Skip to main content

Nanomaterials Release from Nano-Enabled Products

  • Chapter
  • First Online:
Book cover Indoor and Outdoor Nanoparticles

Abstract

Nanomaterials release quantification and characterization is crucial for risk assessment studies, and experimental simulation studies provide the most concrete basis for estimating the release of nanomaterials in any stage of its life cycle. Nanomaterials are used in a broad range of applications, in different forms (embedded, as coatings, suspended, etc.) and with different size ranges. With all these variables, the number of scenarios where release of nanomaterials could occur is huge. In this chapter, we aim to review use-phase release scenarios that are usually considered in the literature, as well as the results of such studies and the protocols used for product ageing and for nanomaterial quantification and characterization. Finally, we point out the gaps in nanomaterials release studies and identify future research needs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shandilya N, Le Bihan O, Morgeneyer M (2014) A review on the study of the generation of (nano)particles aerosols during the mechanical solicitation of materials. J Nanomater 2014:1–16

    Google Scholar 

  2. Grieger KD, Laurent A, Miseljic M et al (2012) Analysis of current research addressing complementary use of life-cycle assessment and risk assessment for engineered nanomaterials: have lessons been learned from previous experience with chemicals? J Nanoparticle Res 14:958

    Article  Google Scholar 

  3. Yang Y, Westerhoff P (2014) Presence in, and release of, nanomaterials from consumer products. In: Capco DG, Chen Y (eds) Nanomater Impacts Cell Biol Med. Springer, Netherlands/Dordrecht, p 17

    Google Scholar 

  4. Future Markets Inc. (2014) Nanoelectronics: the global market to 2020. Future Markets Inc, Dublin

    Google Scholar 

  5. Global Nanocoatings Market- Industry Analysis, Size, Share, Growth, Trends, Forecast 2013-2019.

    Google Scholar 

  6. Future Markets Inc (2014) Nanocoatings in the medical industry, Dublin

    Google Scholar 

  7. Piccinno F, Gottschalk F, Seeger S, Nowack B (2012) Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J Nanoparticle Res 14:1109

    Article  Google Scholar 

  8. Mitrano DM, Motellier S, Clavaguera S, Nowack B (2015) Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products. Environ Int 77:132–147

    Article  CAS  Google Scholar 

  9. Sun TY, Gottschalk F, Hungerbühler K, Nowack B (2014) Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. Environ Pollut 185:69–76

    Article  CAS  Google Scholar 

  10. Kalinina A (2014) Material flow modeling, environmental concentrations and environmental risk assessment for nano silica. ETH, Zürich

    Google Scholar 

  11. ETP Nanomedicine (2015) Berlin, http://www.etp.nanomedicine.eu/public

  12. Transparency Market Research (2013) Nanomedicine market (neurology, cardiovascular, anti-inflammatory, anti-infective, and oncology applications) – global industry analysis, size, share, growth, trends and forecast, 2013–2019. p 81

    Google Scholar 

  13. Keller AA, Vosti W, Wang H, Lazareva A (2014) Release of engineered nanomaterials from personal care products throughout their life cycle. J Nanoparticle Res 16:10

    Google Scholar 

  14. Report Buyer (2014) Global cosmeceuticals market outlook 2016. Report Buyer, London

    Google Scholar 

  15. Woodrow Wilson International Center for Scholars (2013) Project on emerging nanotechnologies (2013) Consumer products inventory, Blacksburg, VA, USA

    Google Scholar 

  16. Savolainen K, Backman U, Brouwer DH et al (2013) Nanosafety in Europe 2015–2025: towards safe and sustainable nanomaterials and nanotechnology innovations. FIOH, Helsinki

    Google Scholar 

  17. Hankin S, Peters S, Poland C et al (2011) Specific advice on fulfilling information requirements for nanomaterials under REACH (RIP-oN 2) – Final Project Report

    Google Scholar 

  18. Aitken RA, Bassan A, Friedrichs S et al (2011) Specific Advice on Exposure Assessment and Hazard/Risk Characterisation for Nanomaterials under REACH (RIP-oN 3)

