Skip to main content

Multicomponent Reaction Design Strategies: Towards Scaffold and Stereochemical Diversity

  • Chapter
  • First Online:
Synthesis of Heterocycles via Multicomponent Reactions II

Part of the book series: Topics in Heterocyclic Chemistry ((TOPICS,volume 25))

Abstract

In the past decade, it has been extensively demonstrated that multicomponent chemistry is an ideal tool to create molecular complexity. Furthermore, combination of these complexity-generating reactions with follow-up cyclization reactions led to scaffold diversity, which is one of the most important features of diversity oriented synthesis. Scaffold diversity has also been created by the development of novel multicomponent strategies. Four different approaches will be discussed [single reactant replacement, modular reaction sequences, condition based divergence, and union of multicomponent reactions (MCRs)], which all led to the development of new MCRs and higher order MCRs, thereby addressing both molecular diversity and complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Small molecules are typically compounds with a molecular weight less than 500 Da: [1].

  2. 2.

    Molecules/interactions that are considered to be “undruggable”, comprise transcription factors, regulatory RNAs, interactions between proteins (especially intracellular) and between proteins and DNA. There are only about 500 “druggable” targets: [4].

  3. 3.

    The chemical space is a multidimensional area with each dimension defined by a descriptor which can be molecular weight, polarity, solubility, membrane permeability, binding constant. H-bonding properties etc. and encompasses all small carbon-based molecules that could in principle be created: [5].

  4. 4.

    The E factor is defined as the mass ratio of waste (everything but the desired product) to desired product. For a recent overview, see: [19].

  5. 5.

    Although the authors used a pre-formed imine, there are several examples known of proline catalyzed one-pot three component Mannich reactions. However, if aromatic aldehydes are used in this one-pot procedure, the obtained Mannich products had to be reduced (by NaBH4) to the corresponding alcohols to avoid epimerization: [38, 39].

  6. 6.

    This figure is a slightly modified figure as published in [40].

  7. 7.

    For more examples of the Build/Couple/Pair principle applied in DOS: [5254].

  8. 8.

    It has to be noted that this reaction was first developed by Zhu and coworkers in 2001, even before the previous mentioned carbonyl variant of Ganem and co-workers: [58]. Later on, Ganem published a similar reaction with unsubstituted isocyanoamides: [59].

  9. 9.

    In addition to the examples reported here there are several other publications that apply SRR to achieve new scaffolds, thereby discovering new MCRs: [55, 75, 76].

  10. 10.

    The use of phosphonates with large R1 substituents resulted in a significant decrease in yield, 22–39% for R1 = Ph and i-pentyl.

  11. 11.

    Several other research groups have been involved in MCRs with aminoazoles, 1,3-diketones and aldehydes. For a recent overview see: [93].

  12. 12.

    Propagation of ultra sound waves into the liquid medium results in a series of high-pressure (compression) and low-pressure (rarefaction) cycles, with rates depending on the frequency. During the low-pressure cycle, high-intensity ultrasonic waves generate small vacuum bubbles in the liquid, which can reach a volume at which they are not stable anymore resulting in a violent collapse. This phenomenon is termed cavitation: [94, 95].

  13. 13.

    It has to be noted that the formation of oxazoles using isocyano amides has been well studied by Zhu and co-workers (see [58, 59]). With the work of Elders et al. the oxazole MCR has been expanded with a wide range of isocyano esters. The MCR with isocyano amides can now also be directed to the 2-imidazolines.

  14. 14.

    The directing properties of the MCR involving isocyano esters could exclusively be performed using α-aryl isocyano esters, since the use of α-alkyl isocyano esters always resulted in the formation of 2-imidazolines, in various solvents, even without AgOAc, see [96] and [97].

  15. 15.

    The α-isocyanide is α-acidic and will react in the 3CR to yield 2H-2-imidazolines, while the other isocyanide is an aliphatic isocyanide and remains unaffected.

