Skip to main content

The Deep Biosphere of the Subseafloor Igneous Crust

  • Chapter
  • First Online:

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 50))

Abstract

The igneous portion of the subseafloor crust is considered to be the largest potential microbial habitat on Earth; thus, it is somewhat of a paradox that our knowledge regarding its abundance, diversity and ecology is sparse, close to non-existent. This is mainly due to issues involved in sampling live species, and therefore much of our present knowledge of the deep biosphere is based on a fossil record. However, drilling and sampling techniques are constantly being developed to facilitate sampling of live microorganisms, and recent molecular studies show a positive progress towards better recovery and less contamination. Here we discuss the subseafloor igneous crust as a microbial habitat, its physical and geochemical prerequisites to support life and what type of life that could sustain in such an extreme environment. We also discuss what the fossil record, and the few successful molecular studies, tells us regarding what type of microorganisms exist in the deep subseafloor settings. It appears as if the igneous crust is more diverse than previously expected consisting of both prokaryotes and eukaryotes in close interplay with each other and their physical environment. As our knowledge increases so does the questions, and hopefully future technique development can provide us with an increased understanding of this deep, hidden world.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Edwards KJ, Bach W, McCollom T (2005) Geomicrobiology in oceanography: microbe-mineral interactions at and below the seafloor. Trends Microbiol 13:449–456

    Article  CAS  Google Scholar 

  2. Schrenk MO, Huber JA, Edwards KJ (2009) Microbial provinces in the subseafloor. Ann Rev Mar Sci 2:279–304

    Article  Google Scholar 

  3. Orcutt BN, Sylvan JB, Knab NJ, Edwards KJ (2011) Microbial ecology of the dark ocean above, at, and below the seafloor. Microbiol Mol Biol Rev 75:361–422

    Article  CAS  Google Scholar 

  4. Deming JW, Baross JA (1993) Deep-sea smokers – windows to a subsurface biosphere. Geochim Cosmochim Acta 57:3219–3230

    Article  CAS  Google Scholar 

  5. Pedersen K, Ekendahl S (1990) Distribution and activity of bacteria in deep granitic groundwaters of southeastern Sweden. Microb Ecol 20:37–52

    Article  CAS  Google Scholar 

  6. Pedersen K (1993) The deep subterranean biosphere. Earth Sci Rev 34:243–260

    Article  CAS  Google Scholar 

  7. Parkes RJ, Cragg BA, Bale SJ, Getliff JM, Goodman K, Rochelle PA, Fry JC, Weightman AJ, Harvey SM (1994) Deep bacterial biosphere in Pacific Ocean sediments. Nature 371:410–413

    Article  Google Scholar 

  8. Thorseth IH, Furnes H, Heldal M (1992) The importance of microbiological activity in the alteration of natural basaltic glass. Geochim Cosmochim Acta 56:845–850

    Article  CAS  Google Scholar 

  9. Thorseth IH, Torsvik T, Furnes H, Muehlenbachs K (1995) Microbes play an important role in the alteration of oceanic crust. Chem Geol 126:137–146

    Article  CAS  Google Scholar 

  10. Furnes H, Staudigel H (1999) Biological mediation in ocean crust alteration: how deep is the deep biosphere? Earth Planet Sci Lett 166:97–103

    Article  CAS  Google Scholar 

  11. Furnes H, McLoughlin N, Muehlenbachs K, Banerjee N, Staudigel H, Dilek Y, de Wit M, Van Kranendonk M, Schiffman P (2008) Oceanic pillow lavas and hyaloclastites as habitats for microbial life through time – a review. In: Dilek Y, Furnes H, Muehlenbachs K (eds) Links between geological processes, microbial activities and evolution of life. Springer, Berlin, pp 1–68

    Chapter  Google Scholar 

  12. Giovannoni SJ, Fisk MR, Mullins TD, Furnes H (1996) Genetic evidence for endolithic microbial life colonizing basaltic glass-seawater interfaces. Proc Ocean Drill Prog Sci Res 148:207–214

