Skip to main content

Marine Invertebrates of Boka Kotorska Bay Unique Sources for Bioinspired Materials Science

  • Chapter
  • First Online:
The Boka Kotorska Bay Environment

Abstract

Marine invertebrates from Boka Kotorska Bay represent a gold mine for both marine pharmacology and biotechnology as well as for bioinspired materials science. Especially sponges are highly perspective organisms due to their ability to grow under marine farming conditions and to synthetize biologically active secondary metabolites as well as diverse biopolymers. Their skeletal structures contain unique biocomposites made of organic templates and calcium carbonate, or silica phases. Studies on structural biopolymers like aminopolysaccharide chitin or proteinaceous keratin-like spongin are current topics of scientific interest today. Chitinous scaffolds of poriferan origin are discussed as unique templates for application in extreme biomimetics and tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gamulin-Brida H (1963) Prilog istraživanju bentoskih biocenoza južnog Jadrana. Bilješke-Notes Inst Oceanogr Rib Split 20:1–3

    Google Scholar 

  2. Gamulin-Brida H (1967) The benthic fauna of the Adriatic Sea. Oceanogr Mar Biol Annu Rev 5:535–568

    Google Scholar 

  3. Gamulin-Brida H (1974) Biocoenoses benthiques de la mer Adriatique – Bentoske biocenoze Jadranskog mora. Acta Adriat 15(9):1–102

    Google Scholar 

  4. Gamulin-Brida H (1983) Crnogorsko primorje – specifični dio Jadrana s gledišta bentoskih biocenoza i njihove zaštite. Stud Mar 13–14:205–214

    Google Scholar 

  5. Lepetić V (1965) Sastav i sezonska dinamika ihtiobentosa i jestivih invertebrata u Bokokotorskom zalivu i mogućnosti njihove eksploatacije. Stud Mar 1:3–127

    Google Scholar 

  6. Karaman G, Gamulin-Brida H (1970) Contribution aux recherches des bicenoses benthiques du Golfe de Boka Kotorska. Stud Mar 4:3–42

    Google Scholar 

  7. Eusebio A, Bordin R, Jarre R et al (2007) Recenti esplorazioni speleosubacquee nel golfo di Kotor (Montenegro). Thalassia Salentina 30:25–37

    Google Scholar 

  8. Badalamenti F, Treviño-Otón J (2012) Development of marine and coastal protected areas (MPAs) in the Republic of Montenegro. Contract n° 05/ RAC/SPA /2011 MedMPAnet. 57 pp

    Google Scholar 

  9. Thessalou-Legaki M, Aydogan Ö, Bekas P et al (2012) New Mediterranean biodiversity records. Mediterr Mar Sci 13:312–327

    Article  Google Scholar 

  10. RAC/SPA - UNEP/MAP (2014) Marine biodiversity of Boka Kotorska bay - Pilot project on testing Ecosystem Approach (EcAp) application in Boka Kotorska bay (Montenegro) - Executive summary. By Petovic S. and Batakovic M. Ed. RAC/SPA - MedMPAnet Project, Tunis. 25 pp

    Google Scholar 

  11. Ehrlich H, Demadis KD, Pokrovsky OS et al (2010) Modern views on desilicification: biosilica and abiotic silica dissolution in natural and artificial environments. Chem Rev 110:4656–4689

    Article  CAS  Google Scholar 

  12. Weiner S, Addadi L (2011) Crystallization pathways in biomineralization. Annu Rev Mater Res 41:21–40

    Article  CAS  Google Scholar 

  13. Mandić S (1984) Cephalopoda južnog Jadrana. Stud Mar 15–16:3–79

    Google Scholar 

  14. Mačić V (2013) Contribution to the knowledge of Bursatella leachii (de Blainville, 1817) distribution and reproduction in the Boka Kotorska Bay (Montenegro). Stud Mar 26(1):119–128

    Google Scholar 

  15. Doneddu M, Trainito E, Mačić V (2013) First record of Cabestana cutacea (Linnaeus, 1767) (Gastropoda; Ranellidae) found on the coast of Montenegro: notes about the range of the species. Biol Serbica 35:76–81

    Google Scholar 

  16. Stjepčević J (1967) Makro-Mollusca Bokokotorskog zaliva [Macro-Molluscs of the Boka Kotorska Bay]. Stud Mar 2:3–67 [Serbian]