Abbreviations

Ac:

Acetyl

Ar:

Aryl

BINAP:

2,2′-bis(diphenylphosphino)-1,1′-binaphthyl

Bn:

Benzyl

Bu:

Butyl

tBu:

Tert-butyl

CBD:

Condition-based divergence

Cp:

Cyclopentadienyl

CR:

Component reaction

3D:

Three dimensional

DA:

Diels-Alder

DCM:

Dichloromethane

de :

Diastereomer excess

DIPEA:

N,N-diisopropylethylamine

DMAD:

Dimethyl acetylenedicarboxylate

DMF:

Dimethylformamide

DMSO:

Dimethyl sulfoxide

DOS:

Diversity oriented synthesis

dppf:

1,1′-bis(diphenylphosphino)ferrocene

dr :

Diastereomer ratio

ee :

Enantiomer excess

Et:

Ethyl

EWG:

Electron withdrawing group

FG:

Functional group

HWE:

Horner-Wadsworth-Emmons

IMCR:

Isocyanide based multicomponent reaction

mCPBA:

m-chloroperoxybenzoic acid

MCR:

Multicomponent reaction

Me:

Methyl

MeCN:

Acetonitrile

min.:

Minute(s)

MRS:

Modular reaction sequences

MS:

Molecular sieves

MTBE:

Methyl tert-butyl ether

MW:

Microwave

n.d.:

Not determined

Nu:

Nucleophile

P-3CR:

Passerini 3-component reaction

Ph:

Phenyl

PMP:

p-methoxyphenyl

rt:

Room temperature

SRR:

Single reactant replacement

Tf:

Trifluoromethanesulfonyl (triflyl)

TFA:

Trifluoroacetic acid

THF:

Tetrahydrofuran

TMS:

Trimethylsilyl

Ts:

Tosyl, 4-toluenesulfonyl

U-4CR:

