Skip to main content

Acyclic Oligopyrrolic Anion Receptors

  • Chapter
  • First Online:
Anion Recognition in Supramolecular Chemistry

Part of the book series: Topics in Heterocyclic Chemistry ((TOPICS,volume 24))

Abstract

Recent progress in the guest-binding and supramolecular chemistry of anion-responsive acyclic oligopyrroles is summarized here in this chapter. The hydrogen-bonding properties of the pyrrole NH sites determine anion binding in acylic oligopyrroles such as guanidinocarbonyl and amidopyrroles, dipyrrins and their analogs, dipyrrolylquinoxalines, and boron complexes of dipyrrolyldiketones. Linear oligopyrroles can be incorporated as subunits in various macromolecules and complexes by means of covalent and noncovalent interactions; in fact, boron complexes of dipyrrolyldiketones form assembled structures and, with the appropriate substituents, soft materials such as anion-responsive supramolecular gels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As one of the other examples.

  2. 2.

    Maeda et al. discovered the formation of multicrystalline systems of 144 and have since been investigating the photophysical and electric conductive properties of the single-crystal state with the aim of discovering the unique properties possible because of the ordered assembly of π-conjugated molecules [131].

  3. 3.

    Emission quantum yield (φ F) of 154 is under further validation. Further, other elements besides fluorine and oxygen can also be introduced at the boron moiety [133].

  4. 4.

    Anion additives may not always act simply as inhibitors but may also be exploited as building units in soft materials. From this point of view, structural modifications to anion receptors and the choice of appropriate combinations of anions, cations, receptors, and solvents are currently being investigated in order to harness the fascinating properties of supramolecular gels that are sensitive to chemical stimuli [146].

  5. 5.

    Recently, liquid crystal properties of BF2 complexes of dipyrrolyldikerones have been revealed revealed [150].

References

  1. Miller C (2006) Nature 440:484

    Article  CAS  Google Scholar 

  2. Pusch M (2010) In: Kew J, Davies C (eds) Ion channels from structure and function. Oxford University Press, New York, p 172, references therein

    Google Scholar 

  3. Dutzler R, Campbell EB, Cadene M, Chait BT, MacKinnon R (2002) Nature 415:287

    Article  CAS  Google Scholar 

  4. Bianchi A, Bowman-James K, García-España E (eds) (1997) Supramolecular chemistry of anions. Wiley-VCH, New York

    Google Scholar 

  5. Singh RP, Moyer BA (eds) (2004) Fundamentals and applications of anion separations. Kluwer Academic/Plenum, New York

    Google Scholar 

  6. Stibor I (ed) (2005) Anion sensing. Topics in current chemistry, vol 255. Springer, Berlin, pp 238

    Google Scholar 

  7. Sessler JL, Gale PA, Cho WS (2006) Anion receptor chemistry. RSC, Cambridge

    Google Scholar 

  8. Vilar R (ed) (2008) Recognition of anions. Structure and bonding, vol 129. Springer, Berlin, pp 252

    Google Scholar 

  9. Schmidtchen FP, Berger M (1997) Chem Rev 97:1515

    Article  Google Scholar 

  10. Beer PD, Gale PA (2001) Angew Chem Int Ed 40:486

    Article  CAS  Google Scholar 

  11. Sessler JL, Camiolo S, Gale PA (2003) Coord Chem Rev 240:17

    Article  CAS  Google Scholar 

  12. Martínez-Máñez R, Sancenón F (2003) Chem Rev 103:4419

    Article  CAS  Google Scholar 

  13. Gale PA (2005) Chem Commun:3761

    Google Scholar 

  14. Gale PA (2006) Acc Chem Res 39:465

    Article  CAS  Google Scholar 

  15. Gale PA, Quesada R (2006) Coord Chem Rev 250:3219

    Article  CAS  Google Scholar 

  16. Kang SO, Begum RA, Bowman-James K (2006) Angew Chem Int Ed 45:7882

    Article  CAS  Google Scholar 

  17. Bolondeau P, Segura M, Perez-Fernandez R, de Mendoza J (2007) Chem Soc Rev 36:198

    Article  CAS  Google Scholar 

  18. Gale PA, García-Garrido SE, Garric J (2008) Chem Soc Rev 37:151

    Article  CAS  Google Scholar 

  19. Caltagirone C, Gale PA (2009) Chem Soc Rev 38:520

    Article  CAS  Google Scholar 

  20. Maeda H (2010) In: Kadish KM, Smith KM, Guilard R (eds) Handbook of porphyrin science. Vol 8. Word Scientific, New Jersey, chap 38