    Google Scholar 

  17. Stjepčević J, Parenzan P (1980) Il Golfo delle Bocche di Cattaro–condizioni generali e biocenosi bentoniche con carta ecologica delle due baie interne: di Kotor (Cattaro) e di Risan (Risano). [Boka kotorska Bay general characteristics and composition of the benthic biocenosis with ecological map of Kotor’s and Risan’s Bay]. Stud Mar 9–10:3–145 [Italian]

    Google Scholar 

  18. Joksimović D, Tomić I, Stanković RA et al (2011) Trace metal concentrations in Mediterranean blue mussel and surface sediments and evaluation of the mussels quality and possible risks of high human consumption. Food Chem 127:632–637

    Article  Google Scholar 

  19. Vukanić D (1971) Kopepodi Bokokotorskog zaliva. Stud Mar 5:21–62

    Google Scholar 

  20. Marković O, Gokoglu M, Petović S et al (2014) First record of the Northern brown shrimp, Farfantepenaeus aztecus (Ives, 1891) (Crustacea: Decapoda: Penaeidae) in the South Adriatic Sea, Montenegro. Medit Mar Sci 15(1):165–167

    Google Scholar 

  21. Stjepčević J, Gašić MJ, Kljajić Z et al (1986) Prilog proučavanja faune Anthozoa unutrašnjeg dijela Bokokotorskog zaliva. Stud Mar 21:17–18

    Google Scholar 

  22. Benović A, Lučić D, Onofri V (2000) Does change in an Adriatic hydromedusan fauna indicate an early phase of marine ecosystem destruction? Mar Ecol 21:221–231

    Google Scholar 

  23. Lučić D, Pestorić B, Malej A et al (2012) Mass occurrence of the ctenophore Bolinopsis vitrea (L. Agassiz, 1860) in the nearshore southern Adriatic Sea (Kotor Bay, Montenegro). Environ Monit Assess 184:4777–4785

    Article  Google Scholar 

  24. Pestorić B, Krpo-Ćetković J, Gangai B et al (2012) Pelagic cnidarians in the Boka kotorska Bay (Montenegro, South Adriatic). Acta Adriat 53(2):289–300

    Google Scholar 

  25. Wilt FH (2005) Developmental biology meets materials science: morphogenesis of biomineralized structures. Dev Biol 280(1):15–25

    Article  CAS  Google Scholar 

  26. Matranga V, Bonaventura R, Costa C et al (2011) Echinoderms as blueprints for biocalcification: regulation of skeletogenic genes and matrices. Prog Mol Subcell Biol 52:225–248

    Article  CAS  Google Scholar 

  27. Politi Y, Arad T, Klein E et al (2004) Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase. Science 306(5699):1161–1164. doi:10.1126/science.1102289

    Article  CAS  Google Scholar 

  28. Killian CE, Wilt FH (2008) Molecular aspects of biomineralization of the Echinoderm endoskeleton. Chem Rev 108(11):4463–4474

    Article  CAS  Google Scholar 

  29. Milojević S (1986) Fauna Asteroidea (Echinodermata) u otvorenom litoralnom području južnog Jadrana. Stud Mar 17–18:199–213

    Google Scholar 

  30. Kašćelan S, Mandić S, Radović I et al (2009) An annotated checklist of Echinodermata of Montenegro (the south Adriatic Sea). Zootaxa 2275:21–40

    Google Scholar 

  31. Petović S, Krpo-Ćetković J (2014) Additions to the echinoderm (Echinodermata) fauna of Montenegro (Adriatic Sea). Stud Mar 27(1):9–18

    Google Scholar 

  32. Bruno C (1972) Echinodermi di Boka Kotorska. Thalassia Salentina 6:37–46

    Google Scholar 

  33. Ehrlich H (2011) Silica biomineralization in sponges. In: Reitner J, Thiel V (eds) Encyclopedia of geobiology. Springer, Netherlands, pp 796–808

    Chapter  Google Scholar 

  34. Aizenberg J, Weaver JC, Thanawala MS et al (2005) Skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale. Science 309:275–278

    Article  CAS  Google Scholar 

  35. Weaver JC, Aizenberg J, Fanther GE et al (2007) Hierarchical assembly of the siliceous skeletal lattice of the hexactinellid sponge Euplectella aspergillum. J Struct Biol 158:93–106

    Article  CAS  Google Scholar 

  36. Fratzl P (2007) Biomimetic materials research: what can we really learn from nature’s structural materials? J R Soc Interface 4:637–642

    Article  CAS  Google Scholar 

  37. Meyers MA, Chen P-Y, Lin AY-M et al (2008) Biological materials: structure and mechanical properties. Prog Mater Sci 53:1–206

    Article  CAS  Google Scholar 

  38. Rai A, Perry CC (2010) Facile fabrication of uniform silica films with tunable physical properties using silicatein protein from sponges. Langmuir 26:4152–4159

    Article  CAS  Google Scholar 

  39. Macic V, Petovic S, Backovic S (2015) Contribution to the knowledge of protected Axinella species along the Montenegrin coast. Stud Mar 28(1):9–20

    Google Scholar 

  40. Schmidt O (1862) Die Spongien des adriatischen Meeres. Verlag von Wilhelm Engelmann, Leipzig, 88 pp

    Google Scholar 

  41. Schmidt O (1864) Supplement der Spongien des adriatischen Meeres (Enthaltend die Histiologie und systematische Ergänzungen). Verlag von Wilhelm Engelmann, Leipzig, 48 pp

    Google Scholar 

  42. Buccich G (1886) Alcune spugne dell’Adriatico sonosciute e nuove. Bollettino della Società Adriatica di Scienze Naturali in Trieste 9:222–225

    Google Scholar 

  43. Babić K (1922) Monactinellida und Tetractinellida des Adriatischen Meeres. Zoologische Jahrbücher, Abteilung für Systematik, Geographie und Biologie der Tiere 46(2):217–302

    Google Scholar 

  44. Voltz P (1939) Die Borschwämme (Clioniden) der Adria. Thalassia 2(3):1–64

    Google Scholar 

  45. Bakran-Petricioli T, Radolovic M, Petricioli D (2012) How diverse is sponge fauna in the Adriatic Sea? Zootaxa 3172:20–38

    Google Scholar 

  46. Sipkema D, Franssen CR, Osinga R et al (2005) Marine sponges as pharmacy. Mar Biotechnol 7:142–162

    Article  CAS  Google Scholar 

  47. Müller WEG, Diehl-Seifert B, Sobel C et al (1986) Sponge secondary metabolites: biochemical and ultrastructural localization of the antimitotic agent avarol in Dysidea avara. J Histochem Cytochem 34:1687–1690

    Article  Google Scholar 

  48. Müller WEG, Schatton WFH, Gudrum M (1991) Verwendung von Avarol oder dessen Derivaten zur Bekämpfung von entzündlichen systemischen und dermatologischen Erkrankungen. International Patent Application DE 1991-4,137,093

    Google Scholar 

  49. Müller WEG, Böhm M, Batel R et al (2000) Application of cell culture for the production of bioactive compounds from sponges: synthesis of avarol by primmorphs from Dysidea avara. J Nat Prod 63:1077–1081

    Article  Google Scholar 

  50. Andjus RK, Mitrasinovic O, Zivadinovic D et al (1992) Suppression of uncoupled oxidations in brain synaptosomes by derivatives of a bioactive compound from Adriatic demospongia Dysidea avara. Arch Biol Sci 44:7–14

    Google Scholar 

  51. Božić T, Novaković I, Gašić MJ et al (2010) Synthesis and biological activity of derivatives of the marine quinone avarone. Eur J Med Chem 45:923–929

    Article  Google Scholar 

  52. Cerrano C, Calcinai B, Di Camillo CG et al (2007) How and why do sponges incorporate foreign material? Strategies in Porifera. Porifera Res Biodivers, Innov Sustain 20:239–246

    Google Scholar 

  53. Schatton WFH, Schatton M, Mueller-Zahn I et al (2000) Züchtung von Schwämmen in Aquakultur, Verfahren zur umweltschonenden und ökonomisch effizienten Züchtung von Schwämmen, Korallen und anderen Invertebraten im Biozyklus. German Patent DE 19,834,949 A

    Google Scholar 

  54. Cimino G, De Rosa S, De Stefano S et al (1983) The bromocompounds of the true sponge Verongia aerophoba. Tetrahedron Lett 24:3029–3032

    Article  CAS  Google Scholar 

  55. Teeyapant R, Proksch P (1993) Biotransformation of brominated compounds in the marine sponge Verongia aerophoba: evidence for an induced chemical defense? Naturwissenschaften 80:369–370

