Skip to main content

Morphological Characters from the Genome: SINE Insertion Polymorphism and Phylogenies

  • Chapter
  • First Online:
Book cover Transposons and the Dynamic Genome

Part of the book series: Genome Dynamics and Stability ((GENOME,volume 4))

Abstract

For the last fifteen years, researchers have been using SINE (short interspersed elements; non-autonomous retroposons) insertion polymorphism as characters for phylogeny. Although the collection of these characters is much less straightforward and much more work intensive than for classical sequence data, they are subject to very little homoplasy, and therefore allow more reliable determination of the phylogeny of species. As reversions are very rare, and the ancestral state (absence of the insertion) is known, these characters are orientated a priori. They are also good markers for population genetics. Because of their almost complete lack of homoplasy, character conflict in these characters is a better indicator of incomplete lineage sorting and hybridization than other types of data, even for ancient divergences. Only a few examples of convergencies and reversions have been identified, and after looking through hundreds of characters; moreover, most instances of homoplasy are identifiable as such, so SINE insertion polymorphism can still be regarded as very high quality characters. Constant progress has been made through the years for the isolation of new SINEs as well as for the isolation of new insertion loci, both by bioinformatic methods and by benchwork. Numerous dedicated computer programs are available, and the newly sequenced complete genomes allow their full scale utilization. SINE insertion polymorphism data has proved its interest on complex phylogenetic problems where morphological and sequence data were not resolutive. The improvements in its portability encourage an enlargement of its application to new taxa, where it will provide novel and high quality phylogenetic information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Badge RM, Alisch RS, Moran JV (2003) ATLAS: A system to selectively identify human specific L1 insertions. Am J Human Genet 72:823–838

    CAS  Google Scholar 

  2. Bamshad M, Kivisild T, Watkins WS, Dixon ME, Ricker CE, Rao BB, Naidu JM, Prasad BVR, Reddy PG, Rasanayagam A, Papiha SS, Villems R, Carroll ML, Nguyen SV, Batzer MA, Jorde LB (2001) Genetic evidence on the origins of Indian caste populations. Genome Res 11:994–1004

    PubMed  CAS  Google Scholar 

  3. Bamshad MJ, Wooding S, Watkins WS, Ostler C, Batzer MA, Jorde LB (2003) Human population genetic structure and inference of group membership. Am Human Genet 72:578–589

    CAS  Google Scholar 

  4. Barnes MJ, Lobo NF, Coulibaly MB, Sagnon NF, Costantini C, Besansky NJ (2005) SINE insertion polymorphism on the X chromosome differentiates Anopheles gambiae molecular forms. Insect Mol Biol 14(4):353–363

    PubMed  CAS  Google Scholar 

  5. Bashir A, Ye C, Price AL, Bafna V (2006) Orthologous repeats and mammalian phylogenetic inference. Genome Res 15:998–1006

    Google Scholar 

  6. Batzer MA, Deininger PL (1991) A human-specific subfamily of Alu sequences. Genomics 9:481–487

    PubMed  CAS  Google Scholar 

  7. Batzer MA, Deininger PL (2002) Alu repeats and human genomic diversity. Nature Reviews Genet 3:370–379

    CAS  Google Scholar 

  8. Batzer MA, Gudi VA, Mena C, Foltz DW, Herrera RJ, Deininger PL (1991) Amplification dynamics of Human-specific (HS) Alu family members. Nucleic Acids Res 19:3619–3623

    PubMed  CAS  Google Scholar 

  9. Batzer MA, Stoneking M, Alegria-Hartman M, Bazan H, Kass DH, Shaikh TH, Novick GE, Ioannou PA, Scheer WD, Herrera RJ (1994) African origin of human-specific polymorphic Alu insertions. Proc Natl Acad Sci USA 91(25):12288–12292

    PubMed  CAS  Google Scholar 

  10. Batzer MA, Rubin CM, Hellmann-Blumberg U, Alegria-Hartman M, Leeflang EP, Stern JD, Bazan HA, Shaikh TH, Deininger PL, Schmid CW (1995) Dispersion and insertion polymorphism in two small subfamilies of recently amplified human Alu repeats. J Mol Biol 247(3):418–427

    PubMed  CAS  Google Scholar 

  11. Batzer MA, Deininger PL, Hellmann-Blumberg U, Jurka J, Labuda D, Rubin CM, Schmid CW, Zietkiewicz E, Zuckerkandl E (1996) Standardized nomenclature for Alu repeats. J Mol Evol 42:3–6

    PubMed  CAS  Google Scholar 

  12. Bedell JA, Korf I, Gish W (2000) MaskerAid: a performance enhancement to RepeatMasker. Bioinformatics 16(11):1040–1041

    PubMed  CAS  Google Scholar 

  13. Bennett EA, Coleman LE, Tsui C, Pittard WS, Devine SE (2004) Natural genetic variation caused by transposable elements in humans. Genetics 168(2):933–951

    PubMed  CAS  Google Scholar 

  14. Borodulina OR, Kramerov DA (1999) Wide distribution of short interspersed elements among eukaryotic genomes. FEBS Lett 457(3):409–413

    PubMed  CAS  Google Scholar 

  15. Borodulina OR, Kramerov DA (2005) PCR-based approach to SINE isolation: Simple and complex SINEs. Gene 349:197–205

    PubMed  CAS  Google Scholar 

  16. Burton FH, Loeb DD, Edgell MH, Hutchison CA, III (1991) L1 gene conversion or same-site transposition. Mol Biol Evol 8:609–619