    Google Scholar 

  21. Fischer H, Orth H (1934) Die Chemie des Pyrrols. Akademische Verlagsgesellschaft M. B. H, Leipzig

    Google Scholar 

  22. Kadish KM, Smith KM, Guilard R (eds) (2000) The porphyrin handbook. Academic, San Diego

    Google Scholar 

  23. Gale PA, Sessler JL, Král V, Lynch V (1996) J Am Chem Soc 118:5140

    Article  CAS  Google Scholar 

  24. Gale PA, Sessler JL, Král V (1998) Chem Commun:1

    Google Scholar 

  25. Sessler JL, Gross DE, Cho WS, Lynch VM, Schmidtchen FP, Bates GW, Light ME, Gale PA (2006) J Am Chem Soc 128:12281

    Article  CAS  Google Scholar 

  26. Lee CH, Miyaji H, Yoon DW, Sessler JL (2008) Chem Commun:24

    Google Scholar 

  27. Jasat A, Dolphin D (1997) Chem Rev 97:2267

    Article  CAS  Google Scholar 

  28. Sessler JL, Seidel D (2003) Angew Chem Int Ed 42:5134

    Article  CAS  Google Scholar 

  29. Chandrashekar TK, Venkatraman S (2003) Acc Chem Res 36:676

    Article  CAS  Google Scholar 

  30. Shimizu S, Osuka A (2006) Eur J Inorg Chem:1319

    Google Scholar 

  31. Sessler JL, Cyr MJ, Lynch V, McGhee E, Ibers JA (1990) J Am Chem Soc 112:2810

    Article  CAS  Google Scholar 

  32. Shionoya M, Furuta H, Lynch V, Harriman A, Sessler JL (1992) J Am Chem Soc 114:5714

    Article  CAS  Google Scholar 

  33. Sessler JL, Davis J (2001) Acc Chem Res 34:989

    Article  CAS  Google Scholar 

  34. Seidel D, Lynch V, Sessler JL (2002) Angew Chem Int Ed 41:1422

    Article  CAS  Google Scholar 

  35. Maeda H (2007) Eur J Org Chem:5313

    Google Scholar 

  36. Maeda H (2009) J Incl Phenom 64:193

    Article  CAS  Google Scholar 

  37. Coles SJ, Gale PA, Hursthouse MB (2001) CrystEngComm 53:1

    Google Scholar 

  38. Best MD, Tobey SL, Anslyn EV (2003) Coord Chem Rev 240:3

    Article  CAS  Google Scholar 

  39. Houk RJT, Tobey SL, Anslyn EV (2005) In: Stibor I (ed) Anion sensing. Topics in current chemistry, vol 255. Springer, Berlin, p 119