    Google Scholar 

  13. Fisk MR, Giovannoni SJ, Thorseth IH (1998) Alteration of oceanic volcanic glass: textural evidence of microbial activity. Science 281:978–980

    Article  CAS  Google Scholar 

  14. Lepot K, Philippot P, Benzerara K, Wang G-Y (2009) Garnet-filled trails associated with carbonaceous matter mimicking microbial filaments in Archean basalt. Geobiology 7:393–402

    Article  CAS  Google Scholar 

  15. Schopf JW (2006) Fossil evidence of Archaean life. Philos Trans R Soc B 361:869–885

    Article  CAS  Google Scholar 

  16. Grosch EG, McLoughlin N (2014) Reassessing the biogenicity of Earth’s oldest trace fossil with implications for biosignatures in the search for early life. Proc Natl Acad Sci U S A 111:8380–8385

    Article  CAS  Google Scholar 

  17. Schumann G, Manz W, Reitner J, Lustrino M (2004) Ancient fungal life in North Pacific Eocene oceanic crust. Geomicrobiol J 21:241–246

    Article  Google Scholar 

  18. Ivarsson M, Lindblom S, Broman C, Holm NG (2008) Fossilized microorganisms associated with zeolite-carbonate interfaces in sub-seafloor hydrothermal environments. Geobiology 6:155–170

    Article  CAS  Google Scholar 

  19. Ivarsson M, Lausmaa J, Lindblom S, Broman C, Holm NG (2008) Fossilized microorganisms from the Emperor Seamounts: implications for the search for a subsurface fossil record on Earth and Mars. Astrobiology 8:1139–1157

    Article  CAS  Google Scholar 

  20. Ivarsson M, Bengtson S, Belivanova V, Stampanoni M, Marone F, Tehler A (2012) Fossilized fungi in subseafloor Eocene basalts. Geology 40:163–166

    Article  CAS  Google Scholar 

  21. Peckmann J, Bach W, Behrens K, Reitner J (2008) Putative cryptoendolithic life in Devonian pillow basalt, Rheinisches Schiefergebirge, Germany. Geobiology 6:125–135

    Article  CAS  Google Scholar 

  22. Eickmann B, Bach W, Kiel S, Reitner J, Peckmann J (2009) Evidence for cryptoendolithic life in Devonian pillow basalts of Variscan orogens, Germany. Palaeogeogr Palaeoclimatol Palaeoecol 283:120–125

    Article  Google Scholar 

  23. Bengtson S, Ivarsson M, Astolfo A, Belivanova V, Broman C, Marone F et al (2014) Deep-biosphere consortium of fungi and prokaryotes in Eocene sub-seafloor basalts. Geobiology 12:489–496

    Article  CAS  Google Scholar 

  24. Thorseth IH, Torsvik T, Torsvik V, Daae FL, Pedersen RB, Keldysh-98 Scientific Party (2001) Diversity of life in ocean floor basalt. Earth Planet Sci Lett 194:31–37

    Article  CAS  Google Scholar 

  25. Lysnes K, Thorseth IH, Steinsbau BO, Øvreås L, Torsvik T, Pedersen RB (2004) Microbial community diversity in seafloor basalt from the Arctic spreading ridges. FEMS Microbiol Ecol 50:213–230

    Article  CAS  Google Scholar 

  26. Santelli CM, Orcutt BN, Banning E, Bach W, Moyer CL, Sogin ML, Staudigel H, Edwards KJ (2008) Abundance and diversity of microbial life in ocean crust. Nature 453:653–657

    Article  CAS  Google Scholar 

  27. Mason OU, Nakagawa T, Rosner M, Van Nostrand JD, Zhou J, Maruyama A, Fisk MR, Giovannoni SJ (2010) First investigation of microbiology of the deepest layer of ocean crust. PLoS One 5(11), e15399

