Skip to main content

Degradation and Preservation of Organic Matter in Marine Sediments

  • Chapter
  • First Online:

Part of the book series: The Handbook of Environmental Chemistry ((HEC2,volume 2N))

Abstract

Organic matter that is deposited in aquatic sediments is subject to an intense diagenetic reactor that determines how much organic carbon is eventually preserved in sediments. The balance between organic matter degradation and preservation has immense consequences for the global carbon and oxygen cycles. A diverse set of hypotheses regarding the controls on organic matter degradation/preservation have received considerable attention over the past decade, most often revolving around the relative roles of bottom water and pore water oxygen and the rate of organic matter delivery to the sediments. These overriding hypotheses have in turn spawned numerous other hypotheses on specific topics. In this review, we discuss four important controls that impact on the degradation and subsequent preservation of organic matter in aquatic sediments. Our focus areas are: (1) the chemical nature of the organic substrate; (2) the potential influence of matrix on preservation; (3) the role of redox effects in degradation; and (4) the effects of physical mixing of sediments. Although we have divided our discussion under these headings, it will immediately become apparent that these subsections are at best arbitrary and that the four factors are indeed intimately related.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Engel MH, Macko SA (1993) Organic geochemistry: principles and applications. Plenum, New York

    Google Scholar 

  2. Berner RA (1989) Palaeogeogr Palaeoclimatol Palaeoecol 73:97

    Google Scholar 

  3. Berner RA, Canfield DE (1989) Am J Sci 289:333

    CAS  Google Scholar 

  4. Hedges JI, Keil RG (1995) Mar Chem 49:81

    CAS  Google Scholar 

  5. Demaison GJ, Moore GT (1980) Am Assoc Pet Geol Bull 64(8):1179

    CAS  Google Scholar 

  6. Emerson S, Hedges JI (1988) Paleoceanography 3:621

    Article  Google Scholar 

  7. Calvert SE, Pedersen TF (1992) Organic carbon accumulation and preservation in marine sediments: how important is anoxia? In: Whelan J, Farrington JW (eds) Organic matter. University Press, New York, p 231

    Google Scholar 

  8. van der Weijden CH, Reichart GJ, Visser HJ (1999) Deep-Sea Res I 46:807

    Google Scholar 

  9. Cowie GL, Calvert SE, Pederson TF, Schulz H, von Rad U (1999) Mar Geol 161:23

    CAS  Google Scholar 

  10. Schulte S, Mangelsdorf K, Rullkötter J (2000) Org Geochem 31:1005

    CAS  Google Scholar 

  11. Sinninghe Damsté JS, Rijpstra WIC, Reicharet G-J (2002) Geochim Cosmochim Acta 66:2737

    Google Scholar 

  12. Hartnett E, Devol AH (2003) Geochim Cosmochim Acta 67:247

    CAS  Google Scholar 

  13. Tegelaar EW, Derenne S, Largeau C, de Leeuw JW (1989) Geochim Cosmochim Acta 53:3102

    Google Scholar 

  14. de Leeuw JW, Largeau C (1993) A review of macromolecular organic compounds that comprise living organisms and their role in kerogen, coal, and petroleum formation. In: Engel MH, Macko SA (eds) Organic geochemistry: principles and applications. Plenum, New York, p 23

    Google Scholar 

  15. Hedges JI, Eglinton G, Hatcher PG, Kirchman DL, Arnosti C, Derenne S, Evershed RP, Kögel-Knabner I, de Leeuw JW, Littke R, Michaelis W, Rullkötter J (2000) Org Geochem 31:945

    CAS  Google Scholar 

  16. Henrichs SM (1993) Early diagenesis of organic matter: the dynamics (rates) of cycling of organic compounds. In: Engel MH, Macko SA (eds) Organic geochemistry: principles and applications. Plenum, New York, p 101

    Google Scholar 

  17. Aller RC (1982) The effects of macrobenthos on chemical properties of marine sediment and overlying water. In: McCall PL, Tevesa MJS (eds) Animal–sediment relations. Plenum, New York, p 53

