Skip to main content

Synthesis of Saturated Heterocycles via Metal-Catalyzed Formal Cycloaddition Reactions That Generate a C–N or C–O Bond

  • Chapter
  • First Online:

Part of the book series: Topics in Heterocyclic Chemistry ((TOPICS,volume 32))

Abstract

In this section, the synthesis of saturated N- and O-heterocycles via formal cycloaddition is presented. The main focus is on metal-catalyzed reactions involving C–C or C–X σ bond cleavage in three- or four-membered rings. After a fast presentation of pioneering works, the important breakthroughs of the last two decades are presented. The section starts with reactions involving three-membered rings. Formal [3+2] cycloadditions of donor–acceptor-substituted cyclopropanes and methylenecyclopropanes with carbonyls and imines are important methods to access tetrahydrofuran and pyrrolidine heterocycles. Formal [3+3] cycloadditions have emerged more recently. On the other hand, reactions of epoxides and aziridines with carbon monoxide or cumulenes are now well-established methods to access heterocycles. These processes have been completed more recently with cycloaddition with olefins, carbonyls, and imines. The section ends with the emerging field of four-membered ring activation for cycloaddition with π systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Huisgen R (1968) Cycloadditions – definition, classification and characterization. Angew Chem Int Ed 7:321–328

    CAS  Google Scholar 

  2. Reissig HU (1988) Donor-acceptor substituted cyclopropanes – versatile building blocks in organic synthesis. Top Curr Chem 144:73–135

    CAS  Google Scholar 

  3. Reissig HU, Zimmer R (2003) Donor-acceptor-substituted cyclopropane derivatives and their application in organic synthesis. Chem Rev 103:1151–1196

    CAS  Google Scholar 

  4. Yu M, Pagenkopf BL (2005) Recent advances in donor-acceptor (DA) cyclopropanes. Tetrahedron 61:321–347

    CAS  Google Scholar 

  5. Carson CA, Kerr MA (2009) Heterocycles from cyclopropanes: applications in natural product synthesis. Chem Soc Rev 38:3051–3060

    CAS  Google Scholar 

  6. De Simone F, Waser J (2009) Cyclization and cycloaddition reactions of cyclopropyl carbonyls and imines. Synthesis 3353–3374

    Google Scholar 

  7. Mel’nikov MY, Budynina EM, Ivanova OA, Trushkov IV (2011) Recent advances in ring-forming reactions of donor-acceptor cyclopropanes. Mendeleev Commun 21:293–301

    Google Scholar 

  8. Tang P, Qin Y (2012) Recent applications of cyclopropane-based strategies to natural product synthesis. Synthesis 44:2969–2984

    CAS  Google Scholar 

  9. Nakamura I, Yamamoto Y (2002) Transition metal-catalyzed reactions of methylenecyclopropanes. Adv Synth Catal 344:111–129

    CAS  Google Scholar 

  10. Reissig HU (1981) Lewis-acid-promoted additions of carbonyl-compounds to donor-acceptor substituted cyclopropanes - a new synthesis of 2,3-dihydrofurane derivatives. Tetrahedron Lett 22:2981–2984

    CAS  Google Scholar 

  11. Shimada S, Hashimoto Y, Sudo A, Hasegawa M, Saigo K (1992) Diastereoselective ring-opening aldol-type reaction of 2,2-dialkoxycyclopropanecarboxylic esters with carbonyl-compounds. 1. Synthesis of cis 3,4-substituted gamma-lactones. J Org Chem 57:7126–7133

    CAS  Google Scholar 

  12. Shimada S, Hashimoto Y, Nagashima T, Hasegawa M, Saigo K (1993) Diastereoselective ring-opening aldol-type reaction of 2,2-dialkoxycyclopropanecarboxylic esters with carbonyl-compounds. 2. Synthesis of cis-2,3-substituted-gamma-lactones. Tetrahedron 49:1589–1604

    CAS  Google Scholar 

  13. Shimada S, Hashimoto Y, Saigo K (1993) Ring-opening aldol-type reaction of 2,2-dialkoxycyclopropanecarboxylic esters with carbonyl-compounds. 3. The diastereoselective synthesis of 2,3,4-trisubstituted gamma-lactones. J Org Chem 58:5226–5234

    CAS  Google Scholar 

  14. Sugita Y, Kawai K, Yokoe I (2000) Synthesis of tetrahydrofuro[2,3-b][1]benzopyranones by the ring-expansion reaction of methanochromanone with symmetric ketones. Heterocycles 53:657–664

    CAS  Google Scholar 

  15. Sugita Y, Kawai K, Yokoe I (2001) Diastereoselective ring-expansion reaction of methanochromanone with aldehydes: formation of trans-fused tetrahydrofuro-[2,3-b][1]benzo-pyranones and their isomerization. Heterocycles 55:135–144

    CAS  Google Scholar 

  16. Han Z, Uehira S, Tsuritani T, Shinokubo H, Oshima K (2001) Enolate formation from cyclopropyl ketones via iodide-induced ring opening and its use for stereoselective aldol reaction. Tetrahedron 57:987–995

    CAS  Google Scholar 

  17. Gupta A, Yadav VK (2006) A highly diastereoselective approach to tetrahydrofurans via [3+2] cycloadditions of silylmethyl-substituted cyclopropanes with aldehydes and ketones. Tetrahedron Lett 47:8043–8047

    CAS  Google Scholar 

  18. Dunn J, Motevalli M, Dobbs AP (2011) Donor cyclopropanes in synthesis: utilising silylmethylcyclopropanes to prepare 2,5-disubstituted tetrahydrofurans. Tetrahedron Lett 52:6974–6977

    CAS  Google Scholar 

  19. Pohlhaus PD, Johnson JS (2005) Enantiospecific Sn(II)- and Sn(IV)-catalyzed cycloadditions of aldehydes and donor-acceptor cyclopropanes. J Am Chem Soc 127:16014–16015

    CAS  Google Scholar 

  20. Pohlhaus PD, Johnson JS (2005) Highly diastereoselective synthesis of tetrahydrofurans via lewis acid-catalyzed cyclopropane/aldehyde cycloadditions. J Org Chem 70:1057–1059

    CAS  Google Scholar 

  21. Pohlhaus PD, Sanders SD, Parsons AT, Li W, Johnson JS (2008) Scope and mechanism for Lewis acid-catalyzed cycloadditions of aldehydes and donor-acceptor cyclopropanes: evidence for a stereospecific intimate ion pair pathway. J Am Chem Soc 130:8642–8650

    CAS  Google Scholar 

  22. Campbell MJ, Johnson JS, Parsons AT, Pohlhaus PD, Sanders SD (2010) Complexity-building annulations of strained cycloalkanes and C=O pi bonds. J Org Chem 75:6317–6325

    CAS  Google Scholar 

  23. Yankee EW, Cram DJ (1970) Carbanion-carbonium ion intermediates in racemizations and solvolyses of cyclopropanes. J Am Chem Soc 92:6328–6329

    Google Scholar 

  24. Sliwinska A, Czardybon W, Warkentin J (2007) Zwitterion from a cyclopropane with geminal donor and acceptor groups. Org Lett 9:695–698

    CAS  Google Scholar 

  25. Zhang JS, Shen W, Li M (2007) DFT study on the SnII-catalyzed diastereoselective synthesis of tetrahydrofuran from D-A cyclopropane and benzaldehyde. Eur J Org Chem 4855–4866

    Google Scholar 

  26. Parsons AT, Johnson JS (2009) Catalytic enantioselective synthesis of tetrahydrofurans: a dynamic kinetic asymmetric 3+2 cycloaddition of racemic cyclopropanes and aldehydes. J Am Chem Soc 131:3122–3123

    CAS  Google Scholar 

  27. Yang GS, Shen Y, Li K, Sun YX, Hua YY (2011) AlCl3-promoted highly regio- and diastereoseletive 3+2 cycloadditions of activated cyclopropanes and aromatic aldehydes: construction of 2,5-diaryl-3,3,4-trisubstituted tetrahydrofurans. J Org Chem 76:229–233

    CAS  Google Scholar 

  28. Smith AG, Slade MC, Johnson JS (2011) Cyclopropane-aldehyde annulations at quaternary donor sites: stereoselective access to highly substituted tetrahydrofurans. Org Lett 13:1996–1999

    CAS  Google Scholar 

  29. Parsons AT, Campbell MJ, Johnson JS (2008) Diastereoselective synthesis of tetrahydrofurans via palladium(0)-catalyzed [3+2] cycloaddition of vinylcyclopropanes and aldehydes. Org Lett 10:2541–2544

    CAS  Google Scholar 

  30. Sanders SD, Ruiz-Olalla A, Johnson JS (2009) Total synthesis of (+)-virgatusin via AlCl3-catalyzed 3+2 cycloaddition. Chem Commun 5135–5137

    Google Scholar 

  31. Campbell MJ, Johnson JS (2009) Asymmetric synthesis of (+)-polyanthellin A. J Am Chem Soc 131:10370–10371

    CAS  Google Scholar 

  32. Campbell MJ, Johnson JS (2010) Enantioselective synthesis of (+)-polyanthellin A via cyclopropane-aldehyde (3+2)-annulation. Synthesis 2841–2852

    Google Scholar 

  33. Karadeolian A, Kerr MA (2010) Total synthesis of (+)-isatisine A. Angew Chem Int Ed 49:1133–1135

    CAS  Google Scholar 

  34. Karadeolian A, Kerr MA (2010) Total synthesis of (+)-isatisine A. J Org Chem 75:6830–6841

    CAS  Google Scholar 

  35. Xing SY, Pan WY, Liu C, Ren J, Wang ZW (2010) Efficient construction of Oxa- and Aza- n.2.1 skeletons: Lewis acid catalyzed intramolecular 3+2 cycloaddition of cyclopropane 1,1-diesters with carbonyls and imines. Angew Chem Int Ed 49:3215–3218

    CAS  Google Scholar 

  36. Xing SY, Li Y, Li Z, Liu C, Ren J, Wang ZW (2011) Lewis acid catalyzed intramolecular 3+2 cross-cycloaddition of donor-acceptor cyclopropanes with carbonyls: a general strategy for the construction of acetal n.2.1 skeletons. Angew Chem Int Ed 50:12605–12609

    CAS  Google Scholar 

  37. Bai Y, Tao WJ, Ren J, Wang ZW (2012) Lewis acid catalyzed intramolecular 4+2 and 3+2 cross-cycloaddition of alkynylcyclopropane ketones with carbonyl compounds and imines. Angew Chem Int Ed 51:4112–4116

    CAS  Google Scholar 

  38. Benfatti F, de Nanteuil F, Waser J (2012) Iron-catalyzed 3+2 annulation of aminocyclopropanes with aldehydes: stereoselective synthesis of aminotetrahydrofurans. Org Lett 14:386–389

    CAS  Google Scholar 

  39. Benfatti F, de Nanteuil F, Waser J (2012) Catalytic enantiospecific 3+2 annulation of aminocyclopropanes with ketones. Chem Eur J 18:4844–4849

    CAS  Google Scholar 

  40. Yamago S, Nakamura E (1990) Thermal hetero 3+2 cycloaddition approach to functionalized tetrahydrofurans. J Org Chem 55:5553–5555

    CAS  Google Scholar 

  41. Nakamura I, Oh BH, Saito S, Yamamoto Y (2001) Novel [3+2] cycloaddition of alkylidenecyclopropanes with aldehydes catalyzed by palladium. Angew Chem Int Ed 40:1298–1300

    CAS  Google Scholar 

  42. Trost BM (1986) 3+2 Cycloaddition approaches to 5-membered rings via trimethylenemethane and its equivalents. Angew Chem Int Ed 25:1–20

    Google Scholar 

  43. Patient L, Berry MB, Kilburn JD (2003) Lewis acid-mediated addition of silylated methylenecyclopropane to aldehydes—synthesis of tetrahydrofuran derivatives. Tetrahedron Lett 44:1015–1017

    CAS  Google Scholar 

  44. Shao LX, Xu B, Huang JW, Shi M (2006) Synthesis of the indene, THF, and pyrrolidine skeletons by Lewis acid mediated cycloaddition of methylenecyclopropanes with aldehydes, N-tosyl aldimines, and acetals. Chem Eur J 12:510–517

    Google Scholar 

  45. Shi M, Xu B (2003) Lewis acid-catalyzed novel [3+2] cycloaddition of methylenecyclopropanes with activated aldehydes or ketones. Tetrahedron Lett 44:3839–3842

    CAS  Google Scholar 

  46. Shi M, Xu B, Huang JW (2004) Lewis acid-mediated cycloaddition of methylenecyclopropanes with aldehydes and imines: a facile access to indene, THF, and pyrrolidine skeletons via homoallylic rearrangement protocol. Org Lett 6:1175–1178

    CAS  Google Scholar 

  47. Alper PB, Meyers C, Lerchner A, Siegel DR, Carreira EM (1999) Facile, novel methodology for the synthesis of spiro[pyrrolidin-3,3′-oxindoles]: catalyzed ring expansion reactions of cyclopropanes by aldimines. Angew Chem Int Ed 38:3186–3189

    CAS  Google Scholar 

  48. Fischer C, Meyers C, Carreira EM (2000) Efficient synthesis of (+/—)-horsfiline through the MgI2-catalyzed ring-expansion reaction of a spiro[cyclopropane-1,3′-indol]-2′-one. Helv Chim Acta 83:1175–1181

    CAS  Google Scholar 

  49. Lerchner A, Carreira EM (2002) First total synthesis of (+/—)-strychnofoline via a highly selective ring-expansion reaction. J Am Chem Soc 124:14826–14827

    CAS  Google Scholar 

  50. Lerchner A, Carreira EM (2006) Synthesis of (+/—)-strychnofoline via a highly convergent selective annulation reaction. Chem Eur J 12:8209–8219

    Google Scholar 

  51. Marti C, Carreira EM (2005) Total synthesis of (—)-spirotryprostatin B: synthesis and related studies. J Am Chem Soc 127:11505–11515

    CAS  Google Scholar 

  52. Meyers C, Carreira EM (2003) Total synthesis of (—)-spirotryprostatin B. Angew Chem Int Ed 42:694–696

    CAS  Google Scholar 

  53. Bertozzi F, Gustafsson M, Olsson R (2002) A novel metal iodide promoted three-component synthesis of substituted pyrrolidines. Org Lett 4:3147–3150

    CAS  Google Scholar 

  54. Huang WW, O’Donnell MM, Bi G, Liu JF, Yu LB, Baldino CM, Bell AS, Underwood TJ (2004) Synthesis of 1,2-disubstituted-3-alkylidenylpyrrolidines via a one-pot three-component reaction. Tetrahedron Lett 45:8511–8514

    CAS  Google Scholar 

  55. Carson CA, Kerr MA (2005) Diastereoselective synthesis of pyrrolidines via the Yb(OTf)3 catalyzed three-component reaction of aldehydes, amines, and 1,1-cyclopropanediesters. J Org Chem 70:8242–8244

    CAS  Google Scholar 

  56. Christie SDR, Davoile RJ, Jones RCF (2006) Preparation of highly substituted pyrrolidines via an organometallic dipole. Org Biomol Chem 4:2683–2684

    CAS  Google Scholar 

  57. Huang WW, Chin J, Karpinski L, Gustafson G, Baldino CM, Yu LB (2006) Metal iodide mediated ring expansion of cyclopropanecarboxylic thioesters with imines. Tetrahedron Lett 47:4911–4915

    CAS  Google Scholar 

  58. Kang YB, Tang Y, Sun XL (2006) Scandium triflate catalyzed cycloaddition of imines with 1,1-cyclopropanediesters: efficient and diastereoselective synthesis of multisubstituted pyrrolidines. Org Biomol Chem 4:299–301

    CAS  Google Scholar 

  59. Noda H, Wiedemann SH, Matsunaga S, Shibasaki M (2008) A DyI3-catalyzed Mannich-type reaction of 1-methylcyclopropanecarboxylate-type donors for the stereoselective synthesis of pyrrolidines with quaternary stereocenters. Chem Lett 37:1180–1181

    CAS  Google Scholar 

  60. Helan V, Mills A, Drewry D, Grant D (2010) A rapid three-component MgI2-mediated synthesis of 3,3-pyrollidinyl spirooxindoles. J Org Chem 75:6693–6695

    CAS  Google Scholar 

  61. Jackson SK, Karadeolian A, Driega AB, Kerr MA (2008) Stereodivergent methodology for the synthesis of complex pyrrolidines. J Am Chem Soc 130:4196–4201

    CAS  Google Scholar 

  62. Dias DA, Kerr MA (2009) Domino synthesis of bridged bicyclic tetrahydro-1,2-oxazines: access to stereodefined 4-aminocyclohexanols. Org Lett 11:3694–3697

    CAS  Google Scholar 

  63. Lebold TP, Kerr MA (2009) Stereodivergent synthesis of fused bicyclopyrazolidines: access to pyrazolines and pyrrolidines. Org Lett 11:4354–4357

    CAS  Google Scholar 

  64. Leduc AB, Kerr MA (2008) Total synthesis of (—)-allosecurinine. Angew Chem Int Ed 47:7945–7948

    CAS  Google Scholar 

  65. Carson CA, Kerr MA (2009) Total synthesis of FR901483. Org Lett 11:777–779

    CAS  Google Scholar 

  66. Tomilov YV, Novikov RA, Nefedov OM (2010) Lewis acid catalyzed reactions of donor-acceptor cyclopropanes with 1-and 2-pyrazolines formation of substituted 2-pyrazolines and 1,2-diazabicyclo 330 octanes. Tetrahedron 66:9151–9158

    CAS  Google Scholar 

  67. Parsons AT, Smith AG, Neel AJ, Johnson JS (2010) Dynamic kinetic asymmetric synthesis of substituted pyrrolidines from racemic cyclopropanes and aldimines: reaction development and mechanistic insights. J Am Chem Soc 132:9688–9692

    CAS  Google Scholar 

  68. Yamago S, Nakamura M, Wang XQ, Yanagawa M, Tokumitsu S, Nakamura E (1998) Thermal hetero [3 + 2] cycloaddition of dipolar trimethylenemethane to O-alkyloximes. Straightforward synthetic routes to substituted pyrrolidines and prolines. J Org Chem 63:1694–1703

    CAS  Google Scholar 

  69. Yamago S, Yanagawa M, Nakamura E (1999) Thermal hetero 3+2 cycloaddition of dipolar trimethylenemethane to N-sulfonyl and N-acyl imines. Synthesis of gamma-amino acid derivatives. Chem Lett 879–880

    Google Scholar 

  70. Oh BH, Nakamura I, Saito S, Yamamoto Y (2001) Palladium-catalyzed [3+2] cycloaddition of alkylidenecyclopropanes with imines. Tetrahedron Lett 42:6203–6205

    CAS  Google Scholar 

  71. Oh BH, Nakamura I, Saito S, Yamamoto Y (2003) Synthesis of 3-methylenepyrrolidines by palladium-catalyzed 3+2 cycloaddition of alkylidenecyclopropanes with imines. Heterocycles 61:247–257

    CAS  Google Scholar 

  72. Chen K, Zhang Z, Wei Y, Shi M (2012) Thermally induced 3+2 cyclization of aniline-tethered alkylidenecyclopropanes: a facile synthetic protocol of pyrrolo 1,2-a indoles. Chem Commun 48:7696–7698

    CAS  Google Scholar 

  73. Lautens M, Han WS (2002) Divergent selectivity in MgI2-mediated ring expansions of methylenecyclopropyl amides and imides. J Am Chem Soc 124:6312–6316

    CAS  Google Scholar 

  74. Taillier C, Bethuel Y, Lautens M (2007) Use of a sterically demanding Lewis acid to direct ring expansion of monoactivated methylenecyclopropanes. Tetrahedron 63:8469–8477

    CAS  Google Scholar 

  75. Scott ME, Han W, Lautens M (2004) A highly diastereoselective MgI2-mediated ring expansion of methylenecyclopropanes. Org Lett 6:3309–3312

    CAS  Google Scholar 

  76. Scott ME, Lautens M (2008) Synthesis of highly functionalized pyrrolidines via a selective iodide-mediated ring expansion of methylenecyclopropyl amides. J Org Chem 73:8154–8162

    CAS  Google Scholar 

  77. Taillier C, Lautens M (2007) Enantioselective catalytic ring expansion of methylenecyclopropane carboxamides promoted by a chiral magnesium Lewis acid. Org Lett 9:591–593

    CAS  Google Scholar 

  78. Inoue Y, Hibi T, Satake M, Hashimoto H (1979) Reaction of methylenecyclopropanes with carbon-dioxide catalyzed by palladium(0) complexes - synthesis of 5-membered lactones. J Chem Soc Chem Commun 982

    Google Scholar 

  79. Chen K, Jiang M, Zhang Z, Wei Y, Shi M (2011) Palladium(0)-catalyzed reaction of cyclopropylidenecycloalkanes with carbon dioxide. Eur J Org Chem 7189–7193

    Google Scholar 

  80. Bruckner C, Reissig HU (1985) Thiophene derivatives by novel rearrangements of siloxy-substituted cyclopropanecarboxylates. Angew Chem Int Ed 24:588–589

    Google Scholar 

  81. Graziano ML, Iesce MR (1987) Ring-opening reactions of cyclopropanes. 1. Formal [3+2] cyclo-addition of trans-ethyl 2,2-dimethoxy-3-methylcyclopropane-1-carboxylate to phenyl isocyanate. J Chem Res S:362–363

    Google Scholar 

  82. Graziano ML, Cimminiello G (1989) Ring-opening reactions of cyclopropanes. 2. investigation on the reactivity of ethyl 2,2-dimethoxy-cyclopropane-1-carboxylates towards phenyl isothiocyanate. J Chem Res S:42–43

    Google Scholar 

  83. Graziano ML, Iesce MR, Cermola F (1996) Ring-opening reactions of cyclopropanes. 5. Reactivity of ethyl trans-2,2-dimethoxy-3-methylcyclopropane-1-carboxylate towards electrophilic diazenes. J Chem Res S:82–83

    Google Scholar 

  84. Korotkov VS, Larionov OV, Hoftneister A, Magull J, de Meijere A (2007) GaCl3-Catalyzed insertion of diazene derivatives into the cyclopropane ring. J Org Chem 72:7504–7510

    CAS  Google Scholar 

  85. Korotkov VS, Larionov OV, de Meijere A (2006) Ln(OTf)3-catalyzed insertion of aryl isocyanides into the cyclopropane ring. Synthesis 3542–3546

    Google Scholar 

  86. Wang HN, Yang W, Liu H, Wang W, Li H (2012) FeCl3 promoted highly regioselective 3+2 cycloaddition of dimethyl 2-vinyl and aryl cyclopropane-1,1-dicarboxylates with aryl isothiocyanates. Org Biomol Chem 10:5032–5035

    CAS  Google Scholar 

  87. Goldberg AFG, O’Connor NR, Craig RA, Stoltz BM (2012) Lewis acid mediated (3+2) cycloadditions of donor-acceptor cyclopropanes with heterocumulenes. Org Lett 14:5314–5317

    CAS  Google Scholar 

  88. Young IS, Kerr MA (2003) A homo [3+2] dipolar cycloaddition: the reaction of nitrones with cyclopropanes. Angew Chem Int Ed 42:3023–3026

    CAS  Google Scholar 

  89. Young IS, Kerr MA (2004) Three-component homo 3+2 dipolar cycloaddition. A diversity-oriented synthesis of tetrahydro-1,2-oxazines and FR900482 skeletal congeners. Org Lett 6:139–141

    CAS  Google Scholar 

  90. Ganton MD, Kerr MA (2004) Magnesium iodide promoted reactions of nitrones with cyclopropanes: a synthesis of tetrahydro-1,2-oxazines. J Org Chem 69:8554–8557

    CAS  Google Scholar 

  91. Wanapun D, Van Gorp KA, Mosey NJ, Kerr MA, Woo TK (2005) The mechanism of 1,3-dipolar cycloaddition reactions of cyclopropanes and nitrones - a theoretical study. Can J Chem Rev Can Chim 83:1752–1767

    CAS  Google Scholar 

  92. Karadeolian A, Kerr MA (2007) Examination of homo-[3+2]-dipolar cycloaddition: mechanistic insight into regio- and diastereoselectivity. J Org Chem 72:10251–10253

    CAS  Google Scholar 

  93. Sapeta K, Kerr MA (2007) The cycloaddition of nitrones with homochiral cyclopropanes. J Org Chem 72:8597–8599

    CAS  Google Scholar 

  94. Carson CA, Young IS, Kerr MA (2008) The reaction of nitrones with cyclopropanes: a convenient preparation of tetrahydro-1,2-oxazines. Synthesis 485–489

    Google Scholar 

  95. Carson CA, Kerr MA (2006) Total synthesis of (+)-phyllantidine. Angew Chem Int Ed 45:6560–6563

    CAS  Google Scholar 

  96. Young IS, Williams JL, Kerr MA (2005) Diastereoselective synthesis of pyrrolidines using a nitrone/cyclopropane cycloaddition: synthesis of the tetracyclic core of nakadomarin A. Org Lett 7:953–955

    CAS  Google Scholar 

  97. Young IS, Kerr MA (2007) Total synthesis of (+)-nakadomarin A. J Am Chem Soc 129:1465–1469

    CAS  Google Scholar 

  98. Johansen MB, Kerr MA (2008) Expedient synthesis of pyrrolo[1,2-a]indoles: preparation of the core of yuremamine. Org Lett 10:3497–3500

    CAS  Google Scholar 

  99. Lebold TP, Carson CA, Kerr MA (2006) The Nicholas-type activation of cyclopropanes toward reactions with nitrones in the homo-[3+2]-dipolar cycloaddition. Synlett 364–368

    Google Scholar 

  100. Yang HB, Shi M (2012) Yb(NTf2)3-catalyzed 3+3 cycloaddition between isatin ketonitrones and cyclopropanes to construct novel spiro tetrahydro-1,2-oxazine oxindoles. Org Biomol Chem 10:8236–8243

    CAS  Google Scholar 

  101. Gorbacheva EO, Tabolin AA, Novikov RA, Khomutova YA, Nelyubina YV, Tomilov YV, Ioffe SL (2013) Six-membered cyclic nitronates as 1,3-dipoles in formal [3 + 3]-cycloaddition with donor–acceptor cyclopropanes. Synthesis of new type of bicyclic nitrosoacetals. Org Lett 15:350–353

    CAS  Google Scholar 

  102. Sibi MP, Ma ZH, Jasperse CP (2005) Enantioselective addition of nitrones to activated cyclopropanes. J Am Chem Soc 127:5764–5765

    CAS  Google Scholar 

  103. Kang YB, Sun XL, Tang Y (2007) Highly enantioselective and diastereoselective cycloaddition of cyclopropanes with nitrones and its application in the kinetic resolution of 2-substituted cyclopropane-1,1-dicarboxylates. Angew Chem Int Ed 46:3918–3921

    CAS  Google Scholar 

  104. Perreault C, Goudreau SR, Zimmer LE, Charette AB (2008) Cycloadditions of aromatic azomethine imines with 1,1-cyclopropane diesters. Org Lett 10:689–692

    CAS  Google Scholar 

  105. Zhou Y-Y, Li J, Ling L, Liao S-H, Sun X-L, Li Y-X, Wang L-J, Tang Y (2013) Highly enantioselective [3+3] cycloaddition of aromatic azomethine imines with cyclopropanes directed by π–π stacking interactions. Angew Chem Int Ed 52:1452–1456

    CAS  Google Scholar 

  106. Ding QP, Wang ZY, Wu J (2009) Tandem cyclization-[3+3] cycloaddition reactions of 2-alkynylbenzaldoxime: synthesis of fused 1,2-dihydroisoquinolines. Tetrahedron Lett 50:198–200

    CAS  Google Scholar 

  107. Yu XX, Qiu GS, Liu JP, Wu J (2011) Synthesis of 2,3,4,11b-tetrahydro-1H-pyridazino 6,1-a isoquinolines via the three-component reaction of 2-alkynylbenzaldehydes, a sulfonohydrazide and dimethyl cyclopropane-1,1-dicarboxylate. Synthesis 2268–2274

    Google Scholar 

  108. Hu B, Zhu JL, Xing SY, Fang J, Du D, Wang ZW (2009) A highly site-, regio-, and stereoselective Lewis acid catalyzed formal [3+3] cycloaddition of methylenecyclopropane-1,1-diesters with C,N-diarylnitrones. Chem Eur J 15:324–327

    CAS  Google Scholar 

  109. Wu L, Shi M (2010) Yb(OTf)3-catalyzed construction of indole derivatives through formal 3+3 cycloaddition of 1,1-vinylidenecyclopropanediesters with nitrones. Chem Eur J 16:1149–1152

    CAS  Google Scholar 

  110. Ivanova OA, Budynina EM, Grishin YK, Trushkov IV, Verteletskii PV (2008) Donor-acceptor cyclopropanes as three-carbon components in a [4+3] cycloaddition reaction with 1,3-diphenylisobenzofuran. Angew Chem Int Ed 47:1107–1110

    CAS  Google Scholar 

  111. Khumtaveeporn K, Alper H (1995) Transition-metal mediated carbonylative ring expansion of heterocyclic-compounds. Acc Chem Res 28:414–422

    CAS  Google Scholar 

  112. Louie J (2005) Transition metal catalyzed reactions of carbon dioxide and other heterocumulenes. Curr Org Chem 9:605–623

    CAS  Google Scholar 

  113. Church TL, Getzler Y, Byrne CM, Coates GW (2007) Carbonylation of heterocycles by homogeneous catalysts. Chem Commun 657–674

    Google Scholar 

  114. Omae I (2011) Transition metal-catalyzed cyclocarbonylation in organic synthesis. Coord Chem Rev 255:139–160

    CAS  Google Scholar 

  115. Kas’yan LI, Pal’chikov VA, Bondarenko YS (2011) Five-membered oxaza heterocyclic compounds on the basis of epoxides and aziridines. Russ J Org Chem 47:797–841

    Google Scholar 

  116. Lee JT, Thomas PJ, Alper H (2001) Synthesis of beta-lactones by the regioselective, cobalt and Lewis acid catalyzed carbonylation of simple and functionalized epoxides. J Org Chem 66:5424–5426

    CAS  Google Scholar 

  117. Getzler Y, Mahadevan V, Lobkovsky EB, Coates GW (2002) Synthesis of beta-lactones: a highly active and selective catalyst for epoxide carbonylation. J Am Chem Soc 124:1174–1175

    CAS  Google Scholar 

  118. Mahadevan V, Getzler Y, Coates GW (2002) Lewis acid+ CO(CO)4 - complexes: a versatile class of catalysts for carbonylative ring expansion of epoxides and aziridines. Angew Chem Int Ed 41:2781–2784

    CAS  Google Scholar 

  119. Schmidt JAR, Mahadevan V, Getzler Y, Coates GW (2004) A readily synthesized and highly active epoxide carbonylation catalyst based on a chromium porphyrin framework: expanding the range of available beta-lactones. Org Lett 6:373–376

    CAS  Google Scholar 

  120. Schmidt JAR, Lobkovsky EB, Coates GW (2005) Chromium(III) octaethylporphyrinato tetracarbonylcobaltate: a highly active, selective, and versatile catalyst for epoxide carbonylation. J Am Chem Soc 127:11426–11435

    CAS  Google Scholar 

  121. Kramer JW, Lobkovsky EB, Coates GW (2006) Practical beta-lactone synthesis: epoxide carbonylation at 1 atm. Org Lett 8:3709–3712

    CAS  Google Scholar 

  122. Stirling A, Iannuzzi M, Parrinello M, Molnar F, Bernhart V, Luinstra GA (2005) beta-Lactone synthesis from epoxide and CO: reaction mechanism revisited. Organometallics 24:2533–2537

    CAS  Google Scholar 

  123. Church TL, Getzler Y, Coates GW (2006) The mechanism of epoxide carbonylation by Lewis acid+ Co(CO)4 - catalysts. J Am Chem Soc 128:10125–10133

    CAS  Google Scholar 

  124. Kurahashi T, de Meijere A (2005) Cyclopropyl building blocks for organic synthesis, part 121. C-C bond activation by octacarbonyldicobalt: 3+1 cocyclizations of methylenecyclopropanes with carbon monoxide. Angew Chem Int Ed 44:7881–7884

    CAS  Google Scholar 

  125. Rowley JM, Lobkovsky EB, Coates GW (2007) Catalytic double carbonylation of epoxides to succinic anhydrides: catalyst discovery, reaction scope, and mechanism. J Am Chem Soc 129:4948–4960

    CAS  Google Scholar 

  126. Ganji P, Ibrahim H (2012) The first asymmetric ring-expansion carbonylation of meso-epoxides. Chem Commun 48:10138–10140

    CAS  Google Scholar 

  127. Huisgen R (1977) Electrocyclic ring-opening reactions of ethylene oxides. Angew Chem Int Ed 16:572–585

    Google Scholar 

  128. Chen ZL, Wei L, Zhang JL (2011) Lewis acid catalyzed carbon-carbon bond cleavage of aryl oxiranyl diketones: synthesis of cis-2,5-disubstituted 1,3-dioxolanes. Org Lett 13:1170–1173

    CAS  Google Scholar 

  129. Liu R, Zhang M, Zhang J (2011) Highly regioselective Lewis acid-catalyzed [3+2] cycloaddition of alkynes with donor-acceptor oxiranes by selective carbon-carbon bond cleavage of epoxides. Chem Commun 47:12870–12872

    CAS  Google Scholar 

  130. Wang T, Zhang JL (2011) Chemoselective C-C bond cleavage of epoxide motifs: gold(I)-catalyzed diastereoselective 4+3 cycloadditions of 1-(1-alkynyl)oxiranyl ketones and nitrones. Chem Eur J 17:86–90

    Google Scholar 

  131. Zhang JM, Chen ZL, Wu HH, Zhang JL (2012) Ni(ClO4)2-catalysed regio- and diastereoselective 3+2 cycloaddition of indoles and aryl oxiranyl-dicarboxylates/diketones: a facile access to furo 3,4-b indoles. Chem Commun 48:1817–1819

    CAS  Google Scholar 

  132. Shim JG, Yamamoto Y (1998) Palladium-catalyzed regioselective 3+2 cycloaddition of vinylic oxiranes with activated olefins. A facile synthesis of tetrahydrofuran derivatives. J Org Chem 63:3067–3071

    CAS  Google Scholar 

  133. Shim JG, Yamamoto Y (1999) A novel and effective route to 1,3-oxazolidine derivatives. Palladium-catalyzed regioselective 3+2 cycloaddition of vinylic oxiranes with imines. Tetrahedron Lett 40:1053–1056

    CAS  Google Scholar 

  134. Shim JG, Yamamoto Y (2000) A new synthetic route to 1,3-oxazolidines via palladium-catalyzed regioselective 3+2 cycloaddition of vinylic oxiranes with imines. Heterocycles 52:885–895

    CAS  Google Scholar 

  135. Shaghafi MB, Grote RE, Jarvo ER (2011) Oxazolidine synthesis by complementary stereospecific and stereoconvergent methods. Org Lett 13:5188–5191

    CAS  Google Scholar 

  136. Sako S, Kurahashi T, Matsubara S (2011) Nickel-catalyzed 3+2 cycloaddition of alpha, beta-unsaturated ketones with vinyl oxiranes. Chem Lett 40:808–809

    CAS  Google Scholar 

  137. Wu WQ, Ding CH, Hou XL (2012) Pd-catalyzed diastereo- and enantioselective 3+2 -cycloaddition reaction of vinyl epoxide with nitroalkenes. Synlett 1035–1038

    Google Scholar 

  138. Yu CM, Dai XP, Su WK (2007) Ytterbium(III) triflate catalyzed 3+2 cycloaddition of N-arylimines and epoxides: a novel and solvent-free synthesis of substituted 1,3-oxazolidines. Synlett 646–648

    Google Scholar 

  139. Chen ZL, Tian ZQ, Zhang JM, Ma J, Zhang JL (2012) C-O versus C-C bond cleavage: selectivity control in Lewis acid catalyzed chemodivergent cycloadditions of aryl oxiranyldicarboxylates with aldehydes, and theoretical rationalizations of reaction pathways. Chem Eur J 18:8591–8595

    CAS  Google Scholar 

  140. Huo CD, Jia XD, Zhang W, Yang L, Lu JM, Liu ZL (2004) Cation radical 3+2 cycloaddition of chalcone epoxides: a facile synthesis of highly substituted tetrahydrofurans. Synlett 251–254

    Google Scholar 

  141. Darensbourg DJ (2007) Making plastics from carbon dioxide: Salen metal complexes as catalysts for the production of polycarbonates from epoxides and CO2. Chem Rev 107:2388–2410

    CAS  Google Scholar 

  142. North M, Pasquale R, Young C (2010) Synthesis of cyclic carbonates from epoxides and CO2. Green Chem 12:1514–1539

    CAS  Google Scholar 

  143. Lu XB, Darensbourg DJ (2012) Cobalt catalysts for the coupling of CO2 and epoxides to provide polycarbonates and cyclic carbonates. Chem Soc Rev 41:1462–1484

    CAS  Google Scholar 

  144. Pescarmona PP, Taherimehr M (2012) Challenges in the catalytic synthesis of cyclic and polymeric carbonates from epoxides and CO2. Catal Sci Technol 2:2169–2187

    CAS  Google Scholar 

  145. Decortes A, Castilla AM, Kleij AW (2010) Salen-complex-mediated formation of cyclic carbonates by cycloaddition of CO2 to epoxides. Angew Chem Int Ed 49:9822–9837

    CAS  Google Scholar 

  146. Speranza GP, Peppel WJ (1958) Preparation of substituted 2-oxazolidones from 1,2-epoxides and isocyanates. J Org Chem 23:1922–1924

    CAS  Google Scholar 

  147. Herweh JE, Kauffman WJ (1971) 2-Oxazolidones via the lithium bromide catalyzed reaction of isocyanates with epoxides in hydrocarbon solvents. Tetrahedron Lett 12:809–812

    Google Scholar 

  148. Baba A, Fujiwara M, Matsuda H (1986) Unusual cycloaddition of oxiranes with isocyanates catalyzed by tetraphenylstibonium iodide; selective formation of 3,4-disubstituted oxazolidinones. Tetrahedron Lett 27:77–80

    CAS  Google Scholar 

  149. Fujiwara M, Baba A, Matsuda H (1988) Selective alpha-cleavage cyclo-addition of oxiranes with heterocumulenes catalyzed by tetraphenylstibonium iodide. J Heterocyc Chem 25:1351–1357

    CAS  Google Scholar 

  150. Fujiwara M, Baba A, Matsuda H (1990) Mechanistic studies of tetraphenylstibonium iodide-catalyzed cycloaddition of oxiranes with heterocumulenes. Bull Chem Soc Jpn 63:1069–1073

    CAS  Google Scholar 

  151. Shibata I, Baba A, Iwasaki H, Matsuda H (1986) Cycloaddition reaction of heterocumulenes with oxiranes catalyzed by organotin iodide-Lewis base complex. J Org Chem 51:2177–2184

    CAS  Google Scholar 

  152. Baba A, Seki K, Matsuda H (1990) Stereospecific cycloaddition of heterocumulenes to oxiranes catalyzed by organotin halide-complexes. J Heterocyc Chem 27:1925–1930

    CAS  Google Scholar 

  153. Demaray JA, Thuener JE, Dawson MN, Sucheck SJ (2008) Synthesis of triazole-oxazolidinones via a one-pot reaction and evaluation of their antimicrobial activity. Bioorg Med Chem Lett 18:4868–4871

    CAS  Google Scholar 

  154. Brnardic EJ, Fraley ME, Garbaccio RM, Layton ME, Sanders JM, Culberson C, Jacobson MA, Magliaro BC, Hutson PH, O’Brien JA, Huszar SL, Uslaner JM, Fillgrove KL, Tang C, Kuo Y, Sur SM, Hartman GD (2010) 3-Aryl-5-phenoxymethyl-1,3-oxazolidin-2-ones as positive allosteric modulators of mGluR2 for the treatment of schizophrenia: hit-to-lead efforts. Bioorg Med Chem Lett 20:3129–3133

    CAS  Google Scholar 

  155. Sengoden M, Punniyamurthy T (2012) Role of temperature in 3+2-cycloaddition of isoselenocyanates with oxiranes using BF3•Et2O. RSC Adv 2:2736–2738

    CAS  Google Scholar 

  156. Barros MT, Phillips AMF (2010) The first enantioselective 3+2 cycloaddition of epoxides to arylisocyanates: asymmetric synthesis of chiral oxazolidinone phosphonates. Tetrahedron Asymmetry 21:2746–2752

    CAS  Google Scholar 

  157. Trost BM, Sudhakar AR (1987) Cis hydroxyamination equivalent. Application to the synthesis of (—)-acosamine. J Am Chem Soc 109:3792–3794

    CAS  Google Scholar 

  158. Trost BM, Sudhakar AR (1988) A stereoselective contrasteric conversion of epoxides to cis-oxazolidin-2-ones. J Am Chem Soc 110:7933–7935

    CAS  Google Scholar 

  159. Trost BM, Hurnaus R (1989) On the mechanism of Pd(0) catalyzed formation of oxazolidin-2-ones from vinyl epoxides. Tetrahedron Lett 30:3893–3896

    CAS  Google Scholar 

  160. Larksarp C, Alper H (1997) Palladium(0)-catalyzed asymmetric cycloaddition of vinyloxiranes with heterocumulenes using chiral phosphine ligands: an effective route to highly enantioselective vinyloxazolidine derivatives. J Am Chem Soc 119:3709–3715

    CAS  Google Scholar 

  161. Larksarp C, Alper H (1998) Highly enantioselective synthesis of 1,3-oxazolidin-2-imine derivatives by asymmetric cycloaddition reactions of vinyloxiranes with unsymmetrical carbodiimides catalyzed by palladium(0) complexes. J Org Chem 63:6229–6233

    CAS  Google Scholar 

  162. Fujiwara M, Imada M, Baba A, Matsuda H (1988) Ph4SbI-catalyzed selective formation of gamma-lactones and delta-lactones from oxiranes or oxetanes with ketenes. J Org Chem 53:5974–5977

    CAS  Google Scholar 

  163. Alper H, Urso F, Smith DJH (1983) Regiospecific metal-catalyzed ring expansion of aziridines to beta-lactams. J Am Chem Soc 105:6737–6738

    CAS  Google Scholar 

  164. Calet S, Urso F, Alper H (1989) Enantiospecific and stereospecific rhodium(I)-catalyzed carbonylation and ring expansion of aziridines - asymmetric-synthesis of beta-lactams and the kinetic resolution of aziridines. J Am Chem Soc 111:931–934

    CAS  Google Scholar 

  165. Lu SM, Alper H (2004) Carbonylative ring expansion of aziridines to beta-lactams with rhodium-complexed dendrimers on a resin. J Org Chem 69:3558–3561

    CAS  Google Scholar 

  166. Piotti ME, Alper H (1996) Inversion of stereochemistry in the Co2(CO)8-catalyzed carbonylation of aziridines to beta-lactams. The first synthesis of highly strained trans-bicyclic beta-lactams. J Am Chem Soc 118:111–116

    CAS  Google Scholar 

  167. Ardura D, Lopez R (2007) A theoretical investigation of the Co(CO)4–catalyzed carbonylative ring expansion of N-benzoyl-2-methylaziridine to beta-lactams: reaction mechanism and effect of substituent at the aziridine C-alpha atom. J Org Chem 72:3259–3267

    CAS  Google Scholar 

  168. Ardura D, Lopez R, Sordo TL (2006) A theoretical study of rhodium(I) catalyzed carbonylative ring expansion of aziridines to beta lactams: crucial activation of the breaking C-N bond by hyperconjugation. J Org Chem 71:7315–7321

    CAS  Google Scholar 

  169. Davoli P, Moretti I, Prati F, Alper H (1999) Carbonylation of silylated hydroxymethyl aziridines to beta-lactams. J Org Chem 64:518–521

    CAS  Google Scholar 

  170. Davoli P, Forni A, Moretti I, Prati F, Torre G (2001) On the effect of ring substituents in the carbonylation of aziridines. Tetrahedron 57:1801–1812

    CAS  Google Scholar 

  171. Chamchaang W, Pinhas AR (1988) A one-pot conversion of an aziridine to a beta-lactam using nickel tetracarbonyl. J Chem Soc Chem Commun 710–711

    Google Scholar 

  172. Chamchaang W, Pinhas AR (1990) The conversion of an aziridine to a beta-lactam. J Org Chem 55:2943–2950

    CAS  Google Scholar 

  173. Alper H, Hamel N (1987) Regiospecific synthesis of α-methylene-β-lactams by a homogeneous palladium catalyzed ring expansion-carbonylation reaction. Tetrahedron Lett 28:3237–3240

    CAS  Google Scholar 

  174. Tanner D, Somfai P (1993) Palladium-catalyzed transformation of a chiral vinylaziridine to a β-lactam. An enantioselective route to the carbapenem (+)-PS-5. Bioorg Med Chem Lett 3:2415–2418

    CAS  Google Scholar 

  175. Fontana F, Tron GC, Barbero N, Ferrini S, Thomas SP, Aggarwal VK (2010) Stereoselective synthesis of trans-beta-lactams by palladium-catalysed carbonylation of vinyl aziridines. Chem Commun 46:267–269

    CAS  Google Scholar 

  176. Dauban P, Malik G (2009) A masked 1,3-dipole revealed from aziridines. Angew Chem Int Ed 48:9026–9029

    CAS  Google Scholar 

  177. Cardoso AL, Melo T (2012) Aziridines in formal 3+2 cycloadditions: synthesis of five-membered heterocycles. Eur J Org Chem 6479–6501

    Google Scholar 

  178. Bergmeier SC, Fundy SL, Seth PP (1999) Synthesis of bicyclic proline analogs using a formal 3+2 intramolecular aziridine-allylsilane cycloaddition reaction. Tetrahedron 55:8025–8038

    CAS  Google Scholar 

  179. Ungureanu I, Bologa C, Chayer S, Mann A (1999) Phenylaziridine as a 1,3-dipole. Application to the synthesis of functionalized pyrrolidines. Tetrahedron Lett 40:5315–5318

    CAS  Google Scholar 

  180. Ungureanu I, Klotz P, Mann A (2000) Phenylaziridine as a masked 1,3 dipole in reactions with nonactivated alkenes. Angew Chem Int Ed 39:4615–4617

    CAS  Google Scholar 

  181. Nakagawa M, Kawahara M (2000) A concise synthesis of physostigmine from skatole and activated aziridine via alkylative cyclization. Org Lett 2:953–955

    CAS  Google Scholar 

  182. Yadav JS, Reddy BVS, Pandey SK, Srihari P, Prathap I (2001) Scandium triflate-catalyzed 1,3-dipolar cycloaddition of aziridines with alkenes. Tetrahedron Lett 42:9089–9092

    CAS  Google Scholar 

  183. Pohlhaus PD, Bowman RK, Johnson JS (2004) Lewis acid-promoted carbon—carbon bond cleavage of aziridines: divergent cycloaddition pathways of the derived ylides. J Am Chem Soc 126:2294–2295

    CAS  Google Scholar 

  184. Li L, Wu XX, Zhang JL (2011) Lewis acid-catalyzed formal 3+2 cycloadditions of N-tosyl aziridines with electron-rich alkenes via selective carbon-carbon bond cleavage. Chem Commun 47:5049–5051

    CAS  Google Scholar 

  185. Lowe MA, Ostovar M, Ferrini S, Chen CC, Lawrence PG, Fontana F, Calabrese AA, Aggarwal VK (2011) Palladium-mediated annulation of vinyl aziridines with Michael acceptors: stereocontrolled synthesis of substituted pyrrolidines and its application in a formal synthesis of (—)-alpha-kainic acid. Angew Chem Int Ed 50:6370–6374

    CAS  Google Scholar 

  186. Griffin K, Montagne C, Cam Thuy H, Clarkson GJ, Shipman M (2012) Lewis acid promoted intramolecular (3+2) ‘cycloadditions’ of methyleneaziridines with alkene and alkyne acceptors. Org Biomol Chem 10:1032–1039

    CAS  Google Scholar 

  187. Yadav VK, Sriramurthy V (2005) Silylmethyl-substituted aziridine and azetidine as masked 1,3-and 1,4-dipoles for formal 3+2 and 4+2 cycloaddition reactions. J Am Chem Soc 127:16366–16367

    CAS  Google Scholar 

  188. Gandhi S, Bisai A, Prasad BAB, Singh VK (2007) Studies on the reaction of aziridines with nitriles and carbonyls: synthesis of imidazolines and oxazolidines. J Org Chem 72:2133–2142

    CAS  Google Scholar 

  189. Maeda R, Ishibashi R, Kamaishi R, Hirotaki K, Furuno H, Hanamoto T (2011) AgSbF6-promoted cycloaddition reaction of 2-trifluoromethyl-N-tosylaziridine with aldehydes. Org Lett 13:6240–6243

    CAS  Google Scholar 

  190. Wu XX, Lia L, Zhang JL (2011) Nickel(II)-catalyzed diastereoselective 3+2 cycloaddition of N-tosyl-aziridines and aldehydes via selective carbon-carbon bond cleavage. Chem Commun 47:7824–7826

    CAS  Google Scholar 

  191. Wu XX, Zhang JL (2012) Y(OTf)3-catalyzed diastereoselective 3+2 cycloaddition of N-Tosyl-aziridines and imines; efficient synthesis of multisubstituted imidazolidines. Synthesis 44:2147–2154

    CAS  Google Scholar 

  192. Jiang Z, Wang J, Lu P, Wang YG (2011) Diasteroselective synthesis of oxazolidines and imidazolidines via the Lewis acid catalyzed C-C cleavage of aziridines. Tetrahedron 67:9609–9617

    CAS  Google Scholar 

  193. Soga K, Hosoda S, Nakamura H, Ikeda S (1976) New synthetic route to 2-oxazolidones. J Chem Soc Chem Commun 617

    Google Scholar 

  194. Nomura R, Nakano T, Nishio Y, Ogawa S, Ninagawa A, Matsuda H (1989) Regioselective cycloaddition of 1,2-disubstituted aziridines to heterocumulenes catalyzed by organoantimony halides. Chem Ber 122:2407–2409

    CAS  Google Scholar 

  195. Miller AW, Nguyen ST (2004) (Salen)chromium(III)/DMAP: an efficient catalyst system for the selective synthesis of 5-substituted oxazolidinones from carbon dioxide and aziridines. Org Lett 6:2301–2304

    CAS  Google Scholar 

  196. Fontana F, Chen CC, Aggarwal VK (2011) Palladium-catalyzed insertion of CO2 into vinylaziridines: new route to 5-vinyloxazolidinones. Org Lett 13:3454–3457

    CAS  Google Scholar 

  197. Baeg JO, Alper H (1992) Regiospecific palladium-catalyzed cycloaddition of aziridines and carbodiimides. J Org Chem 57:157–162

    CAS  Google Scholar 

  198. Baeg JO, Bensimon C, Alper H (1995) The first enantiospecific palladium-catalyzed cycloaddition of aziridines and heterocumulenes - novel synthesis of chiral 5-membered ring heterocycles. J Am Chem Soc 117:4700–4701

    CAS  Google Scholar 

  199. Baeg JO, Alper H (1994) Novel palladium(II)-catalyzed cyclization of aziridines and sulfur diimides. J Am Chem Soc 116:1220–1224

    CAS  Google Scholar 

  200. Butler DCD, Inman GA, Alper H (2000) Room temperature ring-opening cyclization reactions of 2-vinylaziridines with isocyanates, carbodiimides, and isothiocyanates catalyzed by Pd(OAc)2/PPh3. J Org Chem 65:5887–5890

    CAS  Google Scholar 

  201. Trost BM, Fandrick DR (2003) Dynamic kinetic asymmetric cycloadditions of isocyanates to vinylaziridines. J Am Chem Soc 125:11836–11837

    CAS  Google Scholar 

  202. Dong C, Alper H (2004) CeCl3 promoted asymmetric cycloaddition of isocyanates with 2-vinylaziridines. Tetrahedron Asymmetry 15:1537–1540

    CAS  Google Scholar 

  203. Wu J-Y, Luo Z-B, Dai L-X, Hou X-L (2008) Tributylphosphine-catalyzed cycloaddition of aziridines with carbon disulfide and isothiocyanate. J Org Chem 73:9137–9139

    CAS  Google Scholar 

  204. Sengoden M, Punniyamurthy T (2013) “On water”: efficient iron-catalyzed cycloaddition of aziridines with heterocumulenes. Angew Chem Int Ed 52:572–575

    CAS  Google Scholar 

  205. Seiser T, Saget T, Tran DN, Cramer N (2011) Cyclobutanes in catalysis. Angew Chem Int Ed 50:7740–7752

    CAS  Google Scholar 

  206. Shimada S, Saigo K, Nakamura H, Hasegawa M (1991) Novel 4+2 -type reaction of 2-(dimethylamino)cyclobutanecarboxylic esters with carbonyl-compounds. Chem Lett 1149–1152

    Google Scholar 

  207. Shimada S, Tohno I, Hashimoto Y, Saigo K (1993) Diastereoselective synthesis of cis-4,5-substituted delta-lactones by the reaction of 2-methoxy-2-(trimethylsiloxy)cyclobutanecarboxylic esters with carbonyl-compounds. Chem Lett 1117–1120

    Google Scholar 

  208. Parsons AT, Johnson JS (2009) Formal 4+2 cycloaddition of donor-acceptor cyclobutanes and aldehydes: stereoselective access to substituted tetrahydropyrans. J Am Chem Soc 131:14202–14203

    CAS  Google Scholar 

  209. Allart EA, Christie SDR, Pritchard GJ, Elsegood MRJ (2009) Preparation of highly substituted tetrahydropyrans via a metal assisted dipolar cycloaddition reaction. Chem Commun 7339–7341

    Google Scholar 

  210. Moustafa MMA, Pagenkopf BL (2010) Ytterbium Trif late catalyzed synthesis of alkoxy-substituted donor-acceptor cyclobutanes and their formal 4+2 cycloaddition with imines: stereoselective synthesis of piperidines. Org Lett 12:4732–4735

    CAS  Google Scholar 

  211. Moustafa MMA, Stevens AC, Machin BP, Pagenkopf BL (2010) Formal 4+2 cycloaddition of alkoxy-substituted donor-acceptor cyclobutanes and aldehydes catalyzed by Yb(OTf)3. Org Lett 12:4736–4738

    CAS  Google Scholar 

  212. Stevens AC, Palmer C, Pagenkopf BL (2011) The formal 4+3 cycloaddition between donor-acceptor cyclobutanes and nitrones. Org Lett 13:1528–1531

    CAS  Google Scholar 

  213. Okado R, Nowaki A, Matsuo J, Ishibashi H (2012) Formal 4+2 cycloaddition of di-tert-butyl 2-ethoxycyclobutane-1,1-dicarboxylate with ketones or aldehydes and tandem lactonization. Chem Pharm Bull 60:21–22

    CAS  Google Scholar 

  214. Matsuo J, Sasaki S, Tanaka H, Ishibashi H (2008) Lewis acid-catalyzed intermolecular 4+2 cycloaddition of 3-alkoxycyclobutanones to aldehydes and ketones. J Am Chem Soc 130:11600–11601

    CAS  Google Scholar 

  215. Kawano M, Kiuchi T, Matsuo J, Ishibashi H (2012) Formal 4+2 cycloaddition of cyclobutanones bearing alkyne-cobalt complex at their 3-positions. Tetrahedron Lett 53:432–434

    CAS  Google Scholar 

  216. Fujiwara M, Baba A, Matsuda H (1989) The cycloaddition of heterocumulenes to oxetanes in the presence of catalytic amounts of tetraphenylstibonium iodide. J Heterocyc Chem 26:1659–1663

    CAS  Google Scholar 

  217. Roberto D, Alper H (1989) Novel synthesis of pyrrolidinones by cobalt carbonyl catalyzed carbonylation of azetidines - a new ring-expansion carbonylation reaction of 2-vinylazetidines to tetrahydroazepinones. J Am Chem Soc 111:7539–7543

    CAS  Google Scholar 

  218. Larksarp C, Alper H (1999) Synthesis of 1,3-oxazine derivatives by palladium-catalyzed cycloaddition of vinyloxetanes with heterocumulenes. Completely stereoselective synthesis of bicyclic 1,3-oxazines. J Org Chem 64:4152–4158

    CAS  Google Scholar 

  219. Inman GA, Butler DCD, Alper H (2001) Mild Pd(OAc)2/PPh3 catalyzed cyclization reactions of 2-vinylazetidines with heterocumulenes: an atom-economy synthesis of tetrahydropyrimidinone, tetrahydropyrimidinimine, and thiazinanimine analogs. Synlett 914–919

    Google Scholar 

  220. Martorell A, Inman GA, Alper H (2003) Regioselective palladium-catalysed cycloaddition reactions of 1-alkyl-2-vinylazetidines with ketenimines and ketenes. J Mol Catal A Chem 204:91–96

    Google Scholar 

  221. Ungureanu I, Klotz P, Schoenfelder A, Mann A (2001) The reactivity of N-tosylphenylaziridine versus N-tosylphenylazetidine in heterocyclization reactions. Tetrahedron Lett 42:6087–6091

    CAS  Google Scholar 

  222. Zhou HB, Alper H (2003) Synthesis of seven-membered ring diazepin-2-ones via palladium-catalyzed highly regioselective cyclization of 2-vinylpyrrolidines with aryl isocyanates. J Org Chem 68:3439–3445

    CAS  Google Scholar 

  223. Spears GW, Nakanishi K, Ohfune Y (1991) Novel entry to a 3,4-disubstituted 2-azetidinone derivative via palladium-assisted carbonylation of a 2-substituted 3-vinylaziridine. Synlett 91–92

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerome Waser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Waser, J. (2013). Synthesis of Saturated Heterocycles via Metal-Catalyzed Formal Cycloaddition Reactions That Generate a C–N or C–O Bond. In: Wolfe, J. (eds) Synthesis of Heterocycles via Metal-Catalyzed Reactions that Generate One or More Carbon-Heteroatom Bonds. Topics in Heterocyclic Chemistry, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7081_2013_108

Download citation

Publish with us

Policies and ethics