    Article  CAS  Google Scholar 

  56. Teeyapant R, Woerdenbag HJ, Kreis P et al (1993) Antibiotic and cytotoxic activity of brominated compounds from the marine sponge Verongia aerophoba. Z Naturforsch C 48:939–945

    CAS  Google Scholar 

  57. Weiss B, Ebel R, Elbraechter M et al (1996) Defense metabolites from the marine sponge Verongia aerophoba. Biochem Syst Ecol 24:1–12

    Article  CAS  Google Scholar 

  58. Ciminiello P, Fattorusso E, Forino M et al (1997) Chemistry of Verongida sponges, VIII – Bromocompounds from the Mediterranean sponges Aplysina aerophoba and Aplysina cavernicola. Tetrahedron 53:6565–6572

    Article  CAS  Google Scholar 

  59. Turon X, Becerro MA, Uriz MJ (2000) Distribution of brominated compounds within the sponge Aplysina aerophoba: coupling of X-ray microanalysis with cryofixation techniques. Cell Tissue Res 301:311–322

    Article  CAS  Google Scholar 

  60. Thoms C, Wolff M, Padmakumar K et al (2004) Chemical defense of Mediterranean sponges Aplysina cavernicola and Aplysina aerophoba. Z Naturforsch C 59c:113–122

    Google Scholar 

  61. Klöppel A, Brümmer F (2006) Aplysina aerophoba and Aplysina cavernicola: phenotypic variability or two different species. In: Custodio MR, Lobo-Hajdu G, Hajdu E, Muricy G (eds) 7th international sponge symposium. Museu Nacional, Buzios, Rio de Janeiro, p 290

    Google Scholar 

  62. Fattorusso E, Minale L, Sodano G (1970) Aeroplysinin-1, a new bromo-compound from Aplysina aerophoba. Chem Commun 12:751–752

    Article  Google Scholar 

  63. Fattorusso E, Minale L, Sodano G (1972) Aeroplysinin-1, an antibacterial bromo-compound from the sponge Verongia aerophoba. J Chem Soc Perk Trans 1(1):16–18

    Article  CAS  Google Scholar 

  64. Kreuter MH, Bernd A, Holzmann H et al (1989) Cytostatic activity of Aeroplysnin-1 against lymphoma and epithelioma cells. Z Naturforsch C 44:680–688

    CAS  Google Scholar 

  65. Kreuter MH, Leake RE, Rinaldi F et al (1990) Inhibition of intrinsic protein tyrosine kinase activity of Egf-receptor kinase complex from human breast cancer cells by the marine sponge metabolite (+)-Aeroplysinin-1. Comput Biochem Phys B 97:151–158

    CAS  Google Scholar 

  66. Kreuter MH, Robitzki A, Chang S et al (1992) Production of the cytostatic agent aeroplysinin by the sponge Verongia aerophoba in vitro culture. Comput Biochem Physiol C 101:183–187

    Article  CAS  Google Scholar 

  67. Koulman A, Proksch P, Ebel R et al (1996) Cytotoxicity and mode of action of Aeroplysinin-1 and a related dienone from the sponge Aplysina aerophoba. J Nat Prod 59:591–594

    Article  CAS  Google Scholar 

  68. Ebel R, Brenzinger M, Kunze A et al (1997) Wound activation of protoxins in marine sponge Aplysina aerophoba. J Chem Ecol 23:1451–1462

    Article  CAS  Google Scholar 

  69. Hentschel U, Schmid M, Wagner M et al (2001) Isolation and phylogenetic analysis of bacteria with antimicrobial activities from the Mediterranean sponges Aplysina aerophoba and Aplysina cavernicola. FEMS Microbiol Ecol 35:305–312

    Article  CAS  Google Scholar 

  70. Friedrich AB, Fischer I, Proksch P et al (2001) Temporal variation of the microbial community associated with the Mediterranean sponge Aplysina aerophoba. FEMS Microbiol Ecol 38:105–113

    Article  CAS  Google Scholar 

  71. Wehrl M, Steinert M, Hentschel U (2007) Bacterial uptake by the marine sponge Aplysina aerophoba. Microb Ecol 53:355–365

    Article  Google Scholar 

  72. Thompson JE, Barrow KD, Faulkner JD (1983) Localization of two brominated metabolites, aerothionin and homoaerothionin, in spherulous cells of the marine sponge Aplysina fistularis (=Verongia thiona). Acta Zool (Stockh) 44:199–210