    Google Scholar 

  40. Schmuck C (1999) Chem Commun:843

    Google Scholar 

  41. Schmuck C (1999) Eur J Org Chem:2397

    Google Scholar 

  42. Schmuck C (2006) Coord Chem Rev 250:3053

    Article  CAS  Google Scholar 

  43. Schmuck C (2000) J Org Chem 65:2432

    Article  CAS  Google Scholar 

  44. Schmuck C, Dudaczek J (2007) Eur J Org Chem:3326

    Google Scholar 

  45. Schmuck C, Rehm T, Gröhn F, Reinhold F (2006) J Am Chem Soc 128:1430

    Article  CAS  Google Scholar 

  46. Schmuck C, Rehm T, Klein K, Gröhn F (2007) Angew Chem Int Ed 46:1693

    Article  CAS  Google Scholar 

  47. Gunther H, Anslyn EV (2002) Chem Eur J 8:2218

    Article  Google Scholar 

  48. Schmuck C, Schwegmann M (2005) J Am Chem Soc 127:3373

    Article  CAS  Google Scholar 

  49. Schmuck C, Schwegmann M (2006) Org Biomol Chem 4:836

    Article  CAS  Google Scholar 

  50. Ciferri A (ed) (2000) Supramolecular polymers. Marcel Dekker, New York

    Google Scholar 

  51. Brunsveld L, Folmer BJB, Meijer EW, Sijbesma RP (2001) Chem Rev 101:4071

    Article  CAS  Google Scholar 

  52. Sauvage JP (ed) Transition metals in supramolecular chemistry. Wiley, Chichester

    Google Scholar 

  53. Manners I (2004) Synthetic metal-containing polymers. Wiley-VCH, Weinheim

    Google Scholar 

  54. Schubert US, Newkome GR, Manners I (eds) (2006) Metal-containing and metallosupramolecular polymers and materials. ACS, Washington, DC