    PubMed  CAS  Google Scholar 

  17. Cantrell MA, Filanoski BJ, Ingermann AR, Olsson K, DiLuglio N, Lister Z, Wichman HA (2001) An ancient retrovirus-like element contains hot spots for SINE insertion. Genetics 158(2):769–777

    PubMed  CAS  Google Scholar 

  18. Carroll ML, Roy-Engel AM, Nguyen SV, Salem AH, Vogel E, Vincent B, Myers J, Ahmad Z, Nguyen L, Sammarco M, Watkins WS, Henke J, Makalowski W, Jorde LB, Deininger PL, Batzer MA (2001) Large-scale analysis of the Alu Ya5 and Yb8 subfamilies and their contribution to human genomic diversity. J Mol Biol 311(1):17–40

    PubMed  CAS  Google Scholar 

  19. Chen WJ, Orti G, Meyer A (2004) Novel evolutionary relationship among four fish model systems. Trends Genet 20(9):424–431

    PubMed  CAS  Google Scholar 

  20. Cheng C, Tsuchimoto S, Ohtsubo H, Ohtsubo E (2002) Evolutionary relationships among rice species with AA genome based on SINE insertion analysis. Genes Genet Syst 77(5):323–334

    PubMed  CAS  Google Scholar 

  21. Cheng C, Motohashi R, Tsuchimoto S, Fukuta Y, Ohtsubo H, Ohtsubo E (2003) Polyphyletic origin of cultivated rice: based on the interspersion pattern of SINEs. Mol Biol Evol 20(1):67–75

    PubMed  CAS  Google Scholar 

  22. Churakov G, Smit AF, Brosius J, Schmitz J (2005) A novel abundant family of retroposed elements (DAS-SINEs) in the nine-banded armadillo (Dasypus novemcinctus). Mol Biol Evol 22(4):886–893

    PubMed  CAS  Google Scholar 

  23. Comas D, Calafell F, Benchemsi N, Helal A, Lefranc G, Stoneking M, Batzer MA, Bertranpetit J, Sajantila A (2000) Alu insertion polymorphisms in NW Africa and the Iberian Peninsula: evidence for a strong genetic boundary through the Gibraltar Straits. Human Genet 107(4):312–319

    CAS  Google Scholar 

  24. Comas D, Schmid H, Braeuer S, Flaiz C, Busquets A, Calafell F, Bertranpetit J, Scheil HG, Huckenbeck W, Efremovska L, Schmidt H (2004) Alu insertion polymorphisms in the Balkans and the origins of the Aromuns. Annals Human Genet 68(2):120–127

    CAS  Google Scholar 

  25. Conley ME, Partain JD, Norland SM, Shurtleff SA, Kazazian HH Jr (2005) Two independent retrotransposon insertions at the same site within the coding region of BTK. Hum Mutat 25(3):324–325

    PubMed  Google Scholar 

  26. Cook J, Tristem M (1997) `SINEs of the times' – transposable elements as clade markers for their hosts. TREE 12(8):295–297

    CAS  PubMed  Google Scholar 

  27. Cotton JA (2005) Analytical methods for detecting paralogy in molecular datasets. Methods Enzym 395:700–724

    CAS  Google Scholar 

  28. Darlu P, Tassy P (1994) La reconstruction phylogénétique. http://lis.snv.jussieu.fr/sfs/publications_sfs.shtml

  29. Deininger PL, Jolly DJ, Rubin CM, Friedmann T, Schmid CW (1981) Base sequence study of 300 nucleotide renatured repeated human DNA clones. J Mol Biol 151:17–33

    PubMed  CAS  Google Scholar 

  30. Deininger PL, Batzer AM (1999) Alu repeats and human disease. Mol Genet Metabol 67:183–193

    CAS  Google Scholar 

  31. Van Dellen K, Field J, Wang Z, Loftus B, Samuelson J (2002) LINEs and SINE-like elements of the protist Entamoeba histolytica. Gene 297(1–2):229–239

    PubMed  Google Scholar 

  32. Dewannieux M, Esnault C, Heidmann T (2003) LINE-mediated retrotransposition of marked Alu sequences. Nat Genet 35:41–48

    PubMed  CAS  Google Scholar 

  33. Bao Z, Eddy SR (2002) Automated de novo identification of repeat sequence families in sequenced genomes. Genome Res 12(8):1269–1276

    PubMed  CAS  Google Scholar 

  34. Edgar RC, Myers EW (2005) PILER: identification and classification of genomic repeats. Bioinformatics 21(S1):i152–i158

    PubMed  CAS  Google Scholar 

  35. Eickbush TH, Furano AV (2002) Fruit flies and humans respond differently to retrotransposons. Curr Opin Genet Dev 12(6):669–674

    PubMed  CAS  Google Scholar 

  36. Endoh H, Okada N (1986) Total DNA transcription in vitro: a procedure to detect highly repetitive and transcribable sequences with tRNA-like structures. Proc Natl Acad Sci USA 83(2):251–255

    PubMed  CAS  Google Scholar 

  37. Esnault C, Maestre J, Heidmann T (200) Human LINE retrotransposons generate processed pseudogenes. Nat Genet 24(4):363–367

    Google Scholar 

  38. Estoup A, Cornuet JM (1999) Microsatellite evolution: inferences from population data. In: Goldstein DB, Schlotterer C (eds) Microsatellites: evolution and applications. Oxford University Press, Oxford