    Google Scholar 

  19. EP (2009) Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on cosmetic products. Europe

    Google Scholar 

  20. EP (2011) Regulation (EU) No 1169/2011 of the European Parliament and the Council of 25 October 2011 on the provision of food information to consumers. Europe

    Google Scholar 

  21. Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR) (2015) Final opinion on the guidance on the determination of potential health effects of nanomaterials used in medical devices. Luxembourg

    Google Scholar 

  22. EC (2012) Communication (COM(2012) 572 final) from the Commission to the European Parliament, the Council and the European Economic and Social Committee: Second Regulatory Review on Nanomaterials. Brussels

    Google Scholar 

  23. EPA (2015) Chemical substances when manufactured or processed as nanoscale materials; TSCA reporting and recordkeeping requirements. RIN: 2070-AJ54. 40 CFR Part 704. 13

    Google Scholar 

  24. Commission THEE (2014) Commission Implementing Regulation (EU) No 408/2014 of 23 April 2014. 2014:23–25

    Google Scholar 

  25. JORF (2010) Article 185. Prévention des risques pour la santé et l’environnement résultant de l'exposition aux substances à l'état nanoparticulaire. JORF n°0160 du 13 juillet 2010 p 12905, France

    Google Scholar 

  26. BEK (2014) BEK nr 644 af 13/06/2014. Bekendtgørelse om register over blandinger og varer, der indeholder nanomaterialer samt producenter og importørers indberetningspligt til registeret. BEK, Denmark

    Google Scholar 

  27. Nowack B, David RM, Fissan H et al (2013) Potential release scenarios for carbon nanotubes used in composites. Environ Int 59:1–11

    Article  CAS  Google Scholar 

  28. Davim JP, Charitidis CA (eds) (2013) Nanocomposites: materials, manufacturing and engineering. De Gruyter, Berlin, Germany

    Google Scholar 

  29. Kumar CSSR (2010) Nanocomposites. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  30. Twardowski TE (2007) Introduction to nanocomposite materials: properties, processing, characterization, 1st edn. DEStech Publications Inc, Lancaster

    Google Scholar 

  31. Rosso M (2006) Ceramic and metal matrix composites: routes and properties. J Mater Process Technol 175:364–375

    Article  CAS  Google Scholar 

  32. Samal S, Bal S (2008) Carbon nanotube reinforced ceramic matrix composites–a review. J Miner Mater Charact Eng 7:355–370

    Google Scholar 

  33. Peigney A, Laurent C, Flahaut E, Rousset A (2000) Carbon nanotubes in novel ceramic matrix nanocomposites. Ceram Int 26:677–683

    Article  CAS  Google Scholar 

  34. Zhao Z, Sun R, Xin G (2013) A review: application of nanomaterials in concrete. Appl Mech Mater 405–408:2881–2884

    Article  Google Scholar 

  35. Hedayati M, Faupel F, Elbahri M (2014) Review of plasmonic nanocomposite metamaterial absorber. Materials (Basel) 7:1221–1248

    Article  Google Scholar 

  36. Rohatgi P, Schultz B (2007) Lightweight metal matrix nanocomposites–stretching the boundaries of metals. Mater Matters 2:16–19

    CAS  Google Scholar 

  37. Camargo PHC, Satyanarayana KG, Wypych F (2009) Nanocomposites: synthesis , structure, properties and new application opportunities. Mat Res 12:1–39

    Google Scholar 

  38. Nowack B, Brouwer C, Geertsma RE et al (2013) Analysis of the occupational , consumer and environmental exposure to engineered nanomaterials used in 10 technology sectors. 7:1152–1156

    Google Scholar 

  39. Froggett SJ, Clancy SF, Boverhof DR, Canady R (2014) A review and perspective of existing research on the release of nanomaterials from solid nanocomposites. Part Fibre Toxicol 11:17

    Google Scholar 

  40. Ging J, Tejerina-Anton R, Ramakrishnan G et al (2014) Development of a conceptual framework for evaluation of nanomaterials release from nanocomposites: environmental and toxicological implications. Sci Total Environ 473–474:9–19