    Article  Google Scholar 

  28. Orcutt BN, Bach W, Becker K, Fisher AT, Hentscher M, Toner BM et al (2010) Colonization of subsurface microbial observatories deployed in young ocean crust. ISME J 5:692–703

    Article  Google Scholar 

  29. Lever MA, Rouxel A, Alt JC, Shimizu N, Ono S, Coggon RM et al (2013) Evidence for microbial carbon and sulphur cycling in deeply buried ridge flank basalt. Science 339:1305–1308

    Article  CAS  Google Scholar 

  30. Connell L, Barrett A, Templeton A, Staudigel H (2009) Fungal diversity associated with an active deep sea volcano: Vailulu’u Seamount, Samoa. Geomicrobiol J 26:597–605

    Article  CAS  Google Scholar 

  31. Bach W, Edwards KJ (2003) Iron and sulphide oxidation within the basaltic ocean crust: implications for chemolithoautotrophic microbial biomass production. Geochim Cosmochim Acta 67:3871–3887

    Article  CAS  Google Scholar 

  32. Fisher AT, Becker K (2000) Channelized fluid flow in oceanic crust reconciles heat-flow and permeability data. Nature 403:71–74

    Article  CAS  Google Scholar 

  33. Golubic S, Friedmann I, Schneider J (1981) The lithobiontic ecological niche, with special reference to microorganisms. J Sediment Res 51:475–478

    Google Scholar 

  34. Edwards KJ, Bach W, Rogers DR (2003) Geomicrobiology of the ocean crust: a role for chemoautotrophic Fe-bacteria. Biol Bull 204:180–185

    Article  CAS  Google Scholar 

  35. Gao H, Obraztova A, Stewart N, Popa R, Fredrickson JK, Tiedje JM, Nealson KH, Zhou J (2006) Shewanella loihica sp. nov., isolated from iron-rich microbial mats in the Pacific Ocean. Int J Syst Evol Microbiol 56:1911–1916

    Article  CAS  Google Scholar 

  36. Edwards KJ, Bach W, McCollom TM, Rogers DR (2004) Neutrophilic iron-oxidizing bacteria in the ocean: their habitats, diversity, and roles in mineral deposition, rock alteration, and biomass production in the deep-sea. Geomicrobiol J 21:393–404

    Article  CAS  Google Scholar 

  37. Templeton AS, Staudigel H, Tebo BM (2005) Diverse Mn(II)-oxidizing bacteria isolated from submarine basalts at Loihi Seamount. Geomicrobiol J 22:127–139

    Article  CAS  Google Scholar 

  38. Dick GJ, Lee JY, Tebo BM (2006) Manganese(II)-oxidizing Bacillus spores in Guaymas Basin hydrothermal sediments and plumes. Appl Environ Microbiol 72:3184–3190

    Article  CAS  Google Scholar 

  39. Mason OU, Di Meo-Savoie CA, Van Nostrand JD, Zhou J, Fisk MR, Giovannoni SJ (2008) Prokaryotic diversity, distribution, and insights into their role in biogeochemical cycling in marine basalts. ISME J 3:231–242

    Article  Google Scholar 

  40. Pedersen K (2000) Exploration of the deep intraterrestrial microbial life: current perspectives. FEMS Microbiol Lett 185:9–16

    Article  CAS  Google Scholar 

  41. Holm NG, Neubeck A (2009) Reduction of nitrogen compounds in oceanic basement and its implications for HCN formation and abiotic organic synthesis. Geochem Trans 10:9

    Article  Google Scholar 

  42. Stein C, Stein S (1994) Constraints on hydrothermal heat flux through the oceanic lithosphere from global heat flow. J Geophys Res 99:3081–3099