    Google Scholar 

  18. Aller RC (1994) Chem Geol 114:331

    CAS  Google Scholar 

  19. Sun M-Y, Aller RC, Lee C, Wakeham SG (2002) Geochim Cosmochim Acta 66:2003

    CAS  Google Scholar 

  20. Hartnett HE, Keil RG, Hedges JI, Devol AH (1998) Nature 391:572

    CAS  Google Scholar 

  21. Hedges JI, Hu FS, Devol AH, Hartnett HE, Tsamakis E, Keil RG (1999) Am J Sci 299:529

    CAS  Google Scholar 

  22. Lee C (1992) Geochim Cosmochim Acta 56:3323

    CAS  Google Scholar 

  23. Smith CR, Walsh ID, Jahnke RA (1992) Adding biology to one-dimensional models of sediment-carbon degradation: the multi-B approach. In: Rowe T, Pariente V (eds) Deep-sea food chains and the global carbon cycle. Kluwer, Dordrecht, p 395

    Google Scholar 

  24. Deming JW, Barros JA (1993) The early diagenesis of organic matter: bacterial activity. In: Engel MH, Macko SA (eds) Organic geochemistry: principles and applications. Plenum, New York, p 119

    Google Scholar 

  25. Mayer LM (1994) Geochim Cosmochim Acta 58:1271

    CAS  Google Scholar 

  26. Mayer LM (1994) Chem Geol 114:347

    CAS  Google Scholar 

  27. Knicker H, Hatcher PG (1997) Naturwissenschaften 84:231

    CAS  Google Scholar 

  28. Nguyen RT, Harvey HR (1997) Org Geochem 27:115

    CAS  Google Scholar 

  29. Jørgensen BB (1978) Geomicrobiol J 1:29

    Google Scholar 

  30. Berner RA (1980) Early diagenesis: a theoretical approach. Princeton University Press, Princeton, NJ

    Google Scholar 

  31. Westrich JT, Berner RA (1984) Limnol Oceanogr 29:236

    CAS  Google Scholar 

  32. Middelburg JJ (1989) Geochim Cosmochim Acta 53:1577

    CAS  Google Scholar 

  33. Boudreau BP, Ruddick BR (1991) Am J Sci 291:507

    Article  CAS  Google Scholar 

  34. Canfield DE (1994) Chem Geol 114:315

    CAS  Google Scholar 

  35. Canfield DE, Van Cappellen P (1992) Geol Soc Am Abst Prog 24:822

    Google Scholar 

  36. Canuel EA, Martens CS (1996) Geochim Cosmochim Acta 60:1793

    CAS  Google Scholar 

  37. Benner R, Fogel ML, Sprague EK, Hodson RE (1987) Nature 329:708

    CAS  Google Scholar 

  38. Hamilton SE, Hedges JI (1988) Geochim Cosmochim Acta 52:129

    CAS  Google Scholar 

  39. Cranwell PA (1981) Org Geochem 3:79

    CAS  Google Scholar 

  40. Haddad RL, Martens CS, Farrington JW (1992) Org Geochem 19:205

    CAS  Google Scholar 

  41. Harvey HR, Macko SA (1997) Org Geochem 27:129

    CAS  Google Scholar 

  42. Sun M-Y, Wakeham SG (1994) Geochim Cosmochim Acta 58:3395

    CAS  Google Scholar 

  43. Grossi V, Caradec S, Gilbert F (2003) Mar Chem 81:57

    CAS  Google Scholar 

  44. Camacho-Ibar VF, Aveytua-Alcázar L, Carriquiry JD (2003) Org Geochem 34:425

    CAS  Google Scholar 

  45. Arnosti C (2000) Limnol Oceanogr 45:1112

    CAS  Google Scholar 

  46. Arnosti C (2004) Mar Chem 92:263

    CAS  Google Scholar 

  47. Arnosti C, Holmer M (2003) Estuar Coast Shelf Sci 58:197

    CAS  Google Scholar 

  48. Harvey HR, Tuttle JH, Bell JT (1995) Geochim Cosmochim Acta 59:3367

    CAS  Google Scholar 

  49. Sarkanen KV, Ludwig CH (1971) Lignins: occurrences, formation, structure, and reactions. Wiley, New York

    Google Scholar 

  50. Kirk KT (1980) Studies of the physiology of lignin metabolism by white-rot fungi. In: Kirk KT, Takayoshi H, Hou-min C (eds) Lignin biodegradation: microbiology, chemistry, and potential applications, vol II. CRC, Boca Raton, p 51

