Skip to main content

Treatment Technologies for Wastewater Reuse: Fate of Contaminants of Emerging Concern

  • Chapter
  • First Online:
Advanced Treatment Technologies for Urban Wastewater Reuse

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 45))

Abstract

The presence of thousands of microcontaminants in wastewaters and their potential risks has drawn a large attention of the scientific community during the last years. The presence of these contaminants is especially controversial when wastewater is considered for reuse because a large number of microcontaminants are frequently not totally removed by conventional wastewater treatment processes. As a contribution to the knowledge in this field, this chapter focuses on the application of four well-known and widely used technologies to the elimination of microcontaminants. Membranes, activated carbon, ozonation, and advanced oxidation processes (AOPs) are deeply reviewed to assess their efficiency and safety in the elimination of these contaminants from wastewater effluents. A brief description of each technology is presented together with a review of their real application, mostly in wastewater treatment plants (WWTPs). A deep analysis of the found data allows to conclude that the four presented alternatives can be useful for microcontaminant mitigation although none of them seem to be a universal barrier for microcontaminants when used separately. In addition, each technology presents drawbacks which demand further research to be overcome. Depending on the final use of reclaimed water, the treatment may require the combination of several of the studied technologies although that results in an economic impact which cannot be neglected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Log DOW is a corrected form of the octanol–water partition coefficient (log K ow) determined for nonionic substances, to account for the molecule dissociation or protonation at pH 7.

Abbreviations

AOPs:

Advanced oxidation processes

BAC:

Biological activated carbon

BDPEs:

Bromodiphenyl ethers

CAS:

Conventional activated sludge

DEHP:

Bis-(2-ethylhexyl)phthalate

DOC:

Dissolved organic carbon

DOM:

Dissolved organic matter

EDCs:

Endocrine-disrupting chemicals

EEQ:

E2 equivalence factor

GAC:

Granulated activated carbon

HRTs:

Hydraulic retention times

HS:

Compound–humic substance

KOW :

Octanol–water partition coefficient

MBR:

Membrane bioreactor

MF:

Microfiltration

NDMA:

N-Nitrosodimethylamine

NF:

Nanofiltration

NOM:

Natural organic matter

PAC:

Powdered activated carbon

PhACs:

Pharmaceutically active compounds

PPCPs:

Pharmaceuticals and personal care products

RO:

Reverse osmosis

SAT:

Soil aquifer treatment

SRTs:

Sludge retention times

TDS:

Total dissolved solid

UF:

Ultrafiltration

WWTPs:

Wastewater treatment plants

References

  1. du Pisani PL (2006) Direct reclamation of potable water at Windhoek’s Goreangab reclamation plant. Desalination 188(1–3):79–88. doi:10.1016/j.desal.2005.04.104

    Article  Google Scholar 

  2. Asano T, Cotruvo JA (2004) Groundwater recharge with reclaimed municipal wastewater: health and regulatory considerations. Water Res 38(8):1941–1951. doi:10.1016/j.watres.2004.01.023

    Article  CAS  Google Scholar 

  3. Ogoshi M, Suzuki Y, Asano T (2001) Water reuse in Japan. Water Sci Technol 43(10):17–23

    CAS  Google Scholar 

  4. Ogoshi M, Suzuki Y, Asano T (2000) Non potable urban water reuse: a case of Japanese water recycling. Water 21:27–30

    Google Scholar 

  5. Global Water Intelligence (GWI) (2010) New revenue stream springs up. Water reuse market set for explosive growth. Municipal water reuse markets 2010, Media Analytics Limited, Oxford

    Google Scholar 

  6. Hollender J, Zimmermann SG, Koepke S, Krauss M, McArdell CS, Ort C, Singer H, von Gunten U, Siegrist H (2009) Elimination of organic micropollutants in a municipal wastewater treatment plant upgraded with a full-scale post-ozonation followed by sand filtration. Environ Sci Technol 43(20):7862–7869

    Article  CAS  Google Scholar 

  7. Martín J, Camacho-Muñoz D, Santos JL, Aparicio I, Alonso E (2012) Occurrence of pharmaceutical compounds in wastewater and sludge from wastewater treatment plants: removal and ecotoxicological impact of wastewater discharges and sludge disposal. J Hazard Mater 239–240:40–47. doi:10.1016/j.jhazmat.2012.04.068