    Article  Google Scholar 

  43. Fisher AT, Davis EE, Hutnak M, Spiess V, Zühlsdorff L, Cherkaoui A, Christiansen L, Edwards K, Macdonald R, Villinger H, Mottl MJ, Wheat CG, Becker K (2003) Hydrothermal recharge and discharge across 50 km guided by seamounts on a young ridge flank. Nature 421:618–621

    Article  CAS  Google Scholar 

  44. Bekins BA, Spivack AJ, Davis EE, Mayer LA (2007) Dissolution of biogenic ooze over basement edifices in the equatorial Pacific with implications for hydrothermal ventilation of oceanic crust. Geology 35:679–682

    Article  Google Scholar 

  45. Fehn U, Cathles LM (1986) The influence of plate movement on the evolution of hydrothermal convection cells in the oceanic crust. Tectonophysics 125:289–312

    Article  Google Scholar 

  46. Fisher AT, Von Herzen RP (2005) Models of hydrothermal circulation within 106 Ma seafloor: constraints on the vigor of fluid circulation and crustal properties, below the Madeira Abyssal Plain. Geochem Geophys Geosyst 6

    Google Scholar 

  47. Hutnak M, Fisher AT, Harris R, Stein C, Wang K, Spinelli G, Schindler M, Villinger H, Silver E (2003) Large heat and fluid fluxes driven through mid-plate outcrops on ocean crust. Nat Geosci 1:611–614

    Article  Google Scholar 

  48. McCarthy MD, Beaupré SR, Walker BD, Voparil I, Guilderson TP, Druffel ERM (2011) Chemosynthetic origin of 14C-depleted dissolved organic matter in a ridge-flank hydrothermal system. Nat Geosci 4:32–36

    Article  CAS  Google Scholar 

  49. Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 95:6578–6583

    Article  CAS  Google Scholar 

  50. Sudek LA, Templeton AS, Tebo BM, Staudigel H (2010) Microbial ecology of Fe(hydr)oxide mats and basalts rock from Vailulu’u Seamount, American Samoa. Geomicrobiol J 26:581–596

    Article  Google Scholar 

  51. Templeton AS, Knowles EJ, Eldridge KL, Arey BW, Dohnalkova AC, Webb SM, Bailey BE, Tebo BM, Staudigel H (2009) A seafloor microbial biome hosted within incipient ferromanganese crusts. Nat Geosci 2:872–876

    Article  CAS  Google Scholar 

  52. Mason OU, Stingl U, Wilhelm LJ, Moeseneder MM, Di Meo-Savoie CA, Fisk MR, Giovannoni SJ (2007) The phylogeny of endolithic microbes associated with marine basalts. Environ Microbiol 9:2539–2550

    Article  CAS  Google Scholar 

  53. Einen J, Thorseth IH, Øvreås L (2008) Enumeration of Archaea and Bacteria in seafloor basalt using real-time quantitative PCR and fluorescence microscopy. FEMS Microbiol Lett 282:182–187

    Article  CAS  Google Scholar 

  54. Santelli CM, Edgcomb VP, Bach W, Edwards KJ (2009) The diversity and abundance of bacteria inhabiting seafloor lavas positively correlate with rock alteration. Environ Microbiol 11:86–98

    Article  CAS  Google Scholar 

  55. Fisk MR, Storrie-Lombardi MC, Douglas S, Popa R, McDonald G, Di Meo-Savoie C (2003) Evidence of biological activity in Hawaiian subsurface basalts. Geochem Geophys Geosyst 4:1103

    Article  Google Scholar 

  56. Cowen JP, Giovannoni SJ, Kenig F, Johnson HP, Butterfield D, Rappé MS, Hutnak M, Lam P (2003) Fluids from aging ocean crust that support microbial life. Science 299:120–123

    Article  CAS  Google Scholar 

  57. Nakagawa S, Inagaki F, Suzuki Y, Steinsbu BO, Lever MA, Takai K, Engelen B, Sako Y, Wheat CG, Horikoshi K, Integrated Ocean Drilling Program Expedition 301 Scientists (2006) Microbial community in black rust exposed to hot ridge flank crustal fluids. Appl Environ Microbiol 72:6789–6799