    Article  Google Scholar 

  41. Petersen EJ, Lam T, Gorham JM et al (2014) Methods to assess the impact of UV irradiation on the surface chemistry and structure of multiwall carbon nanotube epoxy nanocomposites. Carbon N Y 69:194–205

    Article  CAS  Google Scholar 

  42. Vilar G, Fernández-Rosas E, Puntes V et al (2013) Monitoring migration and transformation of nanomaterials in polymeric composites during accelerated aging. J Phys Conf Ser 429:012044

    Article  Google Scholar 

  43. Wohlleben W, Meier MW, Vogel S et al (2013) Elastic CNT-polyurethane nanocomposite: synthesis, performance and assessment of fragments released during use. Nanoscale 5:369–380

    Article  CAS  Google Scholar 

  44. Mailhot B, Morlat-Thérias S, Ouahioune M, Gardette J-L (2005) Study of the degradation of an epoxy/amine resin, 1. Macromol Chem Phys 206:575–584

    Article  CAS  Google Scholar 

  45. Roger A, Sallet D, Lemaire J (1986) Photochemistry of aliphatic polyamides. 4. Mechanisms of photooxidation of polyamides 6, 11, and 12 at long wavelengths. Macromolecules 19:579–584

    Article  CAS  Google Scholar 

  46. Barkoula NM, Paipetis A, Matikas T et al (2009) Environmental degradation of carbon nanotube-modified composite laminates: a study of electrical resistivity. Mech Compos Mater 45:21–32

    Article  CAS  Google Scholar 

  47. Chin J, Byrd E, Embree N et al (2004) Accelerated UV weathering device based on integrating sphere technology. Rev Sci Instrum 75:4951

    Article  CAS  Google Scholar 

  48. Gorham JM, Nguyen T, Bernard C et al (2012) Photo-induced surface transformations of silica nanocomposites. Surf Interface Anal 44:1572–1581

    Article  CAS  Google Scholar 

  49. Kim JY, Park HS, Kim SH (2009) Thermal decomposition behavior of carbon-nanotube-reinforced poly(ethylene 2,6-naphthalate) nanocomposites. J Appl Polym Sci 113:2008–2017

    Article  CAS  Google Scholar 

  50. Nguyen T, Pellegrin B, Bernard C et al (2011) Fate of nanoparticles during life cycle of polymer nanocomposites. J Phys Conf Ser 304:012060

    Article  Google Scholar 

  51. Wohlleben W, Brill S, Meier MW et al (2011) On the lifecycle of nanocomposites: comparing released fragments and their in-vivo hazards from three release mechanisms and four nanocomposites. Small 7:2384–2395

    Article  CAS  Google Scholar 

  52. Bello D, Wardle BL, Yamamoto N et al (2008) Exposure to nanoscale particles and fibers during machining of hybrid advanced composites containing carbon nanotubes. J Nanoparticle Res 11:231–249

    Article  Google Scholar 

  53. Wohlleben W, Vilar G, Fernández-Rosas E et al (2014) A pilot interlaboratory comparison of protocols that simulate aging of nanocomposites and detect released fragments. Environ Chem 11:402

    Article  CAS  Google Scholar 

  54. Hirth S, Cena L, Cox G et al (2013) Scenarios and methods that induce protruding or released CNTs after degradation of nanocomposite materials. J Nanopart Res 15:1504

    Article  Google Scholar 

  55. Schlagenhauf L, Chu BTT, Buha J et al (2012) Release of carbon nanotubes from an epoxy-based nanocomposite during an abrasion process. Environ Sci Technol 46:7366–7372

    Article  CAS  Google Scholar 

  56. Vorbau M, Hillemann L, Stintz M (2009) Method for the characterization of the abrasion induced nanoparticle release into air from surface coatings. J Aerosol Sci 40:209–217

    Article  CAS  Google Scholar 

  57. Zhou L, Zhang Z, Xia S et al (2014) Effects of suspended titanium dioxide nanoparticles on cake layer formation in submerged membrane bioreactor. Bioresour Technol 152:101–106