    Google Scholar 

  39. Feschotte C, Fourrier N, Desmons I, Mouches C (2001) Birth of a retroposon: the Twin SINE family from the vector mosquito Culex pipiens may have originated from a dimeric tRNA precursor. Mol Biol Evol 18(1):74–84

    PubMed  CAS  Google Scholar 

  40. Fitch WM (1970) Distinguishing homologous from analogous proteins. Syst Zool 19(2):99–113

    PubMed  CAS  Google Scholar 

  41. Halling KC, Lazzaro CR, Honchel R, Bufill JA, Powell SM, Arndt CA, Lindor NM (1999) hereditary desmoid disease in a family with a germline Alu I repeat mutation of the APC gene. Hum Hered 49:97–102

    PubMed  CAS  Google Scholar 

  42. Hamada M, Himberg M, Bodaly RA, Reist JD, Okada N (1998) Monophyletic origin of the genera Stenodus and Coregonus as inferred from an analysis of the insertion of SINEs (short interspersed repetitive elements). Adv Limnol 50:383–389

    CAS  Google Scholar 

  43. Hamdi H, Nishio H, Zielinski R, Dugaiczyk A (1999) Origin and phylogenetic distribution of Alu DNA repeats: irreversible events in the evolution of primates. J Mol Biol 289(4):861–871

    PubMed  CAS  Google Scholar 

  44. Hartl DL, Clark AG (1989) Principles of population genetics. Sinauer, Sunderland Massachussets

    Google Scholar 

  45. Harpending HC, Batzer MA, Gurven M, Jorde LB, Rogers AR, Sherry ST (1998) Genetic traces of ancient demography. Proc Natl Acad Sci USA 95:1961–1967

    PubMed  CAS  Google Scholar 

  46. He H, Rovira C, Recco-Pimentel S, Liao C, Edstrom JE (1995) Polymorphic SINEs in chironomids with DNA derived from the R2 insertion site. J Mol Biol 245(1):34–42

    PubMed  CAS  Google Scholar 

  47. Hedges DJ, Callinan PA, Cordaux R, Xing J, Barnes E, Batzer MA (2004) Differential Alu mobilization and polymorphism among the human and chimpanzee lineages. Genome Res 14:1068–1075

    PubMed  CAS  Google Scholar 

  48. Hennig W (1950) Grundzüge einer Theorie der phylogenetischen Systematik. Deutscher Zentralverlag, Berlin

    Google Scholar 

  49. Hennig W (1965) Phylogenetic systematics. Ann Rev Entomol 10:97–116

    Google Scholar 

  50. Hennig W (1966) Phylogenetic systematics. University of Illinois Press, Illinois

    Google Scholar 

  51. Hillis DM (1999) SINEs of the perfect character. Proc Natl Acad Sci USA 96(18):9979–9981

    PubMed  CAS  Google Scholar 

  52. Ho HJ, Ray DA, Salem AH, Myers JS, Batzer MA (2005) Straightening out the LINEs: LINE-1 element orthologous loci. Genomics 85:201–207

    PubMed  CAS  Google Scholar 

  53. Izsvàk Z, Ivics Z, Shimoda N, Mohn D, Okamoto H, Hackett PB (1999) Short inverted-repeat transposable elements in teleost fish and implications for a mechanism of their amplification. J Mol Evol 48(1):13–21

    PubMed  Google Scholar 

  54. Jackman TR, Larson A, De Queiroz K, Losos JB (1999) Phylogenetic relationships and tempo of early diversification in Anolis lizards. Syst Biol 48(2):254–285

    Google Scholar 

  55. Jorde LB, Watkins WS, Bamshad MJ, Dixon ME, Ricker CE, Seielstad MT, Batzer MA (2000) The distribution of human genetic diversity: a comparison of mitochondrial, autosomal, and Y chromosome data. Am J Human Genet 66:979–988

    CAS  Google Scholar 

  56. Jurka J (1997) Sequence patterns indicate an enzymatic involvement in integration of mammalian retroposons. Proc Natl Acad Sci USA 94:1872–1877

    PubMed  CAS  Google Scholar 

  57. Jurka J (1998) Repeats in genomic DNA: mining and meaning. Curr Opin Struct Biol 8:333–337

    PubMed  CAS  Google Scholar 

  58. Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J (2005) Repbase update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110:462–467

    PubMed  CAS  Google Scholar 

  59. Kajikawa M, Okada N (2002) LINEs mobilize SINEs in the eel through a shared 3′sequence. Cell 111(3):433–444

    PubMed  CAS  Google Scholar 

  60. Kapitonov VV, Jurka J (2003a) A novel class of SINE elements derived from 5S rRNA. Mol Biol Evol 20:694–702

    PubMed  CAS  Google Scholar 

  61. Kapitonov VV, Jurka J (2003b) Molecular paleontology of transposable elements in the Drosophila melanogaster genome. Proc Natl Acad Sci USA 100(11):6569–6574

    PubMed  CAS  Google Scholar 

  62. Kawai K, Nikaido M, Harada M, Matsumura S, Lin LK, Wu Y, Hasegawa M, Okada N (2002) Intra- and interfamily relationships of Vespertilionidae inferred by various molecular markers including SINE insertion data. J Mol Evol 55(3):284–301

    PubMed  CAS  Google Scholar 

  63. Kitching IJ, Forey PL, Humphries JH, Williams DM (1998) Cladistics – the theory and practice of parsimony analysis. The Systematics Association Publication n°11, Oxford University Press, New York