    Article  CAS  Google Scholar 

  58. Furnes H, Staudigel H, Thorseth IH, Torsvik T, Muehlenbach K, Tumyr O (2001) Bioalteration of basaltic glass in the oceanic crust. Geochem Geophys Geosyst 2(8)

    Google Scholar 

  59. Staudigel H, Furnes H, Banerjee NR, Dilek Y, Muehlenbachs K (2006) Microbes and volcanoes: a tale from the oceans, ophiolites, and greenstone belts. GSA Today 16:4–10

    Article  Google Scholar 

  60. Staudigel H, Furnes H, McLoughlin N, Banerjee NR, Connell LB, Templeton A (2008) 3.5 billion years of glass bioalteration: volcanic rocks as a basis for microbial life? Earth Sci Rev 89:156–176

    Article  CAS  Google Scholar 

  61. McLoughlin N, Furnes H, Banerjee NR, Muehlenbachs K, Staudigel H (2009) Ichnotaxonomy of microbial trace fossils in volcanic glass. J Geol Soc Lond 166:159–169

    Article  Google Scholar 

  62. McLoughlin N, Brasier MD, Wacey D, Green OR, Perry RS (2007) On biogenicity criteria for endolithic microborings on early Earth and beyond. Astrobiology 7:10–26

    Article  CAS  Google Scholar 

  63. Fisk M, McLoughlin N (2013) Atlas of alteration textures in volcanic glass from the ocean basins. Geosphere 9:317–341

    Article  Google Scholar 

  64. Ross KA, Fisher RV (1986) Biogenic grooving on glass shards. Geology 14:571–573

    Article  Google Scholar 

  65. Furnes H, Muehlenbachs K, Tumyr O, Torsvik T, Xenophontos C (2001) Biogenic alteration of volcanic glass from the Troodos ophiolite, Cyprus. J Geol Soc Lond 158:75–84

    Article  CAS  Google Scholar 

  66. Staudigel H, Chastain RA, Yayanos A, Bourcier W (1995) Biologically mediated dissolution of glass. Chem Geol 126:147–154

    Article  CAS  Google Scholar 

  67. Staudigel H, Yayanos A, Chastain R, Davies G, Verdurmen EAT, Sciffman P, Bourcier R, De Baar H (1998) Biologically mediated dissolution of volcanic glass in seawater. Earth Planet Sci Lett 164:233–244

    Article  CAS  Google Scholar 

  68. Thorseth IH, Furnes H, Tumyr O (1995) Textural and chemical effects of bacterial activity on basaltic glass: an experimental approach. Chem Geol 119:139–160

    Article  CAS  Google Scholar 

  69. Mcloughlin N, Staudigel H, Furnes H, Eichmann B, Ivarsson M (2010) Mechanisms of microtunneling in rock substrates – distinguishing endolithic biosignatures from abiotic microtunnels. Geobiology 8:245–255

    Article  CAS  Google Scholar 

  70. Furnes H, Banerjee NR, Muehlenbachs K, Staudigel H, de Wit M (2004) Early life recorded in Archean pillow lavas. Science 304:578–581

    Article  CAS  Google Scholar 

  71. Staudigel H, Tebo B, Yayanos A, Furnes H, Kelley K, Plank T, Muehlenbachs K (2004) The oceanic crust as a bioreactor. In: Wilcock WSD, DeLong EF, Kelley DS, Baross JA, Cary SC (eds) The subseafloor biosphere at mid-ocean ridges, Geophysical monograph series 144. American Geophysical Union, Washington, pp 325–341

    Chapter  Google Scholar 

  72. Al-Hanbali HS, Sowerby SJ, Holm NG (2001) Biogenicity of silicified microbes from a hydrothermal system: relevance to the search for evidence of life on earth and other planets. Earth Planet Sci Lett 191:213–218