    Article  Google Scholar 

  73. Hausmann R, Vitello M, Leitermann F et al (2006) Advances in the production of sponge biomass Aplysina aerophoba - a model sponge for ex situ sponge biomass production. J Biotechnol 124:117–127

    Article  CAS  Google Scholar 

  74. Klöppel A, Pfannkuchen M, Putz A et al (2008) Ex situ cultivation of Aplysina spp. close to in situ conditions: ecological, biochemical and histological aspects. Mar Ecol 29:259–272

    Article  Google Scholar 

  75. Verdenal B, Vacelet J (1990) Sponge culture on vertical ropes in the northwestern Mediterranean Sea. In: Rützler K (ed) New perspectives in sponge biology. Smithsonian Institute Press, Washington, pp 416–424

    Google Scholar 

  76. Pronzato R, Bavestrello G, Cerrano C et al (1999) Sponge farming in the Mediterranean Sea: new perspectives. Mem Qld Mus 44:485–491

    Google Scholar 

  77. Ehrlich H, Maldonado M, Spindler K-D et al (2007) First evidence of chitin as a component of the skeletal fibers of marine sponges. Part I. Verongidae (Demospongia: Porifera). J Exp Zool (Mol Dev Evol) 308B:347–356

    Article  CAS  Google Scholar 

  78. Ehrlich H, Ilan M, Maldonado M et al (2010) Three-dimensional chitin-based scaffolds from Verongida sponges (Demospongiae: Porifera). Part I. Isolation and identification of chitin. Int J Biol Macromol 47:132–140

    Article  CAS  Google Scholar 

  79. Ehrlich H, Brunner E, Richter W et al (2011) Two or three-dimensional cleaned chitin skeleton of dictyoceratid sponges. Method for the production and use thereof WO 2011/ 023531 A2

    Google Scholar 

  80. Ehrlich H, Steck E, Ilan M et al (2010) Three-dimensional chitin-based scaffolds from Verongida sponges (Demospongiae: Porifera). Part II. biomimetic potential and applications. Int J Biol Macromol 47:141–145

    Article  CAS  Google Scholar 

  81. Brunner E, Ehrlich H, Schupp P et al (2009) Chitin-based scaffolds are an integral part of the skeleton of the marine demosponge Ianthella basta. J Struct Biol 168:539–547

    Article  CAS  Google Scholar 

  82. Noishiki Y, Takami H, Nishiyama Y et al (2003) Alkali-induced conversion of b-chitin to a-chitin. Biomacromolecules 4:869–899

    Article  Google Scholar 

  83. Maldonado M (2009) Embryonic development of verongid demosponges supports the independent acquisition of sponging skeletons as an alternative to the siliceous skeleton of sponges. Biol J Linn Soc 97:427–447

    Article  Google Scholar 

  84. Green D, Howard D, Yang X et al (2004) Natural marine sponge fiber skeleton: a biomimetic scaffold for human osteoprogenitor cell attachment, growth, and differentiation. Tissue Eng 9(6):1159–1166

    Article  Google Scholar 

  85. Norman M, Bartczak P, Zdarta J et al (2015) Adsorption of C. I. Natural Red 4 onto spongin skeleton of marine demosponge. Materials 8:96–116

    Google Scholar 

  86. Szatkowski T, Wysokowski M, Lota G et al (2015) Novel nanostructured hematite-spongin composite developed using extreme biomimetic approach. RSC Adv 5:79031–79040

    Article  CAS  Google Scholar 

  87. Arndt W (1928) Haltung und Aufzucht von Meeresschwämmen. In: Abderhalden E (ed) Handbuch der biologischen Arbeitsmethoden, vol Abt. IX; Teil 5. pp 443–464

    Google Scholar 

  88. Pronzato R (1999) Sponge-fishing, disease and farming in the Mediterranean Sea. Aquat Conserv 9:485–493

    Article  Google Scholar 

  89. Pronzato R, Bavestrello G, Cerrano C et al (2000) The millennial history of commercial sponges: from harvesting to farming and integrated aquaculture. Biol Mar Medit 7:1–12

    Google Scholar 

  90. Nickel M, Brümmer F (2003) In vitro sponge fragment culture of Chondrosia reniformis (Nardo, 1843). J Biotech 100:147–159

    Article  CAS  Google Scholar 

  91. Duckworth A, Battershill C (2003) Sponge aquaculture for the production of biologically active metabolites: the influence of farming protocols and environment. Aquaculture 221:311–329