    Google Scholar 

  64. Krayev AS, Kramerov DA, Skryabin KG, Ryskov AP, Bayev AA, Georgiev GP (1980) The nucleotide sequence of the ubiquitous repetitive DNA sequence B1 complementary to the most abundant class of mouse fold-back RNA. Nucleic Acids Res 8(6):1201–1215

    PubMed  CAS  Google Scholar 

  65. Kriegs JO, Churakov G, Kiefmann M, Jordan U, Brosius J, Schmitz J (2006) Retroposed elements as archives for the evolutionary history of placental mammals. PLoS Biol 4(4):e91

    PubMed  Google Scholar 

  66. Kriener K, O'h Uigin C, Klein J (2000) Alu elements support independent origin of prosimian, platyrrhine, and catarrhine Mhc-DRB genes. Genome Res 10(5):634–643

    PubMed  CAS  Google Scholar 

  67. Kulski JK, Dunn DS (2005) Polymorphic Alu insertions within the major histocompatibility complex class I genomic region: a brief review. Cytogenet Genome Res 110(1–4):193–202

    PubMed  CAS  Google Scholar 

  68. Kulski JK, Gaudieri S, Dawkins RL (2000) Using alu J elements as molecular clocks to trace the evolutionary relationships between duplicated HLA class I genomic segments. J Mol Evol 50(6):510–519

    PubMed  CAS  Google Scholar 

  69. Kulski JK, Lim CP, Dunn DS, Bellgard M (2003) Genomic and phylogenetic analysis of the S100A7 (Psoriasin) gene duplications within the region of the S100 gene cluster on human chromosome 1q21. J Mol Evol 56(4):397–406

    PubMed  CAS  Google Scholar 

  70. Lander ES, International Human Genome Sequencing Consortium et al. (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921

    PubMed  CAS  Google Scholar 

  71. Lankenau D-H (1995) Genetics of genetics in Drosophila: P elements serving the study of homologous recombination, gene conversion and targeting. Chromosoma 103:659–668

    PubMed  CAS  Google Scholar 

  72. Lankenau D-H, Gloor GB (1998) In vivo gap repair in Drosophila: a one-way street with many destinations. BioEssays 20:317–327

    PubMed  CAS  Google Scholar 

  73. Li TH, Schmid CW (2001) Differential stress induction of individual Alu loci: implications for transcription and retrotransposition. Gene 276(1–2):135–141

    PubMed  CAS  Google Scholar 

  74. Li R, Ye J, Li S, Wang J, Han Y, Ye C, Wang J, Yang H, Yu J, Wong GK, Wang J (2005) ReAS: Recovery of ancestral sequences for transposable elements from the unassembled reads of a whole genome shotgun. PLoS Comput Biol 1(4):e43

    PubMed  Google Scholar 

  75. Luckett P, Hong N (1998) Phylogenetic relationships between the orders Artiodactyla and Cetacea: a combined assessment of morphological and molecular evidence. J Mammal Evol 5:127–182

    Google Scholar 

  76. Ludwig A, Rozhdestvensky TS, Kuryshev VY, Schmitz J, Brosius J (2005) An unusual primate locus that attracted two independent Alu insertions and facilitates their transcription. J Mol Biol 350(2):200–214

    PubMed  CAS  Google Scholar 

  77. Luis JR, Terreros MC, Martinez L, Rojas D, Herrera RJ (2003) Two problematic human polymorphic Alu insertions. Electrophoresis 24(14):2290–2294

    PubMed  CAS  Google Scholar 

  78. Lum JK, Nikaido M, Shimamura M, Shimodaira H, Shedlock AM, Okada N, Hasegawa M (2000) Consistency of SINE insertion topology and flanking sequence tree: Quantifying relationships among cetartiodactyls. Mol Biol Evol 17(10):1417–1424

    PubMed  CAS  Google Scholar 

  79. Maca-Meyer N, Villar J, Perez-Mendez L, Cabrera de Leon A, Flores C (2004) A tale of aborigines, conquerors and slaves: Alu insertion polymorphisms and the peopling of Canary Islands. Annals Human Genet 68(6):600–605

    CAS  Google Scholar 

  80. Maddison WP (1989) Reconstructing character evoution on polytomous cladograms. Cladistics 5:365–377

    Google Scholar 

  81. Maddison WP, Knowles LL (2006) Inferring phylogeny despite incomplete lineage sorting. Syst Biol 55(1):21–30

    PubMed  Google Scholar 

  82. Mamedov IZ, Arzumanyan ES, Amosova AL, Lebedev YB, Sverdlov ED (2005) Whole-genome experimental identification of insertion/deletion polymorphisms of interspersed repeats by a new general approach. Nucleic Acids Res 33(2):e16

    PubMed  Google Scholar 

  83. Mateus Pereira LH, Socorro A, Fernandez I, Masleh M, Vidal D, Bianchi NO, Bonatto SL, Salzano FM, Herrera RJ (2005) Phylogenetic information in polymorphic L1 and Alu insertions from East Asians and Native American populations. Am J Phys Anthropology 128(1):171–184

    Google Scholar 

  84. Mefford HC, Linardopoulou E, Coil D, van den Engh G, Trask BJ (2001) Comparative sequencing of a multicopy subtelomeric region containing olfactory receptor genes reveals multiple interactions between non-homologous chromosomes. Hum Mol Genet 10(21):2363–2372

