990) Preparation of carboranyl porphyrins for boron neutron capture therapy. Tetrahedron Lett 31:2247–2250

    CAS  Google Scholar 

  172. Dezhampanah H, Darvishzad T, Aghazadeh M (2011) Thermodynamic and spectroscopic study on the binding of interaction anionic phthalocyanine with calf thymus DNA. Spectroscopy 26:357–365

    CAS  Google Scholar 

  173. Wohrle D, Iskandar N, Graschev G, Sinn H, Friedrich EA, Maier-Borst W, Stern J, Schlag P (1990) Synthesis of positively charged phthalocyanines and their activity in the photodynamic therapy of cancer cells. Photochem Photobiol 51:351–356

    CAS  Google Scholar 

  174. Choi JK, D’Urso A, Balaz M (2013) Chiroptical properties of anionic and cationic porphyrins and metalloporphyrins in complex with left-handed Z-DNA and right-handed BDNA. J Inorg Biochem 127:1–6

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Purrello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

D’Urso, A., Fragalà, M.E., Purrello, R. (2013). Non-Covalent Interactions of Porphyrinoids with Duplex DNA. In: Paolesse, R. (eds) Applications of Porphyrinoids. Topics in Heterocyclic Chemistry, vol 34. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7081_2013_113

Download citation

Publish with us

Policies and ethics