    Article  CAS  Google Scholar 

  58. Golanski L, Guiot A, Braganza D, Tardif F (2010) New method for the characterization of abrasion-induced nanoparticle release into air from nanomaterials. NSTI Nanotech 2010:720–723

    Google Scholar 

  59. Biswal M, Mohanty S, Nayak SK, Kumar PS (2013) Effect of functionalized nanosilica on the mechanical, dynamic-mechanical, and morphological performance of polycarbonate/nanosilica nanocomposites. Polym Eng Sci 53:1287–1296

    Article  CAS  Google Scholar 

  60. Golanski L, Guiot A, Pras M et al (2012) Release-ability of nano fillers from different nanomaterials (toward the acceptability of nanoproduct). J Nanoparticle Res 14:962

    Article  Google Scholar 

  61. Banerjee DA, Kessman AJ, Cairns DR, Sierros KA (2014) Tribology of silica nanoparticle-reinforced, hydrophobic sol–gel composite coatings. Surf Coatings Technol 260:214–219

    Article  CAS  Google Scholar 

  62. Wei H, Wang Y, Guo J et al (2015) Advanced micro/nanocapsules for self-healing smart anticorrosion coatings. J Mater Chem A 3:469–480

    Article  CAS  Google Scholar 

  63. Munafò P, Goffredo GB, Quagliarini E (2015) TiO2-based nanocoatings for preserving architectural stone surfaces: an overview. Constr Build Mater 84:201–218

    Article  Google Scholar 

  64. Shtykova L, Fant C, Handa P et al (2009) Adsorption of antifouling booster biocides on metal oxide nanoparticles: effect of different metal oxides and solvents. Prog Org Coatings 64:20–26

    Article  CAS  Google Scholar 

  65. Bello D, Martin J, Santeufemio C et al (2012) Physicochemical and morphological characterisation of nanoparticles from photocopiers: implications for environmental health. Nanotoxicology 7:1–15

    Google Scholar 

  66. Barthel M, Pedan V, Hahn O et al (2011) XRF-analysis of fine and ultrafine particles emitted from laser printing devices. Environ Sci Technol 45:7819–7825

    Article  CAS  Google Scholar 

  67. Kamyshny A, Magdassi S (2014) Conductive nanomaterials for printed electronics. Small 10:3515–3535

    Google Scholar 

  68. Haverinen HM, Myllylä R, Jabbour GE (2009) Inkjet printing of light emitting quantum dots. Appl Phys Lett 94:92–95

    Google Scholar 

  69. Kaegi R, Ulrich A, Sinnet B et al (2008) Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environ Pollut 156:233–239

    Google Scholar 

  70. Zuin S, Massari A, Ferrari A, Golanski L (2014) Formulation effects on the release of silica dioxide nanoparticles from paint debris to water. Sci Total Environ 476–477:298–307

    Article  Google Scholar 

  71. Zuin S, Gaiani M, Ferrari A, Golanski L (2013) Leaching of nanoparticles from experimental water-borne paints under laboratory test conditions. J Nanoparticle Res 16:2185

    Article  Google Scholar 

  72. Weir A, Westerhoff P, Fabricius L et al (2012) Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol 46:2242–2250

    Article  CAS  Google Scholar 

  73. Kaegi R, Sinnet B, Zuleeg S et al (2010) Release of silver nanoparticles from outdoor facades. Environ Pollut 158:2900–2905

    Article  CAS  Google Scholar 

  74. Al-Kattan A, Wichser A, Vonbank R et al (2013) Release of TiO2 from paints containing pigment-TiO2 or nano-TiO2 by weathering. Environ Sci Process Impacts 15:2186–2193

    Article  CAS  Google Scholar 

  75. Botta C, Labille J, Auffan M et al (2011) TiO2-based nanoparticles released in water from commercialized sunscreens in a life-cycle perspective: structures and quantities. Environ Pollut 159:1543–1550