Ugi 4-component reaction

References

  1. Lipinski C, Hopkins A (2004) Nature 432:855–861

    Article  CAS  Google Scholar 

  2. Burke MD, Schreiber SL (2004) Angew Chem Int Ed 43:46–58

    Article  Google Scholar 

  3. Schreiber SL (2000) Science 287:1964–1969

    Article  CAS  Google Scholar 

  4. Schreiber SL (2009) Nature 457:153–154

    Article  CAS  Google Scholar 

  5. Dobson CM (2004) Nature 432:824–828

    Article  CAS  Google Scholar 

  6. Tan DS (2005) Nat Chem Biol 1:74–84

    Article  CAS  Google Scholar 

  7. Galloway WRJD, Bender A, Welch M, Spring DR (2009) Chem Commun:2446–2462

    Google Scholar 

  8. Morton D, Leach S, Cordier C, Warriner S, Nelson A (2009) Angew Chem Int Ed 48:104–109

    Article  CAS  Google Scholar 

  9. Spandl RJ, Bender A, Spring DR (2008) Org Biomol Chem 6:1149–1158

    Article  CAS  Google Scholar 

  10. Burke MD, Berger EM, Schreiber SL (2004) J Am Chem Soc 126:14095–14104

    Article  CAS  Google Scholar 

  11. Orru RVA, de Greef M (2003) Synthesis:1471–1499

    Google Scholar 

  12. Dömling A (2006) Chem Rev 106:17–89

    Article  Google Scholar 

  13. Dömling A, Ugi I (2000) Angew Chem Int Ed 39:3168–3210

    Article  Google Scholar 

  14. Zhu JP (2003) Eur J Org Chem 7:1133–1144

    Article  Google Scholar 

  15. Jacobi von Wangelin A, Neumann H, Gördes D, Klaus S, Strübing D, Beller M (2003) Chem Eur J 9:4286–4294

    Article  Google Scholar 

  16. Simon C, Constantieux T, Rodriguez J (2004) Eur J Org Chem:4957–4980

    Google Scholar 

  17. Zhu J, Bienaymé H (2005) Multicomponent reactions. Wiley-VCH, Weinheim

    Google Scholar 

  18. Trost BM (1995) Angew Chem Int Ed Engl 34:259–281

    Article  CAS  Google Scholar 

  19. Sheldon RA (2007) Green Chem 9:1273–1283

    Article  CAS  Google Scholar 

  20. Strecker A (1850) Justus Liebigs Ann Chem:27–51

    Google Scholar 

  21. Hantzsch A (1882) Justus Liebigs Ann Chem 215:1–82

    Article  Google Scholar 

  22. Biginelli P (1893) Gazz Chim Ital 23:360–416

    Google Scholar 

  23. Kappe CO (1993) Tetrahedron 49:6937–6963

    Article  CAS  Google Scholar 

  24. Mannich C, Krösche I (1912) Arch Pharm 250:647–667

    Article  CAS  Google Scholar 

  25. Passerini M (1921) Gazz Chim Ital 51:126–129

    CAS  Google Scholar 

  26. Banfi L, Riva R (2005) Org React 65:1–140

    CAS  Google Scholar 

  27. Lieke W (1859) Justus Liebigs Ann Chem 112:316

    Article  Google Scholar 

  28. El Kaim L, Grimaud L (2009) Tetrahedron 65:2153–2171

    Article  CAS  Google Scholar 

  29. Ugi I, Meyr R, Fetzer U, Steinbrucker C (1959) Angew Chem 71:386

    Google Scholar 

  30. Marcaccini S, Torroba T (2007) Nat Protoc 2:632–639

    Article  CAS  Google Scholar 

  31. Pan SC, List B (2008) Angew Chem Int Ed 47:3622–3625

    Article  CAS  Google Scholar 

  32. Ugi I (1971) Isonitrile chemistry. Academic, New York

    Google Scholar 

  33. Ramón DJ, Yus M (2005) Angew Chem Int Ed 44:1602–1634

    Article  Google Scholar 

  34. Guillena G, Ramón DJ, Yus M (2007) Tetrahedron Asymmetry 18:693–700

    Article  CAS  Google Scholar 

  35. Mitsumori S, Zhang H, Cheong PH-Y, Houk KN, Tanaka F, Barbas CF III (2006) J Am Chem Soc 128:1040–1041

    Article  CAS  Google Scholar 

  36. Córdova A, Watanabe S, Tanaka F, Notz W, Barbas CFIII (2002) J Am Chem Soc 124:1866–1867

    Article  Google Scholar 

  37. Notz W, Tanaka F, Watanabe S, Chowdari NS, Turner JM, Thayumanuvan R, Barbas CFIII (2003) J Org Chem 68:9624–9634

    Article  CAS  Google Scholar 

  38. Hayashi Y, Tsuboi W, Ashimine I, Urushima T, Shoji M, Sakai K (2003) Angew Chem Int Ed 42:3677–3680

    Article  CAS  Google Scholar 

  39. Córdova A (2003) Synlett:1651–1654

    Google Scholar 

  40. Sunderhaus JD, Martin SF (2009) Chem Eur J 15:1300–1308, and references therein

    Article  CAS  Google Scholar 

  41. Sunderhaus JD, Dockendorff C, Martin SF (2009) Tetrahedron 65:6454–6469, and references therein

    Article  CAS  Google Scholar 

  42. Nielsen TE, Schreiber SL (2008) Angew Chem Int Ed 47:48–56

    Article  CAS  Google Scholar 

  43. Comer E, Rohan E, Deng L, Porco JA Jr (2007) Org Lett 9:2123–2126

    Article  CAS  Google Scholar 

  44. Banfi L, Riva R, Basso A (2010) Synlett:23–41

    Google Scholar 

  45. El Kaim L, Gageat M, Gaultier L, Grimaud L (2007) Synlett:500–502

    Google Scholar 

  46. Akritopoulou-Zanze I, Whitehead A, Waters JE, Henry RF, Djuric SW (2007) Org Lett 9:1299–1302

    Article  CAS  Google Scholar 

  47. Ribelin TP, Judd AS, Akritopoulou-Zanze I, Henry RF, Cross JL, Whittern DN, Djuric SW (2007) Org Lett 9:5119–5122

    Article  CAS  Google Scholar 

  48. Erb W, Neuville L, Zhu J (2009) J Org Chem 74:3109–3115

    Article  CAS  Google Scholar 

  49. Ma Z, Xiang Z, Luo T, Lu K, Xu Z, Chen J, Yang Z (2006) J Comb Chem 8:696–704

    Article  CAS  Google Scholar 

  50. Paulvannan K (1999) Tetrahedron Lett 40:1851–1854

    Article  CAS  Google Scholar 

  51. Kumagai N, Muncipinto G, Schreiber SL (2006) Angew Chem Int Ed 45:3635–3638

    Article  CAS  Google Scholar 

  52. Galloway WRJD, Diáz-Gavilán M, Isidro-Llobet A, Spring DR (2009) Angew Chem Int Ed 48:1194–1196, and references therein