    Google Scholar 

  55. Gröger G, Stepanenko V, Würthner F, Schmuck C (2009) Chem Commun:698

    Google Scholar 

  56. Gale PA, Camiolo S, Chapman CP, Light ME, Hursthouse MB (2001) Tetrahedron Lett 42:5095

    Article  CAS  Google Scholar 

  57. Gale PA, Camiolo S, Tizzard GJ, Chapman CP, Light ME, Coles SJ, Hursthouse MB (2001) J Org Chem 66:7849

    Article  CAS  Google Scholar 

  58. Gale PA, Navakhun K, Camiolo S, Light ME, Hursthouse MB (2002) J Am Chem Soc 124:11228

    Article  CAS  Google Scholar 

  59. Light ME, Gale PA, Navakhun K (2005) Acta Cryst E 61:o1300

    Article  CAS  Google Scholar 

  60. Navakhun K, Ruangpornvisuti V (2006) J Mol Struct Theochem 772:23

    Article  CAS  Google Scholar 

  61. Navakhun K, Ruangpornvisuti V (2009) J Mol Struct Theochem 907:131

    Article  CAS  Google Scholar 

  62. Sessler JL, Pantos GD, Gale PA, Light ME (2006) Org Lett 8:1593

    Article  CAS  Google Scholar 

  63. Sessler JL, Barkey NM, Pantos GD, Lynch VM (2007) New J Chem 31:646

    Article  CAS  Google Scholar 

  64. Zhang Y, Yin Z, Li Z, Hea J, Cheng JP (2007) Tetrahedron 63:7560

    Article  CAS  Google Scholar 

  65. Yin Z, Li Z, Yu A, He J, Cheng JP (2004) Tetrahedron Lett 45:6803

    Article  CAS  Google Scholar 

  66. Chen CL, Chen YH, Chen CY, Sun SS (2006) Org Lett 8:5053

    Article  CAS  Google Scholar 

  67. Chen CL, Lin TP, Chen YS, Sun SS (2007) Eur J Org Chem:3999

    Google Scholar 

  68. Zyryanov GV, Palacios MA, Anzenbacher P Jr (2007) Angew Chem Int Ed 46:7849

    Article  CAS  Google Scholar 

  69. Falk H (1989) The chemistry of linear and oligopyrroles and bile pigments. Springer, Vienna

    Book  Google Scholar 

  70. Wood TE, Thompson A (2007) Chem Rev 107:1831

    Article  CAS  Google Scholar 

  71. Becker W, Sheldrick WS, Engel J (1978) Acta Cryst B 34:1021

    Article  Google Scholar 

  72. Sessler JL, Eller LR, Cho WS, Nicolaou S, Aguilar A, Lee JT, Lynch VM, Magda DJ (2005) Angew Chem Int Ed 44:5989

    Article  CAS  Google Scholar 

  73. Shin JY, Dolphin D, Patrick BO (2004) Cryst Grow Des 4:659

    Article  CAS  Google Scholar 

  74. Huggins MT, Musto C, Munro L, Catalano VJ (2007) Tetrahedron 63:12994

    Article  CAS  Google Scholar 

  75. Vega IED, Camiolo S, Gale PA, Hursthouse MB, Light ME (2003) Chem Commun:1686

    Google Scholar 

  76. Vega IED, Gale PA, Hursthouse MB, Light ME (2004) Org Biomol Chem 2:2935

    Article  Google Scholar 

  77. Guo Y, Shao SJ, Xu J, Shi YP, Jiang SX (2004) Inorg Chem Commun 7:333

    Article  CAS  Google Scholar 

  78. Sessler JL, An D, Cho WS, Lynch V, Marquez M (2005) Chem Eur J 11:2001

    Article  CAS  Google Scholar 

  79. Renić M, Basarić N, Mlinarić-Majerski K (2007) Tetrahedron Lett 48:7873

    Article  CAS  Google Scholar 

  80. Chauhan SMS, Bisht T, Garg B (2009) Sens Act B 141:116

    Article  CAS  Google Scholar 

  81. Denekamp C, Suwinska K, Salman H, Abraham Y, Eichen Y, Ben Ari J (2007) Chem Eur J 13:657

    Article  CAS  Google Scholar 

  82. Sessler JL, An D, Cho WS, Lynch V (2003) J Am Chem Soc 125:13646

    Article  CAS  Google Scholar 

  83. Lin CI, Selvi S, Fang JM, Chou PT, Lai CH, Cheng YM (2007) J Org Chem 72:3537

    Article  CAS  Google Scholar 

  84. Fürstner A (2003) Angew Chem Int Ed 42:3582

    Article  CAS  Google Scholar 

  85. Davis JT (2010) In: Gale PA, Dehaen W (eds) Anion complexation by heterocycle based receptors. Topics in heterocyclic chemistry. Springer, Berlin DOI 7081_2010_29

    Google Scholar 

  86. Sessler JL, Weghorn SJ, Lynch V, Fransson K (1994) J Chem Soc Chem Commun:1289

    Google Scholar 

  87. Morosini P, Scherer M, Meyer S, Lynch V, Sessler JL (1997) J Org Chem 62:8848

    Article  CAS  Google Scholar 

  88. Oddo B, Dainotti C (1911) Gazz Chim Ital 41:248

    CAS  Google Scholar 

  89. Behr D, Brandänge S, Lindström B (1973) Acta Chem Scand 27:2411

    Article  CAS  Google Scholar 

  90. Black CB, Andrioletti B, Try AC, Ruiperez C, Sessler JL (1999) J Am Chem Soc 121:10438

    Article  CAS  Google Scholar 

  91. Sessler JL, Andrioletti B, Anzenbacher P Jr, Black C, Eller L, Furuta H, Jursíkova K, Maeda H, Marquez M, Mizuno T, Try A (2004) In: Singh RP, Moyer BA (eds) Fundamentals and applications of anion separations. Kluwer Academic/Plenum, New York, p 71