    Article  CAS  Google Scholar 

  76. Olabarrieta J, Zorita S, Peña I et al (2012) Aging of photocatalytic coatings under a water flow: Long run performance and TiO2 nanoparticles release. Appl Catal B Environ 123–124:182–192

    Article  Google Scholar 

  77. Auffan M, Masion A, Labille J et al (2014) Long-term aging of a CeO(2) based nanocomposite used for wood protection. Environ Pollut 188:1–7

    Article  CAS  Google Scholar 

  78. Göhler D, Stintz M, Hillemann L, Vorbau M (2010) Characterization of nanoparticle release from surface coatings by the simulation of a sanding process. Ann Occup Hyg 54:615–624

    Article  Google Scholar 

  79. Shandilya N, Bihan O Le, Bressot C, Morgeneyer M (2014) Evaluation of the particle aerosolization from n-TiO2 photocatalytic nanocoatings under abrasion. J Nanomater 2014:1–12

    Google Scholar 

  80. Göhler D, Nogowski A, Fiala P, Stintz M (2013) Nanoparticle release from nanocomposites due to mechanical treatment at two stages of the life-cycle. J Phys Conf Ser 429:12045

    Article  Google Scholar 

  81. He C, Morawska L, Taplin L (2007) Particle emission characteristics of office printers. Environ Sci Technol 41:6039–6045

    Article  CAS  Google Scholar 

  82. Stephens B, Azimi P, El Orch Z, Ramos T (2013) Ultrafine particle emissions from desktop 3D printers. Atmos Environ 79:334–339

    Article  CAS  Google Scholar 

  83. Morawska L, He C, Johnson G et al (2009) An investigation into the characteristics and formation mechanisms of particles originating from the operation of laser printers an investigation into the characteristics and formation mechanisms of particles originating from the operation of laser printers. Environ Sci Technol 43:1015–1022

    Google Scholar 

  84. Radetić M (2013) Functionalization of textile materials with silver nanoparticles. J Mater Sci 48:95–107

    Article  Google Scholar 

  85. Haydon B (2013) Nanomaterials and their Applications in Textiles – Standards Domestic Standardization for Canadian Manufacturers and Importers and International Standardization Developments Nanomaterials and their Applications in Textiles – Standards Domestic Standardization.

    Google Scholar 

  86. Nowack B, Krug HF, Height M (2011) 120 Years of nanosilver history: implications for policy makers. Environ Sci Technol 45:1177–1183

    Article  CAS  Google Scholar 

  87. Meyer DE, Curran MA, Gonzalez MA (2009) An examination of existing data for the industrial manufacture and use of nanocomponents and their role in the life cycle impact of nanoproducts. Environ Sci Technol 43:1256–1263

    Article  CAS  Google Scholar 

  88. Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42:4133–4139

    Article  CAS  Google Scholar 

  89. Geranio L, Heuberger M, Nowack B (2009) The behavior of silver nanotextiles during washing. Environ Sci Technol 43:8113–8118

    Article  CAS  Google Scholar 

  90. Kowal K, Cronin P, Dworniczek E et al (2014) Biocidal effect and durability of nano-TiO2 coated textiles to combat hospital acquired infections. RSC Adv 4:19945

    Article  CAS  Google Scholar 

  91. Benn T, Cavanagh B, Hristovski K et al (2010) The release of nanosilver from consumer products used in the home. J Environ Qual 39:1875

    Article  CAS  Google Scholar 

  92. Mitrano DM, Rimmele E, Wichser A et al (2014) Presence of nanoparticles in wash water from conventional silver and nano-silver textiles. ACS Nano 8:7208–7219

    Article  CAS  Google Scholar 

  93. Impellitteri C, Tolaymat TM, Scheckel KG (2009) The speciation of silver nanoparticles in antimicrobial fabric before and after exposure to a hypochlorite/detergent solution. J Environ Qual 38:1528–30

    Google Scholar 

  94. Lorenz C, Windler L, von Goetz N et al (2012) Characterization of silver release from commercially available functional (nano)textiles. Chemosphere 89:817–824