    Article  Google Scholar 

  8. Carballa M, Omil F, Lema JM, Llompart M, Garcıa-Jares C, Rodrıguez I, Gómez M, Ternes T (2004) Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water Res 38(12):2918–2926. doi:10.1016/j.watres.2004.03.029

    Article  CAS  Google Scholar 

  9. Carballa M, Omil F, Lema JM (2005) Removal of cosmetic ingredients and pharmaceuticals in sewage primary treatment. Water Res 39(19):4790–4796. doi:10.1016/j.watres.2005.09.018

    Article  CAS  Google Scholar 

  10. Suárez S, Carballa M, Omil F, Lema J (2008) How are pharmaceutical and personal care products (PPCPs) removed from urban wastewaters? Rev Environ Sci Biotechnol 7(2):125–138. doi:10.1007/s11157-008-9130-2

    Article  Google Scholar 

  11. Calderón-Preciado D, Matamoros V, Bayona JM (2011) Occurrence and potential crop uptake of emerging contaminants and related compounds in an agricultural irrigation network. Sci Total Environ 412–413:14–19. doi:10.1016/j.scitotenv.2011.09.057

    Article  Google Scholar 

  12. Calderón-Preciado D, Jiménez-Cartagena C, Matamoros V, Bayona JM (2011) Screening of 47 organic microcontaminants in agricultural irrigation waters and their soil loading. Water Res 45(1):221–231. doi:10.1016/j.watres.2010.07.050

    Article  Google Scholar 

  13. Jones-Lepp TL, Sanchez CA, Moy T, Kazemi R (2010) Method development and application to determine potential plant uptake of antibiotics and other drugs in irrigated crop production systems. J Agric Food Chem 58(22):11568–11573. doi:10.1021/jf1028152

    Article  CAS  Google Scholar 

  14. Bouwer H (2000) Groundwater problems caused by irrigation with sewage effluent. J Environ Health 63(3):17

    Google Scholar 

  15. Oulton RL, Kohn T, Cwiertny DM (2010) Pharmaceuticals and personal care products in effluent matrices: a survey of transformation and removal during wastewater treatment and implications for wastewater management. J Environ Monit 12(11):1956–1978. doi:10.1039/c0em00068j

    Article  CAS  Google Scholar 

  16. Environmental Protection Agency (2012) Guidelines for water reuse

    Google Scholar 

  17. Ying G-G, Kookana RS, Waite T, Australian Water Conservation, Australian Water Association (2004) Endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in reclaimed water in Australia. Australian Water Conservation and Reuse Research Program

    Google Scholar 

  18. Drewes JE, Reinhard M, Fox P (2003) Comparing microfiltration-reverse osmosis and soil-aquifer treatment for indirect potable reuse of water. Water Res 37(15):3612–3621. doi:10.1016/S0043-1354(03)00230-6

    Article  CAS  Google Scholar 

  19. Ngo H, Guo W, Vigneswaran S (2012) Membrane processes for water reclamation and reuse. Membr Technol Environ Appl pp 239–275. doi:10.1061/9780784412275

  20. Bixio D, Thoeye C, De Koning J, Joksimovic D, Savic D, Wintgens T, Melin T (2006) Wastewater reuse in Europe. Desalination 187(1):89–101

    Article  CAS  Google Scholar 

  21. Drewes JE, Bellona C, Oedekoven M, Xu P, Kim T-U, Amy G (2005) Rejection of wastewater-derived micropollutants in high-pressure membrane applications leading to indirect potable reuse. Environ Prog 24(4):400–409. doi:10.1002/ep.10110

    Article  CAS  Google Scholar 

  22. Khan SJ, Wintgens T, Sherman P, Zaricky J, Schäfer AI (2004) Removal of hormones and pharmaceuticals in the advanced water recycling demonstration plant in Queensland, Australia. Water Sci Technol 50(5):15–22

    Google Scholar 

  23. Nghiem LD, Coleman PJ (2008) NF/RO filtration of the hydrophobic ionogenic compound triclosan: transport mechanisms and the influence of membrane fouling. Sep Purif Technol 62(3):709–716