    Article  CAS  Google Scholar 

  73. Thorseth IH, Pedersen RB, Christie DM (2003) Microbial alteration of 0–30-Ma seafloor basaltic glasses from the Australian Antarctic Discordance. Earth Planet Sci Lett 215:237–247

    Article  CAS  Google Scholar 

  74. Ivarsson M, Holm NG (2008) Microbial colonization of various habitable niches during alteration of oceanic crust. In: Dilek Y, Furnes H, Muehlenbachs K (eds) Links between geological processes. Springer, Microbial Activities and Evolution of Life, pp 69–111

    Google Scholar 

  75. Cavalazzi B, Westall F, Cady SL, Barbieri R, Foucher F (2011) Potential fossil endoliths in vesicular pillow basalt, Coral Patch Seamount, eastern north Atlantic Ocean. Astrobiology 11:619–632

    Article  CAS  Google Scholar 

  76. Ivarsson M, Broman C, Holm NG (2011) Chromite oxidation by manganese oxides in subseafloor basalts and the presence of putative fossilized microorganisms. Geochem Trans 12:5

    Article  CAS  Google Scholar 

  77. Ivarsson M, Bengtson S, Skogby H, Belivanova V, Marone F (2013) Fungal colonies in open fractures of subseafloor basalt. Geo-Mar Lett 33:233–243

    Article  Google Scholar 

  78. Ivarsson M (2012) The subseafloor basalts as fungal habitats. Biogeosciences 9:3625–3635

    Article  CAS  Google Scholar 

  79. Ivarsson M, Gehör S, Holm NG (2008) Micro-scale variations of iron isotopes in fossilized microorganisms. Int J Astrobiol 7:93–106

    Article  CAS  Google Scholar 

  80. Toporski JKW, Steele A, Westall F, Thomas-Keprta KL, McKay DS (2002) The simulated silicification of bacteria – new clues to the modes and timing of bacterial preservation and implications for the search for extraterrestrial microfossils. Astrobiology 2:1–26

    Article  CAS  Google Scholar 

  81. Herbold DR, Glaser L (1975) Bacillus subtilis N-acetylmuramic acid L-alanine amidase. J Biol Chem 250:1676–1682

    CAS  Google Scholar 

  82. Leduc M, Kasra R, Van Neijenoort J (1982) Induction and control of the autolytic system of Escherichia coli. J Bacteriol 152:26–34

    CAS  Google Scholar 

  83. Ferris FG, Fyfe WS, Beveridge TJ (1988) Metallic ion binding by Bacillus subtilis: implications for the fossilization of microorganisms. Geology 16:153–157

    Article  Google Scholar 

  84. Lalonde K, Mucci A, Ouellet A, Gélinas Y (2012) Preservation of organic matter in sediments promoted by iron. Nature 483:198–200

    Article  CAS  Google Scholar 

  85. Ivarsson M (2006) Advantages of doubly polished thin sections for the study of microfossils in volcanic rock. Geochem Trans 7:5

    Article  CAS  Google Scholar 

  86. Ehrlich HL (1996) Geomicrobiology, third edition, revised and expanded. Dekker, New York

    Google Scholar 

  87. Emerson D, Moyer CL (2002) Neutrophilic Fe-oxidizing bacteria are abundant at the Loihi Seamount hydrothermal vents and play a major role in Fe oxide deposition. Appl Environ Microbiol 68:3085–3093

    Article  CAS  Google Scholar 

  88. Boyd TD, Scott SD (2001) Microbial and hydrothermal aspects of ferric oxyhydroxides and ferrosic hydroxides: the example of Franklin Seamount, Western Woodlark Basin, Papua New Guinea. Geochem Trans 7

    Google Scholar 

  89. Ivarsson M, Broman C, Gustafsson H, Holm NG (2015) Biogenic Mn-oxides in subseafloor basalts. PLoS One 10(6):e0128863