    Article  CAS  Google Scholar 

  53. Luo T, Schreiber SL (2009) J Am Chem Soc 131:5667–5674

    Article  CAS  Google Scholar 

  54. Uchida T, Rodriquez M, Schreiber SL (2009) Org Lett 11:1559–1562

    Article  CAS  Google Scholar 

  55. Ganem B (2009) Acc Chem Res 42:463–472

    Article  CAS  Google Scholar 

  56. Ugi I (1962) Angew Chem Int Ed 1:8–21

    Article  Google Scholar 

  57. Xia Q, Ganem B (2002) Org Lett 4:1631–1634

    Article  CAS  Google Scholar 

  58. Sun X, Janvier P, Zhao G, Bienaymé H, Zhu J (2001) Org Lett 3:877–880

    Article  CAS  Google Scholar 

  59. Wang Q, Xia Q, Ganem B (2003) Tetrahedron Lett 44:6825–6827

    Article  CAS  Google Scholar 

  60. Elders N, Ruijter E, de Kanter FJJ, Janssen E, Lutz M, Spek AL, Orru RVA (2009) Chem Eur J 15:6096–6099

    Article  CAS  Google Scholar 

  61. Diels O, Harms J (1936) Justus Liebigs Ann Chem 525:73–94

    Article  CAS  Google Scholar 

  62. Huisgen R, Morikawa M, Herbig K, Brunn E (1967) Chem Ber 100:1094–1106

    Article  CAS  Google Scholar 

  63. Nair V, Sreekanth AR, Abhilash N, Bhadbhade MM, Gonnade RC (2002) Org Lett 4:3575–3577

    Article  Google Scholar 

  64. Nair V, Sreekanth AR, Biju AT, Rath NP (2003) Tetrahedron Lett 44:729–731

    Article  CAS  Google Scholar 

  65. Nair V, Devi BR, Varma LR (2005) Tetrahedron Lett 46:5333–5335

    Article  CAS  Google Scholar 

  66. Yavari I, Piltan M, Moradi L (2009) Tetrahedron 65:2067–2071

    Article  CAS  Google Scholar 

  67. Yavari I, Hossaini Z, Sabbaghan M (2006) Tetrahedron Lett 47:6037–6040

    Article  CAS  Google Scholar 

  68. Yavari I, Hossaini Z, Sabbaghan M, Ghazanfarpour-Darjani M (2007) Monatsh Chem 138:677–681

    Article  CAS  Google Scholar 

  69. Yavari I, Ghazanfarpour-Darjani M, Sabbaghan M, Hossaini Z (2007) Tetrahedron Lett 48:3749–3751

    Article  CAS  Google Scholar 

  70. Yadav JS, Subba Reddy BV, Yadav NN, Gupta MK, Sridhar B (2008) J Org Chem 73:6857–6859

    Article  CAS  Google Scholar 

  71. Alizadeh A, Zohreh N (2008) Helv Chim Acta 91:844–849

    Article  CAS  Google Scholar 

  72. Yadav JS, Subba Reddy BV, Yadav NN, Gupta MK (2008) Tetrahedron Lett 49:2815–2819

    Article  CAS  Google Scholar 

  73. Ghahremanzadeh R, Ahadi S, Sayyafi M, Bazgir A (2008) Tetrahedron Lett 49:4479–4482

    Article  CAS  Google Scholar 

  74. Yavari I, Karimi E (2008) Tetrahedron Lett 49:6433–6436

    Article  CAS  Google Scholar 

  75. Weber L (2005) In: Zhu J, Bienaymé H (eds) Multicomponent reactions. Weinheim, Wiley-VCH, Chapter 10 and references therein

    Google Scholar 

  76. Mironov MA (2006) QSAR Comb Sci 25:423–431, and references therein

    Article  CAS  Google Scholar 

  77. Shin WS, Lee K, Oh DY (1995) Tetrahedron Lett 36:281–282

    Article  CAS  Google Scholar 

  78. Lee K, Oh DY (1991) Synthesis:213–214

    Google Scholar 

  79. Kiselyov AS (1995) Tetrahedron Lett 36:9297–9300

    Article  CAS  Google Scholar 

  80. Kiselyov AS (2005) Tetrahedron Lett 46:1663–1665

    Article  CAS  Google Scholar 

  81. Kiselyov AS, Smith LII (2006) Tetrahedron Lett 47:2611–2614

    Article  CAS  Google Scholar 

  82. Kiselyov AS (2006) Tetrahedron Lett 47:2941–2944

    Article  CAS  Google Scholar 

  83. Vugts DJ, Jansen H, Schmitz RF, de Kanter FJJ, Orru RVA (2003) Chem Commun:2594–2595

    Google Scholar 

  84. Vugts DJ, Koningstein MM, Schmitz RF, de Kanter FJJ, Groen MB, Orru RVA (2006) Chem Eur J 12:7178–7189

    Article  CAS  Google Scholar 

  85. Groenendaal B, Vugts DJ, Schmitz RF, de Kanter FJJ, Ruijter E, Groen MB, Orru RVA (2008) J Org Chem 73:719–722

    Article  CAS  Google Scholar 

  86. Groenendaal B, Ruijter E, de Kanter FJJ, Lutz M, Spek AL, Orru RVA (2008) Org Biomol Chem 6:3158–3165

    Article  CAS  Google Scholar 

  87. Glasnov TN, Vugts DJ, Koningstein MM, Desai B, Fabian WMF, Orru RVA, Kappe CO (2006) QSAR Comb Sci 25:509–518

    Article  CAS  Google Scholar 

  88. Janvier P, Sun X, Bienaymé H, Zhu J (2002) J Am Chem Soc 124:2560–2567

    Article  CAS  Google Scholar 

  89. Janvier P, Bienaymé H, Zhu J (2002) Angew Chem Int Ed 41:4291–4294

    Article  CAS  Google Scholar 

  90. Chebanov VA, Saraev VE, Desenko SM, Chernenko VN, Knyazeva IV, Groth U, Glasnov TN, Kappe CO (2008) J Org Chem 73:5110–5118

    Article  CAS  Google Scholar 

  91. Liu Y-K, Liu H, Du W, Yue L, Chen Y-C (2008) Chem Eur J 14:9873–9877

    Article  CAS  Google Scholar 

  92. Grigg R (1987) Chem Soc Rev 16:89–121

    Google Scholar 

  93. Chebanov VA, Gura KA, Desenkol SM (2010) Top Heterocycl Chem 23:41–84 (and references cited therein)

    Google Scholar 

  94. Mason T (1997) J Chem Soc Rev 26:443–451

    Article  CAS  Google Scholar 

  95. Cravotto G, Cintas PJ (2006) Chem Soc Rev 35:180–196

    Article  CAS  Google Scholar 

  96. Elders N, Schmitz RF, de Kanter FJJ, Ruijter E, Groen MB, Orru RVA (2007) J Org Chem 72:6135–6142

    Article  CAS  Google Scholar 

  97. Elders N (2010) PhD thesis, Vrije Universiteit, Amsterdam

    Google Scholar 

  98. Elders N, Ruijter E, de Kanter FJJ, Groen MB, Orru RVA (2008) Chem Eur J 14:4961–4973

    Article  CAS  Google Scholar 

  99. Dömling A (2000) Curr Opin Chem Biol 4:318–323

    Article  Google Scholar 

  100. Dömling A, Ugi I (1993) Angew Chem Int Ed 32:563–564

    Article  Google Scholar 

  101. Dömling A, Herdtweck E, Ugi I (1998) Acta Chem Scan 52:107–113

    Article  Google Scholar 

  102. Ugi I, Demharter A, Hörl W, Schmid T (1996) Tetrahedron 52:11657–11664

    Article  CAS  Google Scholar 

  103. Elders N, van der Born D, Hendrickx LJD, Timmer BJJ, Krause A, Janssen E, de Kanter FJJ, Ruijter E, Orru RVA (2009) Angew Chem Int Ed 48:5856–5859

    Article  CAS  Google Scholar 

  104. Harriman GCB (1997) Tetrahedron Lett 38:5591–5594

    Article  CAS  Google Scholar 

  105. Shaabani A, Maleki A, Moghimi-Rad J (2007) J Org Chem 72:6309–6311

    Article  CAS  Google Scholar 

  106. El Kaïm L, Grimaud L, Oble J (2005) Angew Chem Int Ed 44:7961–7964

    Article  Google Scholar 

  107. El Kaïm L, Gizolme M, Grimaud L, Oble J (2007) J Org Chem 72:4169–4180

    Article  Google Scholar 

Download references

Acknowledgment

This work was performed with financial support of the Dutch Science Foundation (NWO, VICI grant).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romano V. A. Orru .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Scheffelaar, R., Ruijter, E., Orru, R.V.A. (2010). Multicomponent Reaction Design Strategies: Towards Scaffold and Stereochemical Diversity. In: Orru, R., Ruijter, E. (eds) Synthesis of Heterocycles via Multicomponent Reactions II. Topics in Heterocyclic Chemistry, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7081_2010_44

Download citation

Publish with us

Policies and ethics