    Article  CAS  Google Scholar 

  24. Comerton AM, Andrews RC, Bagley DM, Hao C (2008) The rejection of endocrine disrupting and pharmaceutically active compounds by NF and RO membranes as a function of compound and water matrix properties. J Membr Sci 313(1):323–335

    Article  CAS  Google Scholar 

  25. Agenson KO, Urase T (2007) Change in membrane performance due to organic fouling in nanofiltration (NF)/reverse osmosis (RO) applications. Sep Purif Technol 55(2):147–156

    Article  CAS  Google Scholar 

  26. Xu P, Drewes JE, Kim T-U, Bellona C, Amy G (2006) Effect of membrane fouling on transport of organic contaminants in NF/RO membrane applications. J Membr Sci 279(1):165–175

    Article  CAS  Google Scholar 

  27. Nghiem LD, Hawkes S (2007) Effects of membrane fouling on the nanofiltration of pharmaceutically active compounds (PhACs): mechanisms and role of membrane pore size. Sep Purif Technol 57(1):176–184

    Article  CAS  Google Scholar 

  28. Plakas K, Karabelas A, Wintgens T, Melin T (2006) A study of selected herbicides retention by nanofiltration membranes—the role of organic fouling. J Membr Sci 284(1):291–300

    Article  CAS  Google Scholar 

  29. Sadmani A, Andrews RC, Bagley DM (2014) Nanofiltration of pharmaceutically active and endocrine disrupting compounds as a function of compound interactions with DOM fractions and cations in natural water. Sep Purif Technol 122:462–471

    Article  CAS  Google Scholar 

  30. Yangali-Quintanilla V, Maeng SK, Fujioka T, Kennedy M, Li Z, Amy G (2011) Nanofiltration vs. reverse osmosis for the removal of emerging organic contaminants in water reuse. Desalin Water Treat 34(1–3):50–56

    Article  CAS  Google Scholar 

  31. Sahar E, David I, Gelman Y, Chikurel H, Aharoni A, Messalem R, Brenner A (2011) The use of RO to remove emerging micropollutants following CAS/UF or MBR treatment of municipal wastewater. Desalination 273(1):142–147

    Article  CAS  Google Scholar 

  32. Yoon Y, Westerhoff P, Snyder SA, Wert EC (2006) Nanofiltration and ultrafiltration of endocrine disrupting compounds, pharmaceuticals and personal care products. J Membr Sci 270(1):88–100

    Article  CAS  Google Scholar 

  33. Cho J, Amy G, Pellegrino J (2000) Membrane filtration of natural organic matter: factors and mechanisms affecting rejection and flux decline with charged ultrafiltration (UF) membrane. J Membr Sci 164(1):89–110

    Article  CAS  Google Scholar 

  34. Justo A, González O, Aceña J, Pérez S, Barceló D, Sans C, Esplugas S (2013) Pharmaceuticals and organic pollution mitigation in reclamation osmosis brines by UV/H2O2 and ozone. J Hazard Mater 263:268–274. doi:10.1016/j.jhazmat.2013.05.030

    Article  CAS  Google Scholar 

  35. Al-Rifai JH, Gabelish CL, Schäfer AI (2007) Occurrence of pharmaceutically active and non-steroidal estrogenic compounds in three different wastewater recycling schemes in Australia. Chemosphere 69(5):803–815

    Article  CAS  Google Scholar 

  36. Snyder SA, Adham S, Redding AM, Cannon FS, DeCarolis J, Oppenheimer J, Wert EC, Yoon Y (2007) Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals. Desalination 202(1):156–181

    Article  CAS  Google Scholar 

  37. Drewes J, Heberer T, Reddersen K (2002) Fate of pharmaceuticals during indirect potable reuse. Water Sci Technol 46(3):73–80

    CAS  Google Scholar 

  38. Trinh T, Van Den Akker B, Stuetz R, Coleman H, Le-Clech P, Khan S (2012) Removal of trace organic chemical contaminants by a membrane bioreactor. Water Sci Technol 66(9):1856–1863