    Google Scholar 

  51. Kawakami H (1980) Degradation of lignin-related aromatics and lignins by several pseudomonads. In: Kirk KT, Takayoshi H, Hou-min C (eds) Lignin biodegradation: microbiology, chemistry, and potential applications, vol II. CRC, Boca Raton, p 103

    Google Scholar 

  52. Gough MA, Mantoura RFC, Preston M (1993) Geochim Cosmochim Acta 57:945

    CAS  Google Scholar 

  53. Gong C, Hollander DJ (1997) Org Geochem 26:545

    CAS  Google Scholar 

  54. Hoefs MJL, Rijpstra WIC, Sinninghe Damsté JS (2002) Geochim Cosmochim Acta 66:2719

    CAS  Google Scholar 

  55. Arzayus KM, Canuel EA (2004) Geochim Cosmochim Acta 69:455

    Google Scholar 

  56. Reiley G, Raven AM, Lawson M, Evershed RP, Maxwell JR, Parkes RJ (1997) Abstract book, 18th international meeting on organic geochemistry. Forschungszentrum, Julich, p 9

    Google Scholar 

  57. Saddler JN, Wardlaw AC (1980) Antonie Van Leeuwenhoek J Microbiol 46:27

    CAS  Google Scholar 

  58. Harvey HR, Fallon RD, Patton JS (1986) Geochim Cosmochim Acta 50:795

    CAS  Google Scholar 

  59. Hernes PJ, Hedges JI, Peterson ML, Wakeham SG, Lee C (1996) Deep-Sea Res II, 43:1181

    CAS  Google Scholar 

  60. Tissot B, Welte D (1984) Petroleum occurrence and formation. Springer, Berlin Heidelberg New York

    Google Scholar 

  61. Zegouagh Y, Derenne S, Largeau C, Bertrand P, Sicre M-A, Saliot A, Rousseau B (1999) Org Geochem 30:83

    Google Scholar 

  62. Sinninghe Damsté JS, Rijpstra I, de Leeuw JW, Schenck PA (1988) Org Geochem 6:593

    Google Scholar 

  63. Werne JP, Lyons TW, Hollander DJ, Formolo MJ, Sinninghe Damsté JS (2003) Chem Geol 195:159

    CAS  Google Scholar 

  64. Gelin F, Volkman JK, Largeau C, Sinninghe Damsté JS, de Leeuw JW (1996) Org Geochem 30:147

    Google Scholar 

  65. Knicker H, Scaroni AW, Hatcher PG (1996) Org Geochem 24:661

    CAS  Google Scholar 

  66. Derenne S, Largeau C (1998) Mineral Mag 62A:372

    CAS  Google Scholar 

  67. Weiler RR, Mills AA (1965) Deep-Sea Res 12:511

    Google Scholar 

  68. Tanoue E, Handa N (1979) J Oceanogr Soc Jpn 35:109

    Google Scholar 

  69. Hedges JI (1977) Geochim Cosmochim Acta 41:1119

    CAS  Google Scholar 

  70. Christensen D, Blackburn TH (1982) Mar Biol 71:113

    Google Scholar 

  71. Gordon AS, Millero FJ (1985) Microbiol Ecol 11:289

    CAS  Google Scholar 

  72. Wang X-C, Lee C (1993) Mar Chem 44:1

    CAS  Google Scholar 

  73. Cranwell PA (1978) Geochim Cosmochim Acta 42:1523

    CAS  Google Scholar 

  74. Cranwell PA (1982) Prog Lipid Res 21:271

    Article  CAS  Google Scholar 

  75. Kawamura K, Ishiwatari R (1984) Org Geochem 7:121

    Google Scholar 

  76. Suess E (1973) Geochim Cosmochim Acta 37:2435

    CAS  Google Scholar 

  77. Keil RG, Tsamakis E, Fuh CB, Giddings JC, Hedges JI (1994) Geochim Cosmochim Acta 57:879

    Google Scholar 

  78. Keil RG, Montluçon DB, Prahl FG, Hedges JI (1994) Nature 370:549

    Google Scholar 