    Article  CAS  Google Scholar 

  95. Lombi E, Donner E, Scheckel KG et al (2014) Silver speciation and release in commercial antimicrobial textiles as influenced by washing. Chemosphere 111:352–358

    Article  CAS  Google Scholar 

  96. Kulthong K, Srisung S, Boonpavanitchakul K et al (2010) Determination of silver nanoparticle release from antibacterial fabrics into artificial sweat. Part Fibre Toxicol 7:8

    Article  Google Scholar 

  97. Von Goetz N, Lorenz C, Windler L et al (2013) Migration of Ag- and TiO2-(Nano)particles from textiles into artificial sweat under physical stress: experiments and exposure modeling. Environ Sci Technol 47:9979–9987

    Article  Google Scholar 

  98. Quadros ME, Pierson R, Tulve NS et al (2013) Release of silver from nanotechnology-based consumer products for children. Environ Sci Technol 47:8894–8901

    Article  CAS  Google Scholar 

  99. Abdelgawad AM, Hudson SM, Rojas OJ (2014) Antimicrobial wound dressing nanofiber mats from multicomponent (chitosan/silver-NPs/polyvinyl alcohol) systems. Carbohydr Polym 100:166–178

    Article  CAS  Google Scholar 

  100. Sichani GN, Morshed M, Amirnasr M, Abedi D (2009) In situ preparation, electrospinning, and characterization of polyacrylonitrile nanofibers containing silver nanoparticles. J Appl Polym Sci 116:1021–1029

    Google Scholar 

  101. Vílchez-Maldonado S, Calderó G, Esquena J, Molina R (2014) UV protective textiles by the deposition of functional ethylcellulose nanoparticles. Cellulose 21:2133–2145

    Article  Google Scholar 

  102. International Organization for Standardization (2009) ISO 10993-1:2009 – biological evaluation of medical devices – part 1: evaluation and testing within a risk management process. International Organization for Standardization, Geneva, Switzerland

    Google Scholar 

  103. International Organization for Standardization (2007) ISO 14971:2007 – medical devices – application of risk management to medical devices. International Organization for Standardization, Geneva, Switzerland

    Google Scholar 

  104. Boxall ABA, Tiede K, Chaudhry Q (2007) Engineered nanomaterials in soils and water: how do they behave and could they pose a risk to human health? Nanomedicine (Lond) 2:919–927

    Article  CAS  Google Scholar 

  105. Nowack B, Mueller NC (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42:7

    Article  Google Scholar 

  106. James K, Highsmith J, Evers P (2014) Nanotechnology market – nanotechnology markets in healthcare & medicine. Drug Development & Delivery Nov–Dec:1–4

    Google Scholar 

  107. European Committee for standardization (1993) EN 481:1993 Workplace atmospheres – Size fraction definitions for measurement of airborne particles. European Committee for standardization, Paris, France

    Google Scholar 

  108. Deutsches Institut für Normung (2014) DIN EN 15051:2014 Workplace exposure – measurement of the dustiness of bulk materials. Berlin, Germany

    Google Scholar 

  109. Sung JH, Ji JH, Park JD et al (2011) Subchronic inhalation toxicity of gold nanoparticles. Part Fibre Toxicol 8:16

    Article  CAS  Google Scholar 

  110. O’Callaghan C, Barry PW (1997) The science of nebulised drug delivery. Thorax 52(Suppl 2):S31–S44

    Article  Google Scholar 

  111. Ari A (2014) Jet, ultrasonic, and mesh nebulizers: an evaluation of nebulizers for better clinical outcomes. Eurasian J Pulmonol 16:7

    Article  Google Scholar 

  112. Ensign LM, Cone R, Hanes J (2012) Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv Drug Deliv Rev 64:557–570

    Article  CAS  Google Scholar 

  113. Mei L, Zhang Z, Zhao L et al (2013) Pharmaceutical nanotechnology for oral delivery of anticancer drugs. Adv Drug Deliv Rev 65:880–890

    Article  CAS  Google Scholar 

  114. Jani P, Halbert GW, Langridge J, Florence AT (1989) The uptake and translocation of latex nanospheres and microspheres after oral administration to rats. J Pharm Pharmacol 41:809–812

    Article  CAS  Google Scholar 

  115. Park E-J, Bae E, Yi J et al (2010) Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environ Toxicol Pharmacol 30:162–168

    Article  CAS  Google Scholar 

  116. Park E-J, Yi J, Kim Y et al (2010) Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicol In Vitro 24:872–878

    Article  CAS  Google Scholar 

  117. Reed RB, Faust JJ, Yang Y et al (2014) Characterization of nanomaterials in metal colloid-containing dietary supplement drinks and assessment of their potential interactions after ingestion. ACS Sustain Chem Eng 2:1616–1624

    Article  CAS  Google Scholar 

  118. Friends of the Earth (2014) Tiny ingredients, big risks: nanomaterials rapidly entering food and farming. Friends of the Earth, Washington DC, USA

    Google Scholar 

  119. Boxall A, Chaudhry Q, Sinclair C et al (2007) Current and future predicted environmental exposure to engineered nanoparticles. Central Science Laboratory, Washington DC, USA

    Google Scholar 

  120. Patzelt A, Richter H, Knorr F et al (2011) Selective follicular targeting by modification of the particle sizes. J Control Release 150:45–48

    Article  CAS  Google Scholar 

  121. Schleich N, Préat V (2012) Nanostructures overcoming the skin barrier: drug delivery strategies. In: Alonso MJ, Csaba NS (eds) Nanostructured biomater. Overcoming Biol. Barriers. Royal Society of Chemistry, p 13

    Google Scholar 

  122. Reyes-Ortega F (2014) pH-responsive polymers: properties, synthesis and applications. Smart Polymers and their Applications. Elsevier, pp 45–92

    Google Scholar 

  123. Gomes MJ, Martins S, Ferreira D et al (2014) Lipid nanoparticles for topical and transdermal application for alopecia treatment: development, physicochemical characterization, and in vitro release and penetration studies. Int J Nanomedicine 9:1231–1242

    CAS  Google Scholar 

  124. Witting M, Molina M, Obst K et al (2015) Thermosensitive dendritic polyglycerol-based nanogels for cutaneous delivery of biomacromolecules. Nanomedicine 11:1179–1187

    Google Scholar 

  125. Knudsen NØ, Jorgensen L, Hansen J et al (2011) Targeting of liposome-associated calcipotriol to the skin: effect of liposomal membrane fluidity and skin barrier integrity. Int J Pharm 416:478–485

    Article  CAS  Google Scholar 

  126. Labouta HI, Schneider M (2013) Interaction of inorganic nanoparticles with the skin barrier: current status and critical review. Nanomedicine 9:39–54

    CAS  Google Scholar 

  127. Sridhar R, Venugopal JR, Sundarrajan S et al (2011) Electrospun nanofibers for pharmaceutical and medical applications. J Drug Deliv Sci Technol 21:451–468

    Article  CAS  Google Scholar 

  128. Jiang T, Carbone EJ, Lo KW-H, Laurencin CT (2014) Electrospinning of polymer nanofibers for tissue regeneration. Prog Polym Sci 46:1–24

    Google Scholar 

  129. Zulkifli FH, Jahir Hussain FS, Abdull Rasad MSB, Mohd Yusoff M (2014) In vitro degradation study of novel HEC/PVA/collagen nanofibrous scaffold for skin tissue engineering applications. Polym Degrad Stab 110:473–481

    Article  CAS  Google Scholar 

  130. Gunn J, Zhang M (2010) Polyblend nanofibers for biomedical applications: perspectives and challenges. Trends Biotechnol 28:189–197

    Article  CAS  Google Scholar 

  131. Kai D, Liow SS, Loh XJ (2014) Biodegradable polymers for electrospinning: towards biomedical applications. Mater Sci Eng C Mater Biol Appl 45:659–670