    PubMed  CAS  Google Scholar 

  85. Miyamoto MM (1999) Molecular systematics: perfect SINEs of evolutionary history? Curr Biol 9(21):R816-R819

    PubMed  CAS  Google Scholar 

  86. Morgulis A, Gertz EM, Schaffer AA, Agarwala R (2006) WindowMasker: window-based masker for sequenced genomes. Bioinformatics 22(2):134–141

    PubMed  CAS  Google Scholar 

  87. Murata S, Takasaki N, Saitoh M, Okada N (1993) Determination of the phylogenetic relationships among Pacific salmonids by using short interspersed elements (SINEs) as temporal landmarks of evolution. Proc Natl Acad Sci USA 90(15):6995–6999

    PubMed  CAS  Google Scholar 

  88. Murata S, Takasaki N, Saitoh M, Tachida H, Okada N (1996) Details of retropositional genome dynamics that provide a rationale for a generic division: the distinct branching of all the Pacific salmon and trout (Oncorhynchus) from the Atlantic salmon and trout (Salmo). Genetics 142(3):915–926

    PubMed  CAS  Google Scholar 

  89. Murata S, Takasaki N, Okazaki T, Kobayashi T, Numachi K, Chang K-H, Okada N (1998) Molecular evidence from short interspersed elements (SINEs) that Oncorhynchus masou (cherry salmon) is monophyletic. Canadian J Fisheries Aqua Sci 55(8):1864–1870

    CAS  Google Scholar 

  90. Nei M, Takezaki N (1996) The root of the phylogenetic tree of human populations. Mol Biol Evol 13(1):170–177

    PubMed  CAS  Google Scholar 

  91. Nijman IJ, van Tessel P, Lenstra JA (2002) SINE retrotransposition during the evolution of the pecoran ruminants. J Mol Evol 54(1):9–16

    PubMed  CAS  Google Scholar 

  92. Nikaido M, Matsuno F, Hamilton H, Brownell RL, Cao Y, Ding W, Zuoyan Z, Shedlock AM, Fordyce RE, Hasegawa M, Okada N (2001) Retroposon analysis of major cetacean lineages: the monophyly of toothed whales and the paraphyly of river dolphins. Proc Natl Acad Sci USA 98(13):7384–7389

    PubMed  CAS  Google Scholar 

  93. Nikaido M, Nishihara H, Hukumoto Y, Okada N (2003) Ancient SINEs from African endemic mammals. Mol Biol Evol 20(4):522–527

    PubMed  CAS  Google Scholar 

  94. Nikaido M, Hamilton H, Makino H, Sasaki T, Takahashi K, Goto M, Kanda N, Pastene LA, Okada N (2006) Baleen whale phylogeny and a past extensive radiation event revealed by SINE insertion analysis. Mol Biol Evol 23(5):866–873

    PubMed  CAS  Google Scholar 

  95. Nishihara H, Terai Y, Okada N (2002) Characterization of novel Alu- and tRNA-related SINEs from the tree shrew and evolutionary implications of their origins. Mol Biol Evol 19(11):1964–1972

    PubMed  CAS  Google Scholar 

  96. Nishihara H, Satta Y, Nikaido M, Thewissen JG, Stanhope MJ, Okada N (2005) A retroposon analysis of Afrotherian phylogeny. Mol Biol Evol 22(9):1823–1833

    PubMed  CAS  Google Scholar 

  97. Nomura O, Yasue H (1999) Genetic relationships among hippopotamus, whales, and bovine based on SINE insertion analysis. Mamm Genome 10(5):526–527

    PubMed  CAS  Google Scholar 

  98. Ogiwara I, Miya M, Ohshima K, Okada N (2002) V-SINEs: a new superfamily of vertebrate SINEs that are widespread in vertebrate genomes and retain a strongly conserved segment within each repetitive unit. Genome Res 12(2):316–324

    PubMed  CAS  Google Scholar 

  99. Ohshima K, Okada N (1994) Generality of the tRNA origin of short interspersed repetitive elements (SINEs). Characterization of three different tRNA-derived retroposons in the octopus. J Mol Biol 243(1):25–37

    PubMed  CAS  Google Scholar 

  100. Ohshima K, Okada N (2005) SINEs and LINEs: symbionts of eukaryotic genomes with a common tail. Cytogenet Genome Res 110(1–4):475–490

    PubMed  CAS  Google Scholar 

  101. Ohshima K, Koishi R, Matsuo M, Okada N (1993) Several short interspersed repetitive elements (SINEs) in distant species may have originated from a common ancestral retrovirus: characterization of a squid SINE and a possible mechanism for generation of tRNA-derived retroposons. Proc Natl Acad Sci USA 90(13):6260–6264

    PubMed  CAS  Google Scholar 

  102. Okada N (1991) SINESs: short interspersed repeated elements of the eukaryotic genome. TREE 6(11):358–361

    CAS  PubMed  Google Scholar 

  103. Okada N, Shedlock AM, Nikaido M (2004) Retroposon mapping in molecular systematics. Methods Mol Biol 260:189–226

    PubMed  CAS  Google Scholar 

  104. Perna NT, Batzer MA, Deininger PL, Stoneking M (1992) Alu insertion polymorphism: A new type of marker for human population studies. Human Biol 64:641–648

    PubMed  CAS  Google Scholar 

  105. Pevzner PA, Tang H, Tesler G (2003) De novo repeat classification and fragment assembly. Genome Res 14(9):1786–1796

    Google Scholar 

  106. Piskurek O, Nikaido M, Boeadi, Baba M, Okada N (2003) Unique mammalian tRNA-derived repetitive elements in dermopterans: the t-SINE family and its retrotransposition through multiple sources. Mol Biol Evol 20(10):1659–1668