    Article  CAS  Google Scholar 

  39. Kim SD, Cho J, Kim IS, Vanderford BJ, Snyder SA (2007) Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. Water Res 41(5):1013–1021

    Article  CAS  Google Scholar 

  40. Kovalova L, Siegrist H, Singer H, Wittmer A, McArdell CS (2012) Hospital wastewater treatment by membrane bioreactor: performance and efficiency for organic micropollutant elimination. Environ Sci Technol 46(3):1536–1545

    Article  CAS  Google Scholar 

  41. Alturki AA, Tadkaew N, McDonald JA, Khan SJ, Price WE, Nghiem LD (2010) Combining MBR and NF/RO membrane filtration for the removal of trace organics in indirect potable water reuse applications. J Membr Sci 365:206–215. doi:10.1016/j.memsci.2010.09.008

    Article  CAS  Google Scholar 

  42. Košutić K, Dolar D, Ašperger D, Kunst B (2007) Removal of antibiotics from a model wastewater by RO/NF membranes. Sep Purif Technol 53(3):244–249

    Article  Google Scholar 

  43. Garcia N, Moreno J, Cartmell E, Rodriguez-Roda I, Judd S (2013) The application of microfiltration-reverse osmosis/nanofiltration to trace organics removal for municipal wastewater reuse. Environ Technol 34(24):3183–3189

    Article  CAS  Google Scholar 

  44. Sui Q, Huang J, Deng S, Yu G, Fan Q (2010) Occurrence and removal of pharmaceuticals, caffeine and DEET in wastewater treatment plants of Beijing, China. Water Res 44(2):417–426

    Article  CAS  Google Scholar 

  45. Al-Rifai JH, Khabbaz H, Schäfer AI (2011) Removal of pharmaceuticals and endocrine disrupting compounds in a water recycling process using reverse osmosis systems. Sep Purif Technol 77(1):60–67. doi:10.1016/j.seppur.2010.11.020

    Article  CAS  Google Scholar 

  46. Lee J, Lee BC, Ra JS, Cho J, Kim IS, Chang NI, Kim HK, Kim SD (2008) Comparison of the removal efficiency of endocrine disrupting compounds in pilot scale sewage treatment processes. Chemosphere 71(8):1582–1592. doi:10.1016/j.chemosphere.2007.11.021

    Article  CAS  Google Scholar 

  47. Margot J, Kienle C, Magnet A, Weil M, Rossi L, de Alencastro LF, Abegglen C, Thonney D, Chèvre N, Schärer M (2013) Treatment of micropollutants in municipal wastewater: ozone or powdered activated carbon? Sci Total Environ 461:480–498

    Article  Google Scholar 

  48. Reungoat J, Escher B, Macova M, Argaud F, Gernjak W, Keller J (2012) Ozonation and biological activated carbon filtration of wastewater treatment plant effluents. Water Res 46(3):863–872

    Article  CAS  Google Scholar 

  49. Nakada N, Shinohara H, Murata A, Kiri K, Managaki S, Sato N, Takada H (2007) Removal of selected pharmaceuticals and personal care products (PPCPs) and endocrine-disrupting chemicals (EDCs) during sand filtration and ozonation at a municipal sewage treatment plant. Water Res 41(19):4373–4382

    Article  CAS  Google Scholar 

  50. Rosal R, Rodríguez A, Perdigón-Melón JA, Petre A, García-Calvo E, Gómez MJ, Agüera A, Fernández-Alba AR (2010) Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation. Water Res 44(2):578–588

    Article  CAS  Google Scholar 

  51. Reungoat J, Macova M, Escher B, Carswell S, Mueller J, Keller J (2010) Removal of micropollutants and reduction of biological activity in a full scale reclamation plant using ozonation and activated carbon filtration. Water Res 44(2):625–637

    Article  CAS  Google Scholar 

  52. Reungoat J, Escher B, Macova M, Keller J (2011) Biofiltration of wastewater treatment plant effluent: effective removal of pharmaceuticals and personal care products and reduction of toxicity. Water Res 45(9):2751–2762

    Article  CAS  Google Scholar 

  53. Kurokawa Y, Maekawa A, Takahashi M, Hayashi Y (1990) Toxicity and carcinogenicity of potassium bromate–a new renal carcinogen. Environ Health Perspect 87:309

    CAS  Google Scholar 

  54. Krauss M, Longrée P, Dorusch F, Ort C, Hollender J (2009) Occurrence and removal of N-nitrosamines in wastewater treatment plants. Water Res 43(17):4381–4391

    Article  CAS  Google Scholar 

  55. von Gunten U, Salhi E, Schmidt CK, Arnold WA (2010) Kinetics and mechanisms of N-nitrosodimethylamine formation upon ozonation of N, N-dimethylsulfamide-containing waters: bromide catalysis. Environ Sci Technol 44(15):5762–5768

    Article  Google Scholar 

  56. Petala M, Samaras P, Zouboulis A, Kungolos A, Sakellaropoulos G (2008) Influence of ozonation on the in vitro mutagenic and toxic potential of secondary effluents. Water Res 42(20):4929–4940

    Article  CAS  Google Scholar 

  57. Magdeburg A, Stalter D, Oehlmann J (2012) Whole effluent toxicity assessment at a wastewater treatment plant upgraded with a full-scale post-ozonation using aquatic key species. Chemosphere 88(8):1008–1014

    Article  CAS  Google Scholar 

  58. Stalter D, Magdeburg A, Weil M, Knacker T, Oehlmann J (2010) Toxication or detoxication? In vivo toxicity assessment of ozonation as advanced wastewater treatment with the rainbow trout. Water Res 44(2):439–448

    Article  CAS  Google Scholar 

  59. Boehler M, Zwickenpflug B, Hollender J, Ternes T, Joss A, Siegrist H (2012) Removal of micropollutants in municipal wastewater treatment plants by powder-activated carbon. Water Sci Technol 66(10):2115–2121

    Article  CAS  Google Scholar 

  60. Kalkan C, Yapsakli K, Mertoglu B, Tufan D, Saatci A (2011) Evaluation of biological activated carbon (BAC) process in wastewater treatment secondary effluent for reclamation purposes. Desalination 265(1):266–273

    Article  CAS  Google Scholar 

  61. Rogers HR (1996) Sources, behaviour and fate of organic contaminants during sewage treatment and in sewage sludges. Sci Total Environ 185(1):3–26

    Article  CAS  Google Scholar 

  62. Grover D, Zhou J, Frickers P, Readman J (2011) Improved removal of estrogenic and pharmaceutical compounds in sewage effluent by full scale granular activated carbon: impact on receiving river water. J Hazard Mater 185(2):1005–1011

    Article  CAS  Google Scholar 

  63. Ikehata K, Jodeiri Naghashkar N, Gamal El-Din M (2006) Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: a review. Ozone Sci Eng 28(6):353–414

    Article  CAS  Google Scholar 

  64. De la Cruz N, Esquius L, Grandjean D, Magnet A, Tungler A, de Alencastro LF, Pulgarín C (2013) Degradation of emergent contaminants by UV, UV/H2O2 and neutral photo-Fenton at pilot scale in a domestic wastewater treatment plant. Water Res 47(15):5836–5845. doi:10.1016/j.watres.2013.07.005

    Article  Google Scholar 

  65. Kim I, Yamashita N, Tanaka H (2009) Performance of UV and UV/H2O2 processes for the removal of pharmaceuticals detected in secondary effluent of a sewage treatment plant in Japan. J Hazard Mater 166(2–3):1134–1140. doi:10.1016/j.jhazmat.2008.12.020

    Article  CAS  Google Scholar 

  66. Snyder SA, Wert EC, Rexing DJ, Zegers RE, Drury DD (2006) Ozone oxidation of endocrine disruptors and pharmaceuticals in surface water and wastewater. Ozone Sci Eng 28(6):445–460. doi:10.1080/01919510601039726

    Article  CAS  Google Scholar 

  67. Gerrity D, Snyder S (2011) Review of ozone for water reuse applications: toxicity, regulations, and trace organic contaminant oxidation. Ozone Sci Eng 33(4):253–266

    Article  CAS  Google Scholar 

  68. Gerrity D, Gamage S, Holady JC, