Skip to main content

Microwave Irradiation and Multicomponent Reactions

  • Chapter
  • First Online:
Book cover Synthesis of Heterocycles via Multicomponent Reactions II

Part of the book series: Topics in Heterocyclic Chemistry ((TOPICS,volume 25))

Abstract

Abstract

A common theme throughout drug discovery and process development is speed. With the emergence of combinatorial chemistry and high-speed parallel synthesis, multicomponent reactions (MCRs) have seen a resurgence of interest. MCRs are therefore becoming increasingly popular since they provide the possibility to introduce a large degree of chemical diversity in only one step! Microwave irradiation under controlled conditions has been shown to be an invaluable technology since it often allows to dramatically reduce reaction times from days or hours to minutes or even seconds. Compound libraries can be rapidly synthesized in either a parallel or sequential way using this new, enabling technology. The current chapter highlights the application of microwave irradiation for MCRs during the last 4 years. More than 110 recent literature reports have been covered.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Domling A (1998) Isocyanide based multi component reactions in combinatorial chemistry. Comb Chem High Throughput Screen 1:1–22

    CAS  Google Scholar 

  2. Hulme C, Gore V (2003) Multi-component reactions: emerging chemistry in drug discovery ‘from xylocain to crixivan’. Curr Med Chem 10:51–80

    CAS  Google Scholar 

  3. Ulaczyk-Lesanko A, Hall DG (2005) Wanted: new multi-component reactions for generating libraries of polycyclic natural products. Curr Opin Chem Biol 9:266–276

    CAS  Google Scholar 

  4. Zhu J, Bienayme H (2005) Multi-component reactions. Wiley-VCH, New York

    Google Scholar 

  5. Strecker A (1850) Strecker amino acid synthesis. Liebigs Ann Chem 75:27–45

    Google Scholar 

  6. Miller SL (1986) Current status of the prebiotic synthesis of small molecules. Chem Scripta 26B:5–11

    CAS  Google Scholar 

  7. Hantzsch A (1882) Ueber die Synthese pyridinartiger Verbindungen aus Acetessigäther und Aldehydammoniak (Hantzsch dihydropyridine synthesis). Justus Liebegs Ann Chem 215:1–82

    Google Scholar 

  8. Sausins A, Duburs G (1988) Synthesis of 1,4-dihydropyridines by cyclocondensation reactions. Heterocycles 27:269–289

    CAS  Google Scholar 

  9. Biginelli P (1893) Aldehyde-urea derivatives of aceto- and oxaloacetic acids. Gazz Chim Ital 23:360–413

    Google Scholar 

  10. Kappe CO, Stadler A (2004) The Biginelli dihydropyrimidinone synthesis. Org React 63:1–117

    CAS  Google Scholar 

  11. Mannich C, Krosche W (1912) Ueber ein Kondensationsprodukt aus Formaldehyd, Ammoniak und Antipyrin. Arch Pharm 250:647–667

    CAS  Google Scholar 

  12. Thompson BB (1968) The Mannich reaction. Mechanistic and technological considerations. J Pharm Sci 57:715–733

    CAS  Google Scholar 

  13. Passerini M (1921) Isonitriles. I. Compound of p-isonitrileazobenzene with acetone and acetic acid. Gazz Chim Ital 51:126–129

    CAS  Google Scholar 

  14. Domling A (2002) Recent advances in isocyanide-based multi-component chemistry. Curr Opin Chem Biol 6:306–313

    CAS  Google Scholar 

  15. Domling A, Ugi I (2000) Multi-component reactions with isocyanides. Angew Chem Int Ed 39:3168–3210

    CAS  Google Scholar 

  16. Ugi I (1962) The α-addition of immonium ions and anions to isonitriles accompanied by secondary reactions. Angew Chem Int Ed 1:8–21

    Google Scholar 

  17. Ugi I, Steinbruckner C (1961) Isonitrile, IX. α-Addition von immonium-ionen und carbonsäure-anionen an isonitrile. Chem Ber 94:2802–2814

    CAS  Google Scholar 

  18. Ugi I, Domling A, Horl W (1994) Multi-component reactions in organic chemistry. Endeavour 18:115–122

    CAS  Google Scholar 

  19. Denmark SE, Thorarensen A (1996) Tandem [4+2]/[3+2] cycloadditions of nitroalkenes. Chem Rev 96:137–165

    CAS  Google Scholar 

  20. Organ MG, Winkle DD, Huffman J (1997) Tandem transformations involving allylic silanes. 2. Highly diastereoselective substitutions involving [(trialkylsilyl) methyl]cyclohexene derivatives with aldehydes. Synthetic studies on the problem of Lewis acid-promoted protodesilylation and enolization. J Org Chem 62:5254–5266

    CAS  Google Scholar 

  21. Bravo PA, Carrero MCP, Galan ER et al (2000) Synthesis of polycyclic systems via Diels–Alder reactions of sugar derived dienes. Heterocycles 1:81–92

    Google Scholar 

  22. Gedye RN, Smith FE, Westaway KG et al (1986) The use of microwave ovens for rapid organic synthesis. Tetrahedron Lett 27:279–283

    CAS  Google Scholar 

  23. Giguere RJ, Bray TL, Duncan SM et al (1986) Application of commercial microwave ovens to organic synthesis. Tetrahedron Lett 27:4945–4948

    CAS  Google Scholar 

  24. Kappe CO, Dallinger D, Murphree S (2009) Practical microwave synthesis for organic chemists. Strategies, instruments and protocols. Angew Chem Int Ed 48:2828–2829

    Google Scholar 

  25. Kappe CO (2008) Microwave dielectric heating in synthetic organic chemistry. Chem Soc Rev 37:1127–1139

    CAS  Google Scholar 

  26. Kappe CO, Dallinger D (2009) Controlled microwave heating in modern organic synthesis: highlights from the 2004–2008 literature. Mol Divers 13:71–193 and references therein

    Google Scholar 

  27. Caddick S, Fitzmaurice R (2009) Microwave enhanced synthesis. Tetrahedron 65:3325–3355 and references therein

    Google Scholar 

  28. Appukkuttan P, Van der Eycken E (2008) Recent developments in microwave-assisted, transition-metal-catalysed C–C and C–N bond-forming reactions. Eur J Org Chem 7:1133–1155 and references therein

    Google Scholar 

  29. Loupy A (ed) (2002) Microwaves in organic synthesis, 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  30. Shah A, Bariwal J, Molnar J et al (2008) Advanced dihydropyridines as novel multidrug resistance modifiers and reversing agents. In: Motohashi N (ed) Bioactive heterocycles VI: flavonoids and anthocyanins in plants, and latest bioactive heterocycles 1, vol 15. Springer, Berlin

    Google Scholar 

  31. Alker D, Campbell SF, Cross PE et al (1990) Long-acting dihydropyridine calcium antagonists. 4. Synthesis and structure-activity relationships for a series of basic and non basic derivatives of 2[(2-aminoethoxy)methyl]-1, 4-dihydropyridine calcium antagonists. J Med Chem 33:585–591

    CAS  Google Scholar 

  32. Godfraind T, Miller R, Wibo M (1986) Calcium antagonism and calcium entry blockade. Pharmacol Rev 38:321–416

    CAS  Google Scholar 

  33. Fasani E, Fagnoni M, Dondi D et al (2006) Intramolecular electron transfer in the photochemistry of some nitrophenyldihydropyridines. J Org Chem 71:2037–2045

    CAS  Google Scholar 

  34. Ragno G, Vetuschi C, Risoli A et al (2003) Application of a classical least-squares regression method to the assay of 1, 4-dihydropyridine antihypertensives and their photoproducts. Talanta 59:375–382

    CAS  Google Scholar 

  35. Zhu XQ, Zhao BJ, Cheng JP (2000) Mechanisms of the oxidations of NAD(P)H model Hantzsch 1, 4-dihydropyridines by nitric oxide and its donor N-methyl-N-nitrosotoluene-P-sulfonamide. J Org Chem 65:8158–8163

    CAS  Google Scholar 

  36. Zhu XQ, Wang HY, Wang JS et al (2001) Application of NAD(P)H model Hantzsch 1, 4-dihydropyridine as a mild reducing agent in preparation of cyclo compounds. J Org Chem 66:344–347

    CAS  Google Scholar 

  37. Iqbal N, Akula MR, Vo D et al (1998) Synthesis, rotamer orientation, and calcium channel modulation activities of alkyl and 2-phenethyl 1, 4-dihydro-2, 6-dimethyl-3-nitro-4-(3- or 6-substituted-2-pyridyl)-5-pyridinecarboxylates. J Med Chem 41:1827–1837

    CAS  Google Scholar 

  38. Li RWS, Tse CM, Man RYK et al (2007) Inhibition of human equilibrative nucleoside transporters by dihydropyridine-type calcium channel antagonists. Eur J Pharmacol 568:75–82

    CAS  Google Scholar 

  39. Cosconati S, Marinelli L, Lavecchia A et al (2007) Characterizing the 1, 4-dihydropyridines binding interactions in the L-type Ca2+ channel: model construction and docking calculations. J Med Chem 50:1504–1513

    CAS  Google Scholar 

  40. Schramm M, Thomas G, Towart R et al (1983) Novel dihydropyridines with positive inotropic action through activation of Ca2+ channels. Nature 303:535–537

    CAS  Google Scholar 

  41. Li M, Zuo Z, Wen L et al (2008) Microwave-assisted combinatorial synthesis of hexa-substituted 1, 4-dihydropyridines scaffolds using one-pot two-step multi-component reaction followed by a S-alkylation. J Comb Chem 10:436–441

    CAS  Google Scholar 

  42. Hatamjafari F (2006) New protocol to synthesize spiro-1, 4-dihydropyridines by using a multi-component reaction of cyclohexanone, ethyl cyanoacetate, isatin and primary amines under microwave irradiation. Synth Commun 36:3563–3570

    CAS  Google Scholar 

  43. Ranu BC, Jana R, Sowmiah S (2007) An improved procedure for the three-component synthesis of highly substituted pyridines using ionic liquid. J Org Chem 72:3152–3154

    CAS  Google Scholar 

  44. Boger DL, Nakahara S (1991) Diels–Alder reactions of N-sulfonyl-1-aza-1, 3-butadienes: development of a synthetic approach to the streptonigrone C ring. J Org Chem 56:880–884

    CAS  Google Scholar 

  45. Boger DL, Kasper AM (1989) A general solution to implementing the 4.pi. participation of 1-aza-1, 3-butadienes in Diels–Alder reactions: inverse electron demand Diels-Alder reactions of alpha, beta-unsaturated N-benzenesulfonyl imines. J Am Chem Soc 111:1517–1519

    CAS  Google Scholar 

  46. Ma X, Gang DR (2004) The lycopodium alkaloids. Nat Prod Rep 21:752–772

    CAS  Google Scholar 

  47. Bringmann G, Reichert Y, Kane VV (2004) The total synthesis of streptonigrin and related antitumor antibiotic natural products. Tetrahedron 60:3539–3574

    CAS  Google Scholar 

  48. Zhou Y, Kijima T, Kuwahara S et al (2008) Synthesis of ethyl 5-cyano-6-hydroxy-2-methyl-4-(1-naphthyl)-nicotinate. Tetrahedron Lett 49:3757–3761

    CAS  Google Scholar 

  49. Cooke MW, Hanan GS (2007) Luminescent polynuclear assemblies. Chem Soc Rev 36:1466–1476

    CAS  Google Scholar 

  50. Constable EC (2007) 2, 2′:6′, 2″-Terpyridines: from chemical obscurity to common supramolecular motifs. Chem Soc Rev 36:246–253

    CAS  Google Scholar 

  51. Medlycott EA, Hanan GS (2005) Designing tridentate ligands for ruthenium (II) complexes with prolonged room temperature luminescence lifetimes. Chem Soc Rev 34:133–142

    CAS  Google Scholar 

  52. Kaes C, Katz A, Hosseini M et al (2000) The most widely used ligand. A review of molecules comprising at least two 2, 2′-bipyridine units. Chem Rev 100:3553–3590

    CAS  Google Scholar 

  53. Gribble GW (2000) Recent developments in indole ring synthesis-methodology and applications. J Chem Soc Perkin Trans 1:1045–1075

    Google Scholar 

  54. Yan C-G, Cai X-M, Wang Q-F et al (2008) A novel four component one-pot access to 4, 6-diaryl-2-pyridinone and 4-aryl-5, 6, 7, 8-tetrahydro-2-quinolinones. Lett Org Chem 5:282–285

    CAS  Google Scholar 

  55. Shi F, Zhang G, Zhou D et al (2009) An unexpected green and facile synthesis of 2, 6-diaryl-4-styrylpyridines via multi-component reactions in microwave-assisted solvent-free conditions. Chin J Chem 27:1569–1574

    CAS  Google Scholar 

  56. Tu S, Jiang B, Zhang Y et al (2007) An efficient and chemoselective synthesis of N-substituted 2-aminopyridines via a microwave-assisted multi-component reaction. Org Biomol Chem 5:355–359

    CAS  Google Scholar 

  57. Tu S, Zhou D, Cao L et al (2009) A simple three-component condensation: highly efficient microwave-assisted one-pot synthesis of polyfunctional pyridine derivatives. J Heterocycl Chem 46:54–57

    CAS  Google Scholar 

  58. Sridhar M, Ramanaiah BC, Narsaiah C et al (2009) Novel ZnCl2-catalyzed one-pot multi-component synthesis of 2-amino-3, 5-dicarbonitrile-6-thio-pyridines. Tetrahedron Lett 50:3897–3900

    CAS  Google Scholar 

  59. Zhu SL, Ji SJ, Su XM et al (2008) Facile and efficient synthesis of a new class of bis(3′-indolyl) pyridine derivatives via one-pot multi-component reactions. Tetrahedron Lett 49:1777–1781

    CAS  Google Scholar 

  60. Thirumurugan P, Perumal PT (2009) A simple one-pot synthesis of functionalised 6-(indol-3-yl)-2, 2′-bipyridine derivatives via multi-component reaction under neat condition. Tetrahedron Lett 50:4145–4150

    CAS  Google Scholar 

  61. Ladani NK, Patel MP, Patel RG et al (2009) A convenient one pot synthesis of series of 3-(2, 6-diphenyl-4-pyridyl)hydroquinolin-2-one under microwave irradiation and their antimicrobial activities. Indian J Chem 48B:261–266

    CAS  Google Scholar 

  62. Zhou J-F, Song Y-Z, Lv J-S et al (2009) Facile one-pot, multi-component synthesis of pyridines under microwave irradiation. Synth Commun 39:1443–1450

    CAS  Google Scholar 

  63. Tu S, Jiang B, Jia R et al (2007) An efficient and expeditious microwave-assisted synthesis of 4-azafluorenones via a multi-component reaction. Tetrahedron Lett 48:1369–1374

    CAS  Google Scholar 

  64. Arango GJ, Cortes D, Cassels BK et al (1987) Alkaloids of the Annonaceae. Part 80. Azafluorenones from Oxandra cf. major and biogenetic considerations. Phytochemistry 26:2093–2098

    CAS  Google Scholar 

  65. Goulart MOF, Sant’ana AEG, de Oliveira AB et al (1986) Azafluorenones and azaanthraquinone from Guatteria dielsiana. Phytochemistry 25:1691–1695

    CAS  Google Scholar 

  66. Tu S, Jiang B, Jiang H et al (2007) A novel three-component reaction for the synthesis of new 4-azafluorenone derivatives. Tetrahedron 63:5406–5414

    CAS  Google Scholar 

  67. DiMauro EF, Kennedy JM (2007) Rapid synthesis of 3-amino-imidazopyridines by a microwave-assisted four-component coupling in one pot. J Org Chem 72:1013–1016

    CAS  Google Scholar 

  68. Rousseau AL, Matlaba P, Parkinson CJ (2007) Multi-component synthesis of imidazo[1, 2-a]pyridines using catalytic zinc chloride. Tetrahedron Lett 48:4079–4082

    CAS  Google Scholar 

  69. Masquelin T, Bui H, Brickley B et al (2006) Sequential Ugi/Strecker reactions via microwave assisted organic synthesis: novel 3-center-4-component and 3-center-5-component multi-component reactions. Tetrahedron Lett 47:2989–2991

    CAS  Google Scholar 

  70. Yadav LS, Awasthi C (2010) Efficient one-pot synthetic protocols for iminosugar-bearing imidazo[1, 2-a]pyridines from carbohydrates. Carbohydr Res 345:318–323

    CAS  Google Scholar 

  71. Wen L, Ji C, Li Y et al (2009) Application of β(2-chloroaroyl)thioacetanilide in synthesis(III): an efficient three-component synthesis of thiochromeno[2, 3-b]pyridines catalyzed by KF/neutral Al2O3 co-operated with PEG 6000 under microwave irradiation. J Comb Chem 11:799–805

    CAS  Google Scholar 

  72. Chebanov VA, Sakhno YI, Desenko SM et al (2007) Cyclocondensation reactions of 5-aminopyrazoles, pyruvic acids and aldehydes. Multi-component approaches to pyrazolopyridines and related products. Tetrahedron 63:1229–1242

    CAS  Google Scholar 

  73. Zhu SL, Ji SJ, Zhao K et al (2008) Multi-component reactions for the synthesis of new 30-indolyl substituted heterocycles under microwave irradiation. Tetrahedron Lett 49:2578–2582

    CAS  Google Scholar 

  74. Tu SJ, Zhang XH, Han ZG et al (2009) Synthesis of isoxazolo[5, 4-b]pyridines by microwave-assisted multi-component reactions in water. J Comb Chem 11:428–432

    CAS  Google Scholar 

  75. Defant A, Guella G, Mancini I (2008) Microwave-assisted multi-component synthesis of aza-, diaza-, benzo-, and dibenzofluorenedione derivatives. Synth Commun 38:3003–3016

    CAS  Google Scholar 

  76. Feng S, Yan Z, Shu-Jiang T et al (2008) A green approach to the synthesis of biologically important indeno[2, 1-e]pyrazolo[5, 4-b]pyridines via microwave-assisted multi-component reactions in water. Chin J Chem 26:1262–1266

    Google Scholar 

  77. Wu H, Wan Y, Chen X-M et al (2009) Synthesis of 2, 4, 5-triaryl-5H-chromeno[4, 3-b]pyridines under microwave radiation. J Heterocycl Chem 46:702–707

    CAS  Google Scholar 

  78. Kappe CO (2000) Biologically active dihydropyrimidones of the Biginelli-type-A literature survey. Eur J Med Chem 35:1043–1052

    CAS  Google Scholar 

  79. Mayer TU, Kapoor TM, Haggarty SJ et al (1999) Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science 286:971–974

    CAS  Google Scholar 

  80. Tetsuzou K, Takao C, Yoshihito A (1984) Production of 5-carbamoyl-6-methyl-4-substituted-1,2,3,4-tetrahydro-2-thioxopyrimidine. PCT Int Appl JP59190974

    Google Scholar 

  81. Rovnyak GC, Atwal KS, Hedberg A et al (1992) Dihydropyrimidine calcium channel blockers. 4. Basic 3-substituted-4-aryl-1, 4-dihydropyrimidine-5-carboxylic acid esters. Potent antihypertensive agents. J Med Chem 35:3254–3263

    CAS  Google Scholar 

  82. Jauk B, Pernat T, Kappe CO (2000) Design and synthesis of a conformationally rigid mimic of the dihydropyrimidine calcium channel modulator SQ 32, 926. Molecules 5:227–239

    CAS  Google Scholar 

  83. Sidler DR, Larsen RD, Chartrain M et al (1999) Alpha 1a adrenergic receptor antagonist. PCT Int Appl WO 99 07695

    Google Scholar 

  84. Bruce MA, Pointdexter GS, Johnson G (1998) Dihydropyrimidone derivatives as NPY antagonists. PCT Int Appl WO 98 033 791

    Google Scholar 

  85. Patil AD, Kumar NV, Kokke WC et al (1995) Novel alkaloids from the sponge Batzella sp.: inhibitors of HIV gp120-human CD4 binding. J Org Chem 60:1182–1188

    CAS  Google Scholar 

  86. Gopalakrishnan M, Sureshkumar P, Kanagarajan V et al (2006) Microwave-promoted facile and rapid solvent-free synthesis procedure for the efficient synthesis of 3, 4-dihydropyrimidin-2(1H)-ones and–thiones using ZrO2/SO4 2− as a reusable heterogeneous catalyst. Lett Org Chem 3:484–488

    CAS  Google Scholar 

  87. Ahn BJ, Gang MS, Chae K et al (2008) A microwave-assisted synthesis of 3, 4-dihydro-pyrimidin-2-(1H)-ones catalyzed by FeCl3-supported nanopore silica under solvent-free conditions. J Ind Eng Chem 14:401–405

    CAS  Google Scholar 

  88. Pisani L, Prokopcova H, Kremsner JM et al (2007) 5-Aroyl-3, 4-dihydropyrimidin-2-one library generation via automated sequential and parallel microwave-assisted synthesis techniques. J Comb Chem 9:415–421

    CAS  Google Scholar 

  89. Matloobi M, Kappe OC (2007) Microwave-assisted solution- and solid-phase synthesis of 2-amino-4-arylpyrimidine derivatives. J Comb Chem 9:275–284

    CAS  Google Scholar 

  90. Glasnov TN, Vugts DJ, Koningstein MM et al (2006) Microwave-assisted dimroth rearrangement of thiazines to dihydropyrimidinethiones: synthetic and mechanistic aspects. QSAR Comb Sci 25:509–518

    CAS  Google Scholar 

  91. Sowmiya M, Sharma A, Parsodkar S et al (2007) Nanosized sulfated SnO2 dispersed in the micropores of Al-pillared clay as an efficient catalyst for the synthesis of some biologically important molecules. Appl Catal A Gen 333:272–280

    CAS  Google Scholar 

  92. Legeay JC, Eynde JJV, Toupet L et al (2007) A three-component condensation protocol based on ionic liquid phase bound acetoacetate for the synthesis of Biginelli 3,4-dihydropyrimidine-2(1H)-ones. Arkivoc (iii):13–28

    Google Scholar 

  93. Khunt RC, Akbari JD, Manvar AT et al (2008) Green chemistry approach to synthesis of some new trifluoromethyl containing tetrahydropyrimidines under solvent free conditions. Arkivoc (xi):277–284

    Google Scholar 

  94. Liang B, Wang X, Wang JX et al (2007) New three component cyclocondensation: microwave assisted one-pot synthesis of 5-unsubistutited-3, 4-dihydropyrimidin-2(1H)-ones under solvent-free conditions. Tetrahedron 63:1981–1986

    CAS  Google Scholar 

  95. Sheibani H, Saljoogi AS, Bazgir A (2008) Three-component process for the synthesis of 4-amino-5-pyrimidine carbonitriles under thermal aqueous conditions or microwave irradiation. Arkivoc (ii):115–123

    Google Scholar 

  96. Tu S, Zhang J, Zhu X et al (2006) New potential inhibitors of cyclin-dependent kinase 4: design and synthesis of pyrido[2, 3-d]pyrimidine derivatives under microwave irradiation. Bioorg Med Chem Lett 16:3578–3581

    CAS  Google Scholar 

  97. Prajapati D, Gohaina M, Thakur AJ (2006) Regiospecific one-pot synthesis of pyrimido[4, 5-d]pyrimidine derivatives in the solid state under microwave irradiations. Bioorg Med Chem Lett 16:3537–3540

    CAS  Google Scholar 

  98. Dandia A, Sarawgi P, Aryab K et al (2006) Mild and ecofriendly tandem synthesis of 1,2,4-triazolo [4,3-a]pyrimidines in aqueous medium. Arkivoc (xvi):83–92

    Google Scholar 

  99. Barthakur MG, Gogoi S, Dutta M et al (2009) A facile three-component solid phase synthesis of steroidal A-ring fused pyrimidines under microwave irradiation. Steroids 74:730–734

    CAS  Google Scholar 

  100. Chebanov VA, Muravyova EA, Desenko SM et al (2006) Microwave-assisted three-component synthesis of 7-aryl-2-alkylthio-4, 7-dihydro-1, 2, 4-triazolo[1, 5-a]pyrimidine-6-carboxamides and their elective reduction. J Comb Chem 8:427–434

    CAS  Google Scholar 

  101. Shi F, Yan S, Zhou D et al (2009) A facile and efficient synthesis of novel pyrimido[5, 4-b][4, 7]-phenanthroline-9, 11(7H, 8H, 10H, 12H)-dione derivatives via microwave-assisted multi-component reactions. J Heterocycl Chem 46:563–566

    CAS  Google Scholar 

  102. Shaaban MR (2008) Microwave-assisted synthesis of fused heterocycles incorporating trifluoromethyl moiety. J Fluorine Chem 129:1156–1161

    CAS  Google Scholar 

  103. Wang S-L, Hao W-J, Tu S-J et al (2009) Poly(ethyleneglycol): a versatile and recyclable reaction medium in gaining access to Benzo[4, 5]imidazo[1, 2-a]pyrimidines under microwave heating. J Heterocycl Chem 46:664–668

    CAS  Google Scholar 

  104. Shi F, Ma N, Zhou D et al (2010) Green approach to the synthesis of polyfunctionalized pyrazolo[4′, 3′:5, 6] pyrido[2, 3-d]pyrimidines via microwave-assisted multi-component reactions in water without catalyst. Synth Commun 40:135–143

    CAS  Google Scholar 

  105. Tu S, Wu S, Han Z et al (2009) An efficient microwave-assisted synthesis of pyrido[2, 3-d]pyrimidine derivatives. Chin J Chem 27:1148–1152

    CAS  Google Scholar 

  106. Jiang B, Cao L-J, Tu S-J et al (2009) Highly diastereoselective domino synthesis of 6-spirosubstituted pyrido[2, 3-d]pyrimidine derivatives in water. J Comb Chem 11:612–616

    CAS  Google Scholar 

  107. Michael JP (2007) Quinoline, quinazoline and acridone alkaloids. Nat Prod Rep 24:223–246

    CAS  Google Scholar 

  108. Gabriele B, Mancuso R, Salerno G et al (2007) Novel and convenient synthesis of substituted quinolines by copper- or palladium-catalyzed cyclodehydration of 1-(2-aminoaryl)-2-yn-1-ols. J Org Chem 72:6873–6877

    CAS  Google Scholar 

  109. Roma G, Braccio MD, Grossi G et al (2000) 1, 8-Naphthyridines IV. 9-Substituted N, N-dialkyl-5-(alkylamino or cycloalkylamino) [1, 2, 4]triazolo[4, 3-a][1, 8]naphthyridine-6-carboxamides, new compounds with anti-aggressive and potent anti-inflammatory activities. Eur J Med Chem 35:1021–1035

    CAS  Google Scholar 

  110. Tu S, Zhu X, Zhang J et al (2006) New potential biologically active compounds: design and an efficient synthesis of N-substituted 4-aryl-4, 6, 7, 8-tetrahydroquinoline-2, 5(1H, 3H)-diones under microwave irradiation. Bioorg Med Chem Lett 16:2925–2928

    CAS  Google Scholar 

  111. Sapkal SB, Shelke KF, Shingate BB et al (2009) Nickel nanoparticle-catalyzed facile and efficient one-pot synthesis of polyhydroquinoline derivatives via Hantzsch condensation under solvent-free conditions. Tetrahedron Lett 50:1754–1756

    CAS  Google Scholar 

  112. Tu SJ, Jiang B, Jia RH (2006) An efficient one-pot, three-component synthesis of indeno[1, 2-b]quinoline-9, 11(6H, 10H)-dione, acridine-1, 8(2H, 5H)-dione and quinoline-3-carbonitrile derivatives from enaminones. Org Biomol Chem 4:3664–3668

    CAS  Google Scholar 

  113. Zhang X-L, Sheng S-R, Liu X-L (2007) Solvent-free liquid-phase synthesis of polyhydroquinoline derivatives under microwave irradiation. Arkivoc (xiii):79–86

    Google Scholar 

  114. Peng J, Hao W, Wang X et al (2009) Microwave-assisted synthesis of pyrazolo[4, 3-f]quinolin-7-one derivatives via multi-component reactions. Chin J Chem 27:1707–1710

    CAS  Google Scholar 

  115. Tu S-J, Jiang B, Zhang J-Y et al (2006) Efficient and direct synthesis of poly-substituted indeno[1, 2-b]quinolines assisted by p-toluene sulfonic acid using high-temperature water and microwave heating via one-pot, three-component reaction. Org Biomol Chem 4:3980–3985

    CAS  Google Scholar 

  116. Tu S-J, Yan S, Cao X-D et al (2009) A facile and expeditious microwave-assisted synthesis of 4-aryl-2-ferrocenyl-quinoline derivatives via multi-component reaction. J Organomet Chem 694:91–96

    CAS  Google Scholar 

  117. Tu S, Zhang Y, Jia R et al (2006) A multi-component reaction for the synthesis of N-substituted furo[3, 4-b]quinoline derivatives under microwave irradiation. Tetrahedron Lett 47:6521–6525

    CAS  Google Scholar 

  118. Tu S, Li C, Li G et al (2007) Microwave-assisted combinatorial synthesis of polysubstituent imidazo[1, 2-a]quinoline, pyrimido[1, 2-a]quinoline and quinolino[1, 2-a]quinazoline derivatives. J Comb Chem 9:1144–1148

    CAS  Google Scholar 

  119. Xing X, Wua J, Dai W-M (2006) Acid-mediated three-component aza-Diels–Alder reactions of 2-aminophenols under controlled microwave heating for synthesis of highly functionalized tetrahydroquinolines. Part 9: Chemistry of aminophenols. Tetrahedron 62:11200–11206

    CAS  Google Scholar 

  120. Bremner WS, Organ MG (2007) Multi-component reactions to form heterocycles by microwave-assisted continuous flow organic synthesis. J Comb Chem 9:14–16

    CAS  Google Scholar 

  121. Chebanov VA, Saraev VE, Desenko SM et al (2008) Tuning of chemo- and regioselectivities in multi-component condensations of 5-aminopyrazoles, dimedone, and aldehydes. J Org Chem 73:5110–5118

    CAS  Google Scholar 

  122. Wang X-H, Hao W-J, Tu S-J et al (2009) Microwave-assisted multi-component reaction for the synthesis of new and significative bisfunctional compounds containing two furo[3, 4-b]quinoline and acridinedione skeletons. J Heterocycl Chem 46:742–747

    CAS  Google Scholar 

  123. Zhu S-L, Zhao K, Su X-M et al (2009) Microwave-assisted synthesis of new spiro[indoline-3, 4′-quinoline] derivatives via a one-pot multi-component reaction. Synth Commun 39:1355–1366

    CAS  Google Scholar 

  124. Szatmari I, Fulop F (2009) Microwave-assisted one-pot synthesis of (aminoalkyl) naphthols and aminoalkyl) quinolinols by using ammonium carbamate or ammonium hydrogen carbonate as solid ammonia source. Synthesis 5:775–778

    Google Scholar 

  125. Babu ARS, Raghunathan R (2007) TiO2-silica mediated one pot three component 1, 3-dipolar cycloaddition reaction: a facile and rapid synthesis of dispiro acenaphthenone/oxindole [indanedione/oxindole] pyrroloisoquinoline ring systems. Tetrahedron 63:8010–8016

    Google Scholar 

  126. Mert-Balci F, Conrad J, Meindl K et al (2008) Microwave-assisted three-component reaction for the synthesis of pyrido[2′, 1′:2, 3]imidazo[4, 5-c]isoquinolin-5(6H)-ones. Synthesis 22:3649–3656

    Google Scholar 

  127. Kaur B, Kaur R (2007) Synthesis of fused quinazolinethiones and their S-alkyl/aryl derivatives. Arkivoc (xv):315–323

    Google Scholar 

  128. Siddiqui IR, Siddique SA, Srivastava V et al (2008) A novel anthranilic acid based multi-component strategy for expeditious synthesis of 4(3H)-quinazolinone N-nucleosides. Arkivoc (xii):277–285

    Google Scholar 

  129. Jiang B, Tu SJ, Kaur P et al (2009) Four-component domino reaction leading to multifunctionalized quinazolines. J Am Chem Soc 131:11660–11661

    CAS  Google Scholar 

  130. Chebanov VA, Saraev VE, Desenko SM et al (2007) One-pot, multi-component route to pyrazolo-quinolizinones. Org Lett 9:1691–1694

    CAS  Google Scholar 

  131. Azizian J, Mohammadizadeh MR, Zomorodbakhsh S et al (2007) Microwave-assisted one-pot synthesis of some dicyano-methylene derivatives of indenoquinoxaline and tryptanthrin under solvent free conditions. Arkivoc (xv):24–30

    Google Scholar 

  132. Claiborne CF, Liverton NJ, Nguyen KT (1998) An efficient synthesis of tetrasubstituted imidazoles from N-(2-oxo)-amides. Tetrahedron Lett 39:8939–8942

    CAS  Google Scholar 

  133. Lee JC, Laydon JT, McDonnell PC et al (1994) A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 372:739–746

    CAS  Google Scholar 

  134. Pierce ME, Carini DJ, Huhn G et al (1993) Practical synthesis and regioselective alkylation of methyl 4(5)-(pentafluoroethyl)-2-propylimidazole-5(4)-carboxylate to give DuP 532, a potent angiotensin II antagonist. J Org Chem 58:4642–4645

    CAS  Google Scholar 

  135. Nagarapu L, Apuri S, Kantevari S (2007) Potassium dodecatugstocobaltate trihydrate (K5CoW12O40·3H2O): a mild and efficient reusable catalyst for the one-pot synthesis of 1, 2, 4, 5-tetrasubstituted imidazoles under conventional heating and microwave irradiation. J Mol Catal A Chem 266:104–108

    CAS  Google Scholar 

  136. Dandia A, Singh R, Jain AK et al (2008) Versatility of alternative reaction media: water-mediated domino and green chemical synthesis of pyrimido[1, 2-a]benzimidazole under nonconventional conditions. Synth Commun 38:3543–3555

    CAS  Google Scholar 

  137. Ye P, Sargent K, Stewart E et al (2006) Novel and expeditious microwave-assisted three-component reactions for the synthesis of spiroimidazolin-4-ones. J Org Chem 71:3137–3140

    CAS  Google Scholar 

  138. Mohammadizadeh MR, Hasaninejad A, Bahramzadeh M (2009) Trifluoroacetic acid as an efficient catalyst for one-pot, four-component synthesis of 1, 2, 4, 5-tetrasubstituted imidazoles under microwave-assisted, solvent-free conditions. Synth Commun 39:3232–3242

    CAS  Google Scholar 

  139. Guchhait SK, Madaan C, Thakkar BS (2009) A highly flexible and efficient Ugi-type multi-component synthesis of versatile N-fused aminoimidazoles. Synthesis 19:3293–3300

    Google Scholar 

  140. Saiz C, Pizzo C, Manta E et al (2009) Microwave-assisted tandem reactions for the synthesis of 2-hydrazolyl-4-thiazolidinones. Tetrahedron Lett 50:901–904

    CAS  Google Scholar 

  141. Darehkordi A, Saidi K, Islami MR (2007) Preparation of heterocyclic compounds by reaction of dimethyl and diethyl acetylene dicarboxylate (DMAD, DEAD) with thiosemicarbazone derivatives. Arkivoc (i):180–188

    Google Scholar 

  142. Wustrow DJ, Capiris T, Rubin R et al (1998) Pyrazolo[1, 5-a]pyrimidine CRF-1 receptor antagonists. Bioorg Med Chem Lett 8:2067–2070

    CAS  Google Scholar 

  143. Menozzi G, Mosti L, Fossa P et al (1997) Synthesis and structural study of novel 5-aryl substituted 2-amino-4, 7-dioxopyrido[2, 3-d]pyrimidines. J Heterocycl Chem 34:963–968

    CAS  Google Scholar 

  144. Chimenti F, Fioravanti R, Bolasco A et al (2007) Monoamine oxidase isoform-dependent tautomeric influence in the recognition of 3, 5-diaryl pyrazole inhibitors. J Med Chem 50:425–428

    CAS  Google Scholar 

  145. Willy B, Müller TJJ (2008) Regioselective three-component synthesis of highly fluorescent 1, 3, 5-trisubstituted pyrazoles. Eur J Org Chem 24:4157–4168

    Google Scholar 

  146. Radi M, Bernardo V, Bechi B et al (2009) Microwave-assisted organocatalytic multi-component Knoevenagel/hetero Diels–Alder reaction for the synthesis of 2, 3-dihydropyran[2, 3-c]pyrazoles. Tetrahedron Lett 50:6572–6575

    CAS  Google Scholar 

  147. Albert A (1996) The acridines, 2nd edn. Edward Arnold Ltd, London

    Google Scholar 

  148. Spalding DP, Chapin EC, Mosher HS (1954) Heterocyclic basic compounds. XV. Benzacridine derivatives. J Org Chem 19:357–364

    CAS  Google Scholar 

  149. Bachman GB, Picha GM (1946) Synthesis of substituted aminobenzacridines. J Am Chem Soc 68:1599–1602

    CAS  Google Scholar 

  150. Dobson J, Hutchison WC, Kermac WO (1948) Attempts to find new antimalarials. Part XXVII. Derivatives of various benzacridines and pyridoacridines. J Chem Soc:123–126

    Google Scholar 

  151. Thull U, Testa B (1994) Screening of unsubstituted cyclic compounds as inhibitors of monoamine oxidases. Biochem Pharmacol 47:2307–2310

    CAS  Google Scholar 

  152. Reil E, Scoll M, Masson K et al (1994) Synthesis of quinolones and acridones and their inhibitory activity in NADH-dehydrogenases and cytochrome b/c1-complexes. Biochem Soc Trans 22:62S

    CAS  Google Scholar 

  153. Berg SL, Balis FM, McCully CL et al (1991) Pharmacokinetics of pyrazoloacridine in the Rhesus monkey. Cancer Res 51:5467–5470

    CAS  Google Scholar 

  154. Metha G, Sambaiah T, Maiya BG et al (1993) Synthesis and nuclease activity of some ‘porphyrin–acridone’ hybrid molecules. J Chem Soc Perkin Trans 1:2667–2670

    Google Scholar 

  155. Wang Q-F, Yen GC (2008) Efficient synthesis of diarylidene octahydroacridines by one-pot multi-component tandem reactions. Cent Eur J Chem 6:404–409

    Google Scholar 

  156. Nadaraj V, Selvi ST, Mohan S (2009) Microwave-induced synthesis and anti-microbial activities of 7, 10, 11, 12-tetrahydrobenzo[c]acridin-8(9H)-one derivatives. Eur J Med Chem 44:976–980

    CAS  Google Scholar 

  157. Rizzuto R, Bernardi P, Pozzan T (2000) Mitochondria as all-round players of the calcium game. J Physiol 529:37–47

    CAS  Google Scholar 

  158. Pan W, Liu H, Xu Y-J et al (2005) Pyrimido-oxazepine as a versatile template for the development of inhibitors of specific kinases. Bioorg Med Chem Lett 15:5474–5477

    CAS  Google Scholar 

  159. Tamura K, Fukuoka M (2005) Gefitinib in non-small cell lung cancer. Expert Opin Pharmacol 6:985–993

    CAS  Google Scholar 

  160. Hudson C, Murthy VS, Estep KG et al (2007) Microwave-assisted three component one-pot synthesis of pyrimido-oxazepines. Tetrahedron Lett 48:1489–1492

    CAS  Google Scholar 

  161. Tu SJ, Cao XD, Hao WJ et al (2009) An efficient and chemoselective synthesis of benzo[e][1, 4]thiazepin-2-(1H, 3H, 5H)-ones via a microwave-assisted multi-component reaction in water. Org Biomol Chem 7:557–563

    CAS  Google Scholar 

  162. Wu J, Jiang Y, Dai W-M (2009) Assembly of 1, 3-dihydro-2H–3-benzazepin-2-one conjugates via Ugi four-component reaction and palladium-catalyzed hydroamidation. Synlett 7:1162–1166

    Google Scholar 

  163. Willy B, Dallos T, Rominger F et al (2008) Three-component synthesis of cryofluorescent 2, 4-disubstituted 3H-1, 5-benzodiazepines-conformational control of emission properties. Eur J Org Chem 2008:4796–4805

    Google Scholar 

  164. De Silva RA, Santra S, Andreana PR (2008) A tandem one-pot, microwave-assisted synthesis of regiochemically differentiated 1, 2, 4, 5-tetrahydro-1, 4-benzodiazepin-3-ones. Org Lett 10:4541–4544

    Google Scholar 

  165. Hajela K, Kapil RS (1997) Synthesis and post-coital contraceptive activity of a new series of substituted 2, 3-diaryl-2H-1-benzopyrans. Eur J Med Chem 32:135–142

    CAS  Google Scholar 

  166. Mannhold R, Cruciani G, Weber H et al (1999) 6-Substituted benzopyrans as potassium channel activators: Synthesis, vasodilator properties, and multivariate analysis. J Med Chem 42:981–991

    CAS  Google Scholar 

  167. Zhuang Q, Zhou D, Tu S et al (2008) A highly efficient microwave-assisted synthesis of chromeno[3, 4-b][4, 7]phenanthroline derivatives through multi-component reactions in water. J Heterocycl Chem 45:831–835

    CAS  Google Scholar 

  168. El-Shaaer HM, Foltinova P, Lacova M et al (1998) Synthesis, antimicrobial activity and bleaching effect of some reaction products of 4-oxo-4H-benzopyran-3-carboxaldehydes with aminobenzothiazoles and hydrazides. Farmaco 53:224–232

    CAS  Google Scholar 

  169. Johnson AT, Wang L, Standeven AM et al (1999) Synthesis and biological activity of high-affinity retinoic acid receptor antagonists. Bioorg Med Chem 7:1321–1338

    CAS  Google Scholar 

  170. Surpur MP, Kshirsagar S, Samant SD (2009) Exploitation of the catalytic efficacy of Mg/Al hydrotalcite for the rapid synthesis of 2-aminochromene derivatives via a multi-component strategy in the presence of microwaves. Tetrahedron Lett 50:719–722

    CAS  Google Scholar 

  171. Yet L (2000) Metal-mediated synthesis of medium-sized rings. Chem Rev 100:2963–3007

    CAS  Google Scholar 

  172. Schmidt B, Westhus M (2000) Diastereoselectivity in a ring closing metathesis reaction with a remote stereogenic centre leading to quaternary dihydropyrans. Tetrahedron 56:2421–2426

    CAS  Google Scholar 

  173. Class YJ, DeShong P (1995) The pseudomonic acids. Chem Rev 95:1843–1857

    CAS  Google Scholar 

  174. Castagnolo D, Botta L, Botta M (2009) Stereoselective protecting group free synthesis of D, L-gulose ethyl glycoside via multi-component enyne cross metathesis-hetero Diels-Alder reaction. Carbohydr Res 344:1285–1288

    CAS  Google Scholar 

  175. Castagnolo D, Botta L, Botta M (2009) One-pot multi-component synthesis of 2, 3-dihydropyrans: new access to furanose-pyranose 1, 3-C–C-linked-disaccharides. Tetrahedron Lett 50:1526–1528

    CAS  Google Scholar 

  176. Wei C, Li Z, Li CJ (2004) The development of A3-coupling (aldehyde-alkyne-amine) and AA3-coupling (asymmetric aldehyde-alkyne-amine). Synlett:1472–1483

    Google Scholar 

  177. Bariwal JB, Ermolat’ev DS, Van der Eycken EV (2010) Efficient microwave-assisted synthesis of secondary alkyl propargylamines via A3-coupling with primary aliphatic amines. Chem Eur J 16:3281–3284

    Google Scholar 

  178. Shore G, Yoo W-J, Li C-J et al (2009) Propargyl amine synthesis catalysed by gold and copper thin films by using microwave-assisted continuous-flow organic synthesis (MACOS). Chem Eur J 16:126–133

    Google Scholar 

  179. Mont N, Mehta VP, Appukkuttan P et al (2008) Diversity oriented microwave-assisted synthesis of (-) -Steganacin aza-analogues. J Org Chem 73:7509–7516

    CAS  Google Scholar 

  180. Shaterian HR, Yarahmadi H, Ghashang M (2008) An efficient, simple and expedition synthesis of 1-amidoalkyl-2-naphthols as ‘drug like’ molecules for biological screening. Bioorg Med Chem Lett 18:788–792

    CAS  Google Scholar 

  181. Xu H, Yu X, Sun L et al (2008) Microwave-assisted three-component Knoevenagel-nucleophilic aromatic substitution reactions. Tetrahedron Lett 49:4687–4689

    CAS  Google Scholar 

  182. Rodriguez B, Bolm C (2006) Thermal effects in the organocatalytic asymmetric Mannich reaction. J Org Chem 71:2888–2891

    CAS  Google Scholar 

  183. Xing X, Wu J, Feng G et al (2006) Microwave-assisted one-pot U-4CR and intramolecular O-alkylation toward heterocyclic scaffolds. Tetrahedron 62:6774–6781

    CAS  Google Scholar 

  184. Hulme C, Chappeta S, Dietrich J (2009) A simple, cheap alternative to ‘designer convertible isonitriles’ expedited with microwaves. Tetrahedron Lett 50:4054–4057

    CAS  Google Scholar 

  185. Strubing D, Neumann H, Jacobi von Wangelin A et al (2006) An easy and general protocol for multi-component coupling reactions of aldehydes, amides, and dienophiles. Tetrahedron 62:10962–10967

    Google Scholar 

  186. Werner S, Nielsen SD, Wipf P et al (2009) Fluorous parallel synthesis of a piperazinedione-fused tricyclic compound library. J Comb Chem 11:452–459

    CAS  Google Scholar 

  187. Sridharan V, Karthikeyan K, Muthusubramanian S (2006) Unexpected multi-component reaction of 2/4-methoxyaryl aldehydes with arylhydroxylamines and maleic anhydride: a novel synthesis of unsymmetrical diarylamines. Tetrahedron Lett 47:4221–4223

    CAS  Google Scholar 

  188. Santra S, Andreana PR (2007) A one-pot, microwave-influenced synthesis of diverse small molecules by multi-component reaction cascades. Org Lett 9:5035–5038

    CAS  Google Scholar 

  189. Hao W-J, Jiang B, Tu S-J et al (2009) Microwave-assisted combinatorial synthesis of new 3-pyrimidin-5-ylpropanamides via a solvent-dependent chemoselective reaction. J Comb Chem 11:310–314

    CAS  Google Scholar 

  190. Hulme C, Chappeta S, Griffith C et al (2009) An efficient solution phase synthesis of triazadibenzoazulenones: ‘designer isonitrile free’ methodology enabled by microwaves. Tetrahedron Lett 50:1939–1942

    CAS  Google Scholar 

  191. Naik T, Naik H (2008) An efficient Bi(NO3)3·5H2O catalyzed multi component one-pot synthesis of novel naphthyridines. Mol Divers 12:139–142

    Google Scholar 

  192. Sridhar M, Rao RM, Baba NHK et al (2007) Microwave accelerated Gewald reaction: synthesis of 2-aminothiophenes. Tetrahedron Lett 48:3171–3172

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik V. Van der Eycken .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bariwal, J.B., Trivedi, J.C., Van der Eycken, E.V. (2010). Microwave Irradiation and Multicomponent Reactions. In: Orru, R., Ruijter, E. (eds) Synthesis of Heterocycles via Multicomponent Reactions II. Topics in Heterocyclic Chemistry, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7081_2010_45

Download citation

Publish with us

Policies and ethics