    PubMed  CAS  Google Scholar 

  107. Price AL, Jones NC, Pevzner PA (2005) De novo identification of repeat families in large genomes. Bioinformatics 21(S1):i351–i358

    PubMed  CAS  Google Scholar 

  108. Raisonnier A (1991) Duplication of the apolipoprotein C-I gene occurred about forty million years ago. J Mol Evol 32(3):211–219

    PubMed  CAS  Google Scholar 

  109. Ray DA, Xing J, Hedges DJ, Hall MA, Laborde ME, Anders BA, White BR, Stoilova N, Fowlkes JD, Landry KE, Chemnick LG, Ryder OA, Batzer MA (2005a) Alu insertion loci and platyrrhine primate phylogeny. Mol Phyl Evol 35(1):117–126

    CAS  Google Scholar 

  110. Ray DA, Hedges DJ, Herke SW, Fowlkes JD, Barnes EW, LaVie DK, Goodwin LM, Densmore LD, Batzer MA (2005b) Chompy: an infestation of MITE-like repetitive elements in the crocodilian genome. Gene 362:1–10

    PubMed  CAS  Google Scholar 

  111. Rinehart TA, Grahn RA, Wichman HA (2004) SINE extinction preceded LINE extinction in sigmodontine rodents: implications for retrotranspositional dynamics and mechanisms. Cytogenet Genome Res 110(1–4):416–425

    Google Scholar 

  112. Rokas A, Holland PW (2000) Rare genomic changes as a tool for phylogenetics. TREE 15:454–459

    PubMed  Google Scholar 

  113. Romualdi C, Balding D, Nasidze IS, Risch G, Robichaux M, Sherry ST, Stoneking M, Batzer MA, Barbujani G (2002) Patterns of human diversity, within and among continents, inferred from biallelic DNA polymorphisms. Genome Res 12:602–612

    PubMed  CAS  Google Scholar 

  114. Roos C, Schmitz J, Zischler H (2004) Primate jumping genes elucidate strepsirrhine phylogeny. Proc Natl Acad Sci USA 101(29):10650–10654

    PubMed  CAS  Google Scholar 

  115. Roy AM, Carroll ML, Kass DH, Nguyen SV, Salem A, Batzer MA, Deininger PL (1999) Recently integrated human Alu repeats: finding needles in the haystack. Genetica 107:149–161

    PubMed  CAS  Google Scholar 

  116. Roy-Engel AM, Carroll ML, Vogel E, Garber RK, Nguyen SV, Salem AH, Batzer MA, Deininger PL (2001) Alu insertion polymorphisms for the study of human genomic diversity. Genetics 159(1):279–290

    PubMed  CAS  Google Scholar 

  117. Roy-Engel AM, Carroll ML, El-Sawy M, Salem AH, Garber RK, Nguyen SV, Deininger PL, Batzer MA (2002) Non-traditional Alu evolution and primate genomic diversity. J Mol Biol 316(5):1033–1040

    PubMed  CAS  Google Scholar 

  118. Ryan SC, Dugaiczyk A (1989) Newly arisen DNA repeats in primate phylogeny. Proc Natl Acad Sci USA 86:9360–9364

    PubMed  CAS  Google Scholar 

  119. Sakamoto K, Okada N (1985) Rodent type 2 Alu family, rat identifier sequence, rabbit C family, and bovine or goat 73-bp repeat may have evolved from tRNA genes. J Mol Evol 22(2):134–140

    PubMed  CAS  Google Scholar 

  120. Salem AH, Kilroy GE, Watkins WS, Jorde LB, Batzer MA (2003a) Recently integrated Alu elements and human genomic diversity. Mol Biol Evol 20(8):1349–1361

    PubMed  CAS  Google Scholar 

  121. Salem AH, Ray DA, Xing J, Callinan PA, Myers JS, Hedges DJ, Garber RK, Witherspoon DJ, Jorde LB, Batzer MA (2003b) Alu elements and hominid phylogenetics. Proc Natl Acad Sci USA 100(22):12787–12791

    PubMed  Google Scholar 

  122. Salem AH, Ray DA, Hedges DJ, Jurka J, Batzer MA (2005) Analysis of the human Alu Ye lineage. BMC Evol Biol 5(18):1–9

    Google Scholar 

  123. Sasaki T, Takahashi K, Nikaido M, Miura S, Yasukawa Y, Okada N (2004) First application of the SINE (short interspersed repetitive element) method to infer phylogenetic relationships in reptiles: an example from the turtle superfamily Testudinoidea. Mol Biol Evol 21(4):705–715

    PubMed  CAS  Google Scholar 

  124. Sato A, Takezaki N, Tichy H, Figueroa F, Mayer WE, Klein J (2003) Origin and speciation of haplochromine fishes in East African crater lakes investigated by the analysis of their mtDNA, Mhc genes, and SINEs. Mol Biol Evol 20(9):1448–1462

    PubMed  CAS  Google Scholar 

  125. Sheen FM, Sherry ST, Risch GM, Robichaux M, Nasidze I, Stoneking M, Batzer MA, Swergold GD (2000) Reading between the LINEs: genomic variation induced by LINE-1 retrotransposition. Genome Res 10:1496–1508

    PubMed  CAS  Google Scholar 

  126. Schmidt T (1999) LINEs, SINEs and repetitive DNA: non-LTR retrotransposons in plant genomes. Plant Mol Biol 40:903–910