    Article  CAS  Google Scholar 

  132. Arsiwala AM, Raval AJ, Patravale VB (2013) Nanocoatings on implantable medical devices. Pharm Pat Anal 2:499–512

    Article  CAS  Google Scholar 

  133. Puranik AS, Dawson ER, Peppas NA (2013) Recent advances in drug eluting stents. Int J Pharm 441:665–679

    Article  CAS  Google Scholar 

  134. Lankveld DP, Rayavarapu RG, Krystek P et al (2011) Blood clearance and tissue distribution of PEGylated and non-PEGylated gold nanorods after intravenous administration in rats. Nanomedicine (Lond) 6:339–349

    Article  CAS  Google Scholar 

  135. Geraets L, Oomen AG, Krystek P et al (2014) Tissue distribution and elimination after oral and intravenous administration of different titanium dioxide nanoparticles in rats. Part Fibre Toxicol 11:30

    Article  Google Scholar 

  136. Polednik B (2014) Aerosol and bioaerosol particles in a dental office. Environ Res 134:405–409

    Article  CAS  Google Scholar 

  137. Van Landuyt KL, Hellack B, Van Meerbeek B et al (2014) Nanoparticle release from dental composites. Acta Biomater 10:365–374

    Article  Google Scholar 

  138. Bogdan A, Buckett MI, Japuntich DA (2014) Nano-sized aerosol classification, collection and analysis–method development using dental composite materials. J Occup Environ Hyg 11:415–426

    Article  CAS  Google Scholar 

  139. Kaluza S, Balderhaar J kleine, Orthen B et al (2009) Workplace exposure to nanoparticles. European Agency for Safety and Health at Work (EU-OSHA), Spain

    Google Scholar 

  140. Keller A, McFerran S, Lazareva A, Suh S (2013) Global life cycle releases of engineered nanomaterials. J Nanoparticle Res 15:1692

    Google Scholar 

  141. Nafisi S, Schäfer-Korting M, Maibach HI (2014) Perspectives on percutaneous penetration: silica nanoparticles. Nanotoxicology 6:1–15

    Google Scholar 

  142. Raber AS, Mittal A, Schäfer J et al (2014) Quantification of nanoparticle uptake into hair follicles in pig ear and human forearm. J Control Release 179:25–32

    Article  CAS  Google Scholar 

  143. Scientific Committee on Consumer Safety (2013) Opinion on Carbon Black (nano-form). Luxembourg

    Google Scholar 

  144. Little T, Lewis S, Lundquist P (2007) Beneath the skin. Investor Environmental Health Network. Falls Church, VA, USA

    Google Scholar 

  145. Karjomaa S (2013) Applications of nanotechnology: cosmetics. Finish Cosmetic, Toiletry and Detergent Association, Finland

    Google Scholar 

  146. Farouk Systems Inc (2010) Nanomaterials transform hairstyling tools. https://spinoff.nasa.gov/Spinoff2010/cg_5.html. Last visit: 16th June 2015

  147. Kaplan PD (2013) Nanotechnology in dermatology. In: Nasir A, Friedman A, Wang S (eds) Nanotechnol. Dermatology. Springer, New York, p 9

    Google Scholar 

  148. Keller M, Kreck G, Holzapfel Y (2012) Monitoring method for carbon nanotubes (CNT): personal sampler and corresponding reading device. SENN 2012, International Congress on Safety of Engineered Nanoparticles Nanotechnologies. FIOH, Helsinki, Finland

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the partial support of this research by the European Commission within the Seventh Framework Programme (FP7/2007-2013), Grant Agreements 604387 (GUIDEnano) and 309329 (NANOSOLUTIONS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Socorro Vázquez-Campos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vílchez, A., Fernández-Rosas, E., González-Gálvez, D., Vázquez-Campos, S. (2015). Nanomaterials Release from Nano-Enabled Products. In: Viana, M. (eds) Indoor and Outdoor Nanoparticles. The Handbook of Environmental Chemistry, vol 48. Springer, Cham. https://doi.org/10.1007/698_2015_409

Download citation

Publish with us

Policies and ethics