    Article  Google Scholar 

  92. Baldacconi R, Cardone F, Nonnis Marzano C et al (2006) Riproduzione sessuale in una popolazione naturale e in frammenti reimpiantati di Spongia officinalis var. adriatica (Porifera, Demospongiae). Biol Mar Medit 13:797–800

    Google Scholar 

  93. Ehrlich H, Rigby JK, Botting J et al (2013) Discovery of 505-million-year old chitin in the basal demosponge Vauxia gracilenta. Sci Rep 3:3497

    Article  CAS  Google Scholar 

  94. Ehrlich H (2013) Biomimetic potential of chitin-based composite biomaterials of poriferan origin. In: Ruys AJ (ed) Biomimetic biomaterials: structure and applications. Woodhead Publishing Limited, Cambridge, pp 47–67

    Google Scholar 

  95. Ehrlich H, Simon P, Motylenko M et al (2013) Extreme biomimetics: formation of zirconium dioxide nanophase using chitinous scaffolds under hydrothermal conditions. J Mater Chem B 1:5092–5099

    Article  CAS  Google Scholar 

  96. Wysokowski M, Motylenko M, Bazhenov VV et al (2013) Poriferan chitin as a template for hydrothermal zirconia deposition. Front Mater Sci 7(3):248–260

    Article  Google Scholar 

  97. Wysokowski M, Behm T, Born R et al (2013) Preparation of chitin-silica composites by in vitro silicification of two-dimensional Ianthella basta demosponge chitinous scaffolds under modified Stöber conditions. Mater Sci Eng C 33:3935–3941

    Article  CAS  Google Scholar 

  98. Wysokowski M, Motylenko M, Walter J et al (2014) Synthesis of nanostructured chitin-hematite composites under extreme biomimetic conditions. RSC Adv 4:61743–61752

    Article  CAS  Google Scholar 

  99. Wysokowski M, Materna K, Walter J et al (2015) Solvothermal synthesis of chitin-polyhedral oligomeric silsesquioxane (POSS) nanocomposites with hydrophobic properties. Int J Biol Macromol 78:224–229

    Article  CAS  Google Scholar 

  100. Wysokowski M, Petrenko I, Stelling AL et al (2015) Poriferan chitin as a versatile template for extreme biomimetics. Polymers 7:235–265

    Google Scholar 

  101. Wysokowski M, Motylenko M, Beyer J et al (2015) Extreme biomimetic approach for development of novel chitin-GeO2 nanocomposites with photoluminescent properties. Nano Res 8(7):2288–2301

    Article  CAS  Google Scholar 

  102. Stepniak I, Galinski M, Nowacki K et al (2016) A novel chitosan/sponge chitin origin material as a membrane for supercapacitors – preparation and characterization. RSC Adv 6:4007–4013

    Article  CAS  Google Scholar 

  103. Schleuter D, Günther A, Paasch S et al (2013) Chitin-based renewable materials from marine sponges for uranium adsorption. Carbohydr Polym 92(1):712–718

    Article  CAS  Google Scholar 

  104. Rogulska OY, Mutsenko VV, Revenko EB et al (2013) Culture and differentiation of human adipose tissue mesenchymal stromal cells within carriers based on sea sponge chitin skeletons. Probl Cryobiol Cryomed 23:267–270

    CAS  Google Scholar 

  105. Rogulska OY, Revenko OB, Petrenko YO et al (2013) Prospects for the application of Aplysinidae family marine sponge skeletons and mesenchymal stromal cells in tissue engineering. Biotechnol Acta 6(5):115–121

    Article  Google Scholar 

Download references

Acknowledgements

The study was financed within the DFG project EH-301, BromMarin GmbH, INTIB GmbH (Germany) as well as BHMZ program of Dr. Erich Krüger Foundation (Germany) at TU Bergakademie Freiberg

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann Ehrlich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ehrlich, H. et al. (2016). Marine Invertebrates of Boka Kotorska Bay Unique Sources for Bioinspired Materials Science. In: Joksimović, A., Djurović, M., Semenov, A., Zonn, I., Kostianoy, A. (eds) The Boka Kotorska Bay Environment . The Handbook of Environmental Chemistry, vol 54. Springer, Cham. https://doi.org/10.1007/698_2016_25

Download citation

Publish with us

Policies and ethics