    PubMed  CAS  Google Scholar 

  127. Schmitz J, Ohme M, Zischler H (2001) SINE insertions in cladistic analyses and the phylogenetic affiliations of Tarsius bancanus to other primates. Genetics 157(2):777–784

    PubMed  CAS  Google Scholar 

  128. Schmitz J, Zischler H (2003) Analysis of retrotransposons in dermopterans uncover a new family of tRNA-derived SINEs and support a monophyletic origin of the order primates. Mol Phyl Evol 28:341–349

    CAS  Google Scholar 

  129. Schmitz J, Churakov G, Zischler H, Brosius J (2004) A novel class of mammalian-specific tailless retropseudogenes. Genome Res 14(10A):1911–1915

    PubMed  CAS  Google Scholar 

  130. Schmitz J, Roos C, Zischler H (2005) Primate phylogeny: molecular evidence from retroposons. Cytogenet Genome Res 108(1–3):26–37

    PubMed  CAS  Google Scholar 

  131. Shedlock AM, Milinkovitch MC, Okada N (2000) SINE evolution, missing data, and the origin of whales. Syst Biol 49(4):808–817

    PubMed  CAS  Google Scholar 

  132. Shedlock AM, Okada N (2000) SINE insertions: powerful tools for molecular systematics. Bioessays 22(2):148–160

    PubMed  CAS  Google Scholar 

  133. Shedlock AM, Takahashi K, Okada N (2004) SINEs of speciation: tracking lineages with retroposons. TREE 19(10):545–553

    PubMed  Google Scholar 

  134. Sherry ST, Harpending HC, Batzer MA, Stoneking M (1997) Alu evolution in human populations: using the coalescent to estimate effective population size. Genetics 147(4):1977–1982

    PubMed  CAS  Google Scholar 

  135. Shimamura M, Yasue H, Ohshima K, Abe H, Kato H, Kishiro T, Goto M, Munechika I, Okada N (1997) Molecular evidence from retroposons that whales form a clade within even-toed ungulates. Nature 388(6643):666–670

    PubMed  CAS  Google Scholar 

  136. Pecon-Slattery J, Wilkerson AJP, Murphy WJ, O'Brien SJ (2000) Phylogenetic assessment of introns and SINEs within the Y chromosome using the cat family Felidae as a species tree. Mol Biol Evol 21(12):2299–2309

    Google Scholar 

  137. Springer MS, Stanhope MJ, Madsen O, de Jong WW (2004) Molecules consolidate the placental mammal tree. TREE 19(8):430–438

    PubMed  Google Scholar 

  138. Stoneking M, Fontius JJ, Clifford SL, Soodyall H, Arcot SS, Saha N, Jenkins T, Tahir MA, Deininger PL, Batzer MA (1997) Alu insertion polymorphisms and human evolution: evidence for a larger population size in Africa. Genome Res 7(11):1061–1071

    PubMed  CAS  Google Scholar 

  139. Szmulewicz MN, Andino LM, Reategui EP, Woolley-Barker T, Jolly CJ, Disotell TR, Herrera RJ (1999) An Alu insertion polymorphism in a baboon hybrid zone. Am J Phys Anthropology 109(1):1–8

    CAS  Google Scholar 

  140. Takahashi K, Terai Y, Nishida M, Okada N (1998) A novel family of short interspersed repetitive elements (SINEs) from cichlids: the patterns of insertion of SINEs at orthologous loci support the proposed monophyly of four major groups of cichlid fishes in Lake Tanganyika. Mol Biol Evol 15(4):391–407

    PubMed  CAS  Google Scholar 

  141. Takahashi K, Terai Y, Nishida M, Okada N (2001a) Phylogenetic relationships and ancient incomplete lineage sorting among cichlid fishes in Lake Tanganyika as revealed by analysis of the insertion of retroposons. Mol Biol Evol 18(11):2057–2966

    PubMed  CAS  Google Scholar 

  142. Takahashi K, Nishida M, Yuma M, Okada N (2001b) Retroposition of the AFC family of SINEs (short interspersed repetitive elements) before and during the adaptive radiation of cichlid fishes in Lake Malawi and related inferences about phylogeny. J Mol Evol 53(4–5):496–507

    PubMed  CAS  Google Scholar 

  143. Tatout C, Lavie L, Deragon JM (1998) Similar target site selection occurs in integration of plant and mammalian retroposons. J Mol Evol 47(4):463–470

    PubMed  CAS  Google Scholar 

  144. Tatout C, Warwick S, Lenoir A, Deragon JM (1999) Sine insertions as clade markers for wild crucifer species. Mol Biol Evol 16(11):1614–1621

    CAS  Google Scholar 

  145. Terai Y, Takahashi K, Nishida M, Sato T, Okada N (2003) Using SINEs to probe ancient explosive speciation: hidden radiation of African cichlids? Mol Biol Evol 20(6):924–930

    PubMed  CAS  Google Scholar 

  146. Terai Y, Takezaki N, Mayer WE, Tichy H, Takahata N, Klein J, Okada N (2004) Phylogenetic relationships among East African haplochromine fish as revealed by short interspersed elements (SINEs). J Mol Evol 58(1):64–78

    PubMed  CAS  Google Scholar 

  147. Tishkoff SA, Pakstis AJ, Ruano G, Kidd KK (2000) The accuracy of statistical methods for estimation of haplotype frequencies: an example from the CD4 locus. Am J Human Genet 67(2):518–522

    CAS  Google Scholar 

  148. Tu Z (1999) Genomic and evolutionary analysis of Feilai, a diverse family of highly reiterated SINEs in the yellow fever mosquito, Aedes aegypti. Mol Biol Evol 16(6):760–772

    PubMed  CAS  Google Scholar 

  149. Ullu E, Tschudi C (1984) Alu sequences are processed 7SL RNA genes. Nature 312:171–172

    PubMed  CAS  Google Scholar 

  150. van de Lagemaat LN, Gagnier L, Medstrand P, Mager DL (2005) Genomic deletions and precise removal of transposable elements mediated by short identical DNA segments in primates. Genome Res 15(9):1243–1249

    PubMed  Google Scholar 

  151. van Oppen MJH, Rico C, Turner GF, Hewitt GM (2000) Extensive homoplasy, nonstepwise mutations, and shared ancestral polymorphism at a complex microsatellite locus in Lake Malawi cichlids. Mol Biol Evol 17:489–498

    PubMed  Google Scholar 

  152. Vincent BJ, Myers JS, Ho HJ, Kilroy GE, Walker JA, Watkins WS, Jorde LB, Batzer MA (2003) Following the LINEs: an analysis of primate genomic variation at human-specific LINE-1 insertion sites. Mol Biol Evol 20(8):1338–1348

    PubMed  CAS  Google Scholar 

  153. Vishwanathan H, Edwin D, Usharani MV, Majumder PP (2003) Insertion/deletion polymorphisms in tribal populations of southern India and their possible evolutionary implications. Human Biol 75(6):873–887

    PubMed  CAS  Google Scholar 

  154. Volfovsky N, Haas BJ, Salzberg SL (2001) A clustering method for repeat analysis in DNA sequences. Genome Biol 2(8):RESEARCH0027

    PubMed  CAS  Google Scholar 

  155. Waddell PJ, Kishino H, Ota R (2001) A phylogenetic foundation for comparative mammalian genomics. Genome Informatics 12:141–154

    PubMed  CAS  Google Scholar 

  156. Wang JL, Song MK, Gonder S, Azrak D, Ray A, Batzer MA, Tishkoff SA, Liang P (2006) Whole genome computational comparative genomics: a fruitful approach for ascertaining Alu insertion polymorphisms. Gene 365:11–20

    PubMed  CAS  Google Scholar 

  157. Watkins WS, Ricker CE, Bamshad MJ, Carroll ML, Nguyen SV, Batzer MA, Harpending C, Rogers AR, Jorde LB (2001) Patterns of ancestral human diversity: an analysis of Alu insertion and restriction site polymorphisms. Am J Human Genet 68:738–752

    CAS  Google Scholar 

  158. Watkins WS, Rogers AR, Ostler CT, Wooding S, Bamshad MJ, Brassington AM, Carroll ML, Nguyen SV, Walker JA, Prasad BV, Reddy PG, Das PK, Batzer MA, Jorde LB (2003) Genetic variation among world populations: inferences from 100 Alu insertion polymorphisms. Genome Res 13(7):1607–1618

    PubMed  CAS  Google Scholar 

  159. Weiner AM (1980) An abundant cytoplasmic 7S RNA is complementary to the dominant interspersed middle repetitive DNA sequence family in the human genome. Cell 22:209–218

    PubMed  CAS  Google Scholar 

  160. Weiner AM, Deininger PL, Efstratiadis A (1986) Nonviral retroposons: genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information. Annu Rev Biochem 55:631–661

    PubMed  CAS  Google Scholar 

  161. Wulff K, Gazda H, Schroder W, Robicka-Milewska R, Herrmann FH (2000) Identification of a novel large F9 gene mutationan insertion of an Alu repeated DNA element in exon e of the factor 9 gene. Hum Mutat 15:299

    PubMed  CAS  Google Scholar 

  162. Xing J, Salem AH, Hedges DJ, Kilroy GE, Watkins WS, Schienman JE, Stewart CB, Jurka J, Jorde LB, Batzer MA (2003) Comprehensive analysis of two Alu Yd subfamilies. J Mol Evol 57:S76–S89

    PubMed  CAS  Google Scholar 

  163. Xing J, Wang H, Han K, Ray DA, Huang CH, Chemnick LG, Stewart CB, Disotell TR, Ryder OA, Batzer MA (2005) A mobile element based phylogeny of Old World monkeys. Mol Phyl Evol 37(3):872–880

    CAS  Google Scholar 

  164. Yang S, Smit AF, Schwartz S, Chiaromonte F, Roskin KM, Haussler D, Miller W, Hardison RC (2004) Patterns of insertions and their covariation with substitutions in the rat, mouse, and human genomes. Genome Res 14:517–527

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Agnes Dettaï was supported by an Alexander von Humboldt postdoctoral Fellowship. The Volff group is funded by the Biofuture program of the German Bundesministerium für Bildung und Forschung (BMBF). We received helpful comments on this manuscript from Gael Lancelot, Matthieu Andro, and Julien Lorion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnès Dettaï .

Editor information

Dirk-Henner Lankenau Jean-Nicolas Volff

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dettaï, A., Volff, JN. (2006). Morphological Characters from the Genome: SINE Insertion Polymorphism and Phylogenies. In: Lankenau, DH., Volff, JN. (eds) Transposons and the Dynamic Genome. Genome Dynamics and Stability, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7050_018

Download citation

Publish with us

Policies and ethics