  79. Keil RG, Tsamakis E, Giddings JC, Hedges JI (1998) Geochim Cosmochim Acta 62:1347

    CAS  Google Scholar 

  80. Bergamaschi BA, Tsamakis E, Keil RG, Eglinton T, Montluçon DB, Hedges JI (1997) Geochim Cosmochim Acta 61:1247

    CAS  Google Scholar 

  81. Ransom B, Bennett RH, Baerwald R, Shea K (1997) Mar Geol 138:1

    CAS  Google Scholar 

  82. Ransom B, Kim D, Kastner M, Wainwright S (1998) Geochim Cosmochim Acta 62:1329

    CAS  Google Scholar 

  83. Bock MJ, Mayer LM (2000) Mar Geol 163:65

    CAS  Google Scholar 

  84. Mayer LM (1999) Geochim Cosmochim Acta 63:207

    CAS  Google Scholar 

  85. Baldock JA, Skjemstad JO (2000) Org Geochem 31:697

    CAS  Google Scholar 

  86. King KJ, Hare PE (1972) Micropaleontology 23:180

    Google Scholar 

  87. Collins MJ, Muyzer G, Curry GB, Sandberg P, Westbroek P (1991) Lethaia 24:387

    Google Scholar 

  88. Ingalls AE, Lee C, Wakeham SG, Hedges JI (2003) Deep-Sea Res II, 50:713

    CAS  Google Scholar 

  89. Ensminger LE, Gieseking JE (1942) Soil Sci 50:205

    Google Scholar 

  90. Marshmann NA, Marshall KC (1981) Soil Biol Biochem 12:127

    Google Scholar 

  91. Zang X, Nguyen RT, Harvey HR, Knicker H, Hatcher PG (2001) Geochim Cosmochim Acta 65:329

    Google Scholar 

  92. Nguyen RT, Harvey HR (2001) Geochim Cosmochim Acta 65:1467

    CAS  Google Scholar 

  93. Nguyen RT, Harvey HR, Zang X, van Heemst JDH, Hetényi M, Hatcher PG (2003) Org Geochem 34:483

    CAS  Google Scholar 

  94. Collins MJ, Bishop AN, Farrimond P (1995) Geochim Cosmochim Acta 59:2387

    CAS  Google Scholar 

  95. Kristensen E, Ahmed SO, Devol AH (1995) Limnol Oceanogr 40:1430

    CAS  Google Scholar 

  96. Jørgensen BB, Bak F (1991) Appl Environ Microbiol 57:847

    Google Scholar 

  97. Ahmed SI, Williams BL, Johnson V (1992) Mar Microb Food Web 6:133

    Google Scholar 

  98. Sun M-Y, Wakeham SG, Lee C (1997) J Mar Res 61:341

    CAS  Google Scholar 

  99. Sun M-Y, Aller RC, Lee C, Wakeham SG (1999) J Mar Res 57:775

    CAS  Google Scholar 

  100. Teece MA, Getliff JM, Leftley JW, Parkes RJ, Maxwell JR (1998) Org Geochem 29:863

    CAS  Google Scholar 

  101. Lehmann MF, Bernasconi SM, Barbieri A, McKenzie JA (2002) Geochim Cosmochim Acta 66:3573

    CAS  Google Scholar 

  102. Henrichs SM, Doyle AP (1986) Limnol Oceanogr 31:765

    Article  CAS  Google Scholar 

  103. Keil RG, Hu FS, Tsamakis EC, Hedges JI (1994) Nature 369:639

    CAS  Google Scholar 

  104. Cowie GL, Hedges JI, Prahl FG, de Lange GJ (1995) Geochim Cosmochim Acta 59:33

    CAS  Google Scholar 

  105. Prahl FG, de Lange GL, Scholten S, Cowie GL (1997) Org Geochem 27:141

    CAS  Google Scholar 

  106. Hulthe G, Hulthe S, Hall POJ (1998) Geochim Cosmochim Acta 62:1319

    CAS  Google Scholar 

  107. Ingalls AE, Aller RC, Lee C, Sun M-Y (2000) J Mar Res 58:631

    Google Scholar 

  108. Bianchi TS, Dawson R, Sawangwong P (1988) J Exp Mar Biol Ecol 122:243

    Google Scholar 