    Article  Google Scholar 

  90. Ivarsson M, Broman C, Lindblom S, Holm NG (2009) Fluid inclusions as a tool to constrain the preservation conditions of sub-seafloor cryptoendoliths. Planet Space Sci 57:477–490

    Article  CAS  Google Scholar 

  91. Ivarsson M, Kilias SP, Broman C, Naden J, Detsi K (2010) Fossilized microorganisms preserved as fluid inclusions in epithermal veins, Vani Mn-Ba deposit, Milos Island, Greece. Proc XIX CBGA Cong 100:297–307

    Google Scholar 

  92. Benzerara K, Yoon T-H, Tyliszczak T, Constantz B, Spormann AM, Brown GE Jr (2004) Scanning Transmission X-ray Microscopy study of microbial calcification. Geobiology 2:249–259

    Article  Google Scholar 

  93. Benzerara K, Menguy N, Banerjee NR, Tyliszczak T, Guyot F, Brown GE Jr (2007) Alteration of submarine basaltic glass from the Ontong Java Plateau: a STXM and TEM study. Earth Planet Sci Lett 260:187–200

    Article  CAS  Google Scholar 

  94. Schopf JW, Kudryavtsev AB (2005) Three-dimensional Raman imagery of precambrian microscopic organisms. Geobiology 3:1–12

    Article  Google Scholar 

  95. Donoghue PCJ, Bengtson S, Dong X-P, Gostling NJ, Huldtgren T, Cunningham JA, Yin C, Yue Z, Peng F, Stampanoni M (2006) Synchrotron X-ray tomographic microscopy of fossil embryos. Nature 442:680–683

    Article  CAS  Google Scholar 

  96. Cary SC, Campbell BJ, DeLong EF (2004) Studying the deep subsurface biosphere: emerging technologies and applications. In: Wilcock WSD, DeLong EF, Kelley DS, Baross JA, Cary SC (eds) The subseafloor biosphere at mid-ocean ridges, Geophysical monograph series 144. American Geophysical Union, Washington, pp 383–399

    Chapter  Google Scholar 

  97. Smith DC, Spivack AJ, Fisk MR, Haveman SA, Staudigel H (2000) Tracer-based estimates of drilling-induced microbial contamination of deep sea crust. Geomicrobiol J 17:207–219

    Article  CAS  Google Scholar 

  98. Banerjee NR, Furnes H, Muehlenbachs K, Staudigel H, de Wit MJ (2006) Preservation of microbial biosignatures in 3.5 Ga pillow lavas from the Barberton Green stone Belt, South Africa. Earth Planet Sci Lett 241:707–722

    Article  CAS  Google Scholar 

  99. Banerjee NR, Simonetti A, Furnes H, Staudigel H, Muehlenbachs K, Heaman L, Van Krankendonk MJ (2007) Direct dating of Archean microbial ichnofossils. Geology 35:487–490

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Marianne Ahlbom at the Department of Geological Sciences, Stockholm University, for the assistance with ESEM analysis, Stefan Bengtson and Veneta Belivanova (Swedish Museum of Natural History) and Federica Marone (Swiss Light Source, Paul Scherrer Institute) for producing SRXTM images. Nicola McLoughlin at the University of Bergen is acknowledged for the permission to use Fig. 4c. This work was funded by the Swedish Research Council (Contract No. 2012-4364) and the Danish National Research Foundation (DNRF53).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magnus Ivarsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ivarsson, M., Holm, N.G., Neubeck, A. (2015). The Deep Biosphere of the Subseafloor Igneous Crust. In: Demina, L., Galkin, S. (eds) Trace Metal Biogeochemistry and Ecology of Deep-Sea Hydrothermal Vent Systems. The Handbook of Environmental Chemistry, vol 50. Springer, Cham. https://doi.org/10.1007/698_2015_5014

Download citation

Publish with us

Policies and ethics