    Chapter  Google Scholar 

  92. Anzenbacher P Jr, Try AC, Miyaji H, Jursíková K, Lynch VM, Marquez M, Sessler JL (2000) J Am Chem Soc 122:10268

    Article  CAS  Google Scholar 

  93. Mizuno T, Eller L, Wei WH, Sessler JL (2002) J Am Chem Soc 124:1134

    Article  CAS  Google Scholar 

  94. Kirkovits GJ, Zimmerman RS, Huggins MT, Lynch VM, Sessler JL (2002) Eur J Org Chem:3768

    Google Scholar 

  95. Sessler JL, Maeda H, Mizuno T, Lynch VM, Furuta H (2002) Chem Commun:862

    Google Scholar 

  96. Sessler JL, Maeda H, Mizuno T, Lynch VM, Furuta H (2002) J Am Chem Soc 124:13474

    Article  CAS  Google Scholar 

  97. Sessler JL, Pantos GD, Katayev E, Lynch VM (2003) Org Lett 5:4141

    Article  CAS  Google Scholar 

  98. Ghosh T, Maiya BG, Smanta A (2006) Dalton Trans:795

    Google Scholar 

  99. Aldakov D, Anzenbacher P Jr (2003) Chem Commun:1394

    Google Scholar 

  100. Aldakov D, Palacios MA, Anzenbacher P Jr (2005) Chem Mater 17:5238

    Article  CAS  Google Scholar 

  101. Aldakov D, Anzenbacher P Jr (2004) J Am Chem Soc 126:4752

    Article  CAS  Google Scholar 

  102. Anzenbacher P Jr, Jursikova K, Aldakov D, Marquez M, Pohl R (2004) Tetrahedron 60:11163

    Article  CAS  Google Scholar 

  103. Pohl R, Aldakov D, Kubát P, Jursíková K, Marquez M, Anzenbacher P Jr (2004) Chem Commun:1282

    Google Scholar 

  104. Anzenbacher P Jr, Palacios MA, Jursíková K, Marquez M (2005) Org Lett 7:5027

    Article  CAS  Google Scholar 

  105. Palacios MA, Nishiyabu R, Marquez M, Anzenbacher P Jr (2007) J Am Chem Soc 129:7538

    Article  CAS  Google Scholar 

  106. Ghosh T, Maiya BG, Wong MW (2004) J Phys Chem A 108:11249

    Article  CAS  Google Scholar 

  107. Wu CY, Chen MS, Lin CA, Lin SC, Sun SS (2006) Chem Eur J 12:2263

    Article  CAS  Google Scholar 

  108. Szydlo F, Andrioletti B, Rose E (2006) Org Lett 8:2345

    Article  CAS  Google Scholar 

  109. Balleter P (2008) In: Vilar R (ed) Recognition of anions. Structure and bonding, vol 129. Springer, Berlin, p 127

    Google Scholar 

  110. Schottel BL, Chifotides HT, Dunbar KR (2008) Chem Soc Rev 37:68

    Article  CAS  Google Scholar 

  111. Yoo J, Kim MS, Hong SJ, Sessler JL, Lee CH (2009) J Org Chem 74:1065

    Article  CAS  Google Scholar 

  112. Salman H, Abraham Y, Tal S, Meltzman S, Kapon M, Tessler N, Speise S, Eichen Y (2005) Eur J Org Chem:2207

    Google Scholar 

  113. Lin Z, Chen HC, Sun SS, Hsu CP, Chow TJ (2009) Tetrahedron 65:5216

    Article  CAS  Google Scholar 

  114. Shevchuk SV, Lynch VM, Sessler JL (2004) Tetrahedron 60:11283

    Article  CAS  Google Scholar 

  115. Plitt P, Gross DE, Lynch VM, Sessler JL (2007) Chem Eur J 13:1374

    Article  CAS  Google Scholar 

  116. Vega IED, Gale PA, Light ME, Loeb SJ (2005) Chem Commun:4913

    Google Scholar 

  117. Oddo B, Dainotti C (1912) Gazz Chim Ital 42:716

    CAS  Google Scholar 

  118. Stark WM, Baker MG, Leeper FJ, Raithby PR, Battersby AR (1988) J Chem Soc Perkin Trans 1:1187

    Google Scholar 

  119. Maeda H, Kusunose Y (2005) Chem Eur J 11:5661

    Article  CAS  Google Scholar 

  120. Maeda H, Ito Y (2006) Inorg Chem 45:8205

    Article  CAS  Google Scholar 

  121. Fujimoto C, Kusunose Y, Maeda H (2006) J Org Chem 71:2389

    Article  CAS  Google Scholar 

  122. Maeda H, Kusunose Y, Mihashi Y, Mizoguchi T (2007) J Org Chem 72:2621

    Google Scholar 

  123. Maeda H, Haketa Y, Nakanishi T (2007) J Am Chem Soc 129:13661

    Article  CAS  Google Scholar 

  124. Maeda H, Terasaki M, Haketa Y, Mihashi Y, Kusunose Y (2008) Org Biomol Chem 6:433

    Article  CAS  Google Scholar 

  125. Maeda H, Ito Y, Haketa Y, Eifuku N, Lee E, Lee M, Hashishin T, Kaneko K (2009) Chem Eur J 15:3709

    Google Scholar 

  126. Maeda H, Haketa Y, Bando Y, Sakamoto S (2009) Synth Met 159:792

    Article  CAS  Google Scholar 

  127. Maeda H, Eifuku N (2009) Chem Lett 38:208

    Article  CAS  Google Scholar 

  128. Maeda H, Kusunose Y, Terasaki M, Ito Y, Fujimoto C, Fujii R, Nakanishi T (2007) Chem Asian J 2:350

    Article  CAS  Google Scholar 

  129. Sanchez-Queseda J, Seel C, Prados P, de Mendoza J (1996) J Am Chem Soc 118:277

    Article  Google Scholar 

  130. Maeda H, Ito Y, Kusunose Y, Nakanishi T (2007) Chem Commun:1136

    Google Scholar 

  131. Maeda H, Bando Y, Haketa Y, Honsho Y, Seki S, Nakajima H, Tohnai N (submitted)

    Google Scholar 

  132. Maeda H, Fujii Y, Mihashi Y (2008) Chem Commun:4285

    Google Scholar 

  133. Maeda H, Takayama M, Kobayashi K, Shinmori H (submitted)

    Google Scholar 

  134. Maeda H, Haketa Y (2008) Org Biomol Chem 6:3091

    Article  CAS  Google Scholar 

  135. Maeda H, Mihashi Y, Haketa Y (2008) Org Lett 10:3179

    Article  CAS  Google Scholar 

  136. Maeda H, Fujii R, Haketa Y (2010) Eur J Org Chem:1468

    Google Scholar 

  137. Terech P, Weiss RG (1997) Chem Rev 97:3133

    Article  CAS  Google Scholar 

  138. Abdallah DJ, Weiss RG (2000) Adv Mater 12:1237

    Article  CAS  Google Scholar 

  139. Fages F (ed) (2005) Low molecular mass gelators. Topics in current chemistry, vol 256. Springer, Berlin, pp 283

    Google Scholar 

  140. Weiss RG, Terech P (eds) (2006) Molecular gels: materials with self-assembled fibrillar networks. Springer, Dordrecht

    Google Scholar 

  141. Ishi-i T, Shinkai S (2005) In: Würthner F (ed) Supramolecular dye chemistry. Topics in current chemistry, vol 258. Springer, Berlin, p 119

    Google Scholar 

  142. Smith DK (2007) In: Atwood JL, Steed JW (eds) Organic nanostructures. Wiley-VCH, Weinheim, p 111

    Google Scholar 

  143. Maeda H (2008) Chem Eur J 14:11274

    Article  CAS  Google Scholar 

  144. Lloyd GO, Steed JW (2009) Nat Chem 1:437

    Article  CAS  Google Scholar 

  145. Piepenbrock MOM, Lloyd GO, Clarke N, Steed JW (2010) Chem Rev 110:1960

    Google Scholar 

  146. Maeda H, Haketa Y, Sasaki S, Masunaga H, Ogawa H, Mizuno N, Araoka F, Takezoe H (to be submitted)

    Google Scholar 

  147. Hamley IW (2000) Introduction to soft matter – polymers, colloids, amphiphiles and liquid crystals. Wiley, Chichester

    Google Scholar 

  148. Israelachvili JN (1992) Intermolecular and surface forces. Academic, London

    Google Scholar 

  149. Luisi PL, Walde P (eds) (2000) Giant vesicles. Wiley-VCH, Chichester

    Google Scholar 

  150. Maeda H, Terashima Y, Haketa Y, Asano A, Honsho Y, Seki S, Shimizu M, Mukai H, Ohta K (2010) Chem Commun 46: (in press)

    Google Scholar 

Download references

Acknowledgments

The contributions of the Maeda group reported herein were supported by Grants-in-Aid for Young Scientists (B) (No. 17750137, 19750122, 21750155) and Scientific Research in a Priority Area “Super-Hierarchical Structures” (No. 18039038, 19022036) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Izumi Science and Technology Foundation, Iketani Science Technology Foundation, Mitsubishi Chemical Corporation Fund, Kumagai Foundation for Science and Technology, Nissan Science Foundation, Saneyoshi Scholarship Foundation, the Japan Securities Scholarship Foundation, the Science and Technology Foundation of Japan, Shorai Foundation for Science and Technology, and the Kao Foundation for Arts and Sciences, the matching fund subsidies for private universities from the MEXT, 2003–2008 and 2009–2014, and the Ritsumeikan Global Innovation Research Organization (R-GIRO) project, 2008–2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiromitsu Maeda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Maeda, H. (2010). Acyclic Oligopyrrolic Anion Receptors. In: Gale, P., Dehaen, W. (eds) Anion Recognition in Supramolecular Chemistry. Topics in Heterocyclic Chemistry, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7081_2010_32

Download citation

Publish with us

Policies and ethics