  109. Sun M-Y, Cai W-J, Joye SB, Ding H, Dai J, Hollibaugh JT (2002) Org Geochem 33:445

    CAS  Google Scholar 

  110. Keil RG, Mayer LM, Quay PD, Richey JE, Hedges JI (1997) Geochim Cosmochim Acta 61:1507

    CAS  Google Scholar 

  111. Hedges JI, Keil RG (1999) Mar Chem 65:55

    CAS  Google Scholar 

  112. Aller RC (1998) Mar Chem 61:143

    CAS  Google Scholar 

  113. Schaffner LC, Dellapenna TM, Hinchey EK, Neubauer MT, Smith ME, Kuehl SA (2001) Physical energy regimes, seabed dynamics and organism–sediment interactions along an estuarine gradient. In: Aller JY, Woodin SA, Aller RC (eds) Organism–sediment interactions. University of South Carolina Press, Columbia, p 161

    Google Scholar 

  114. Arzayus KM, Dickhut RM, Canuel EA (2002) Org Geochem 33:1759

    CAS  Google Scholar 

  115. Dellapenna TM, Kuehl SA, Schaffner LC (1998) Estuar Coast Shelf Sci 46:777

    Google Scholar 

  116. Van Mooy BAS, Keil RG, Devol AH (2002) Geochim Cosmochim Acta 66:457

    Google Scholar 

  117. Duffy JE, Richardson JP, Canuel EA (2003) Ecol Lett 6:637

    Google Scholar 

  118. Sun M-Y, Wakeham SG (1999) J Mar Res 57:357

    CAS  Google Scholar 

  119. Martens CS, Klump JV (1984) Geochim Cosmochim Acta 44:471

    Google Scholar 

  120. Klump JV, Martens CS (1987) Geochim Cosmochim Acta 51:1161

    CAS  Google Scholar 

  121. Zimmerman AR (2000) Organic matter composition of sediments and the history of eutrophication and anoxia in the mesohaline Chesapeake Bay. PhD dissertation. The College of William & Mary

    Google Scholar 

  122. McCaffrey MA (1990) Sedimentary lipids as indicators of depositional conditions in the coastal Peruvian upwelling regime. PhD dissertation, Woods Hole Oceanographic Institution and MIT

    Google Scholar 

  123. Hinrichs K-U, Boetius A (2002) The anaerobic oxidation of methane: new insights in microbial ecology and biogeochemistry. In: Wefer G, Billett D, Hebbeln D, Jørgensen BB, Schlüter M, van Weeging T (eds) Ocean margin systems. Springer, Berlin Heidelberg New York, p 457

    Google Scholar 

  124. Elvert M, Boetius A, Knittel K, Jørgensen BB (2003) Geomicrobiol J 20:403

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This chapter was prepared with the support of National Science Foundation grants OCE-0223226 and OCE-0136318 to SGW and OCE-0223295 to EAC. Anna Boyette at Skidaway Institute of Oceanography prepared the figures. This is VIMS contribution number 2701.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart G. Wakeham .

Editor information

John K. Volkman

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Wakeham, S.G., Canuel, E.A. Degradation and Preservation of Organic Matter in Marine Sediments. In: Volkman, J.K. (eds) Marine Organic Matter: Biomarkers, Isotopes and DNA. The Handbook of Environmental Chemistry, vol 2N. Springer, Berlin, Heidelberg. https://doi.org/10.1007/698_2_009

Download citation

Publish with us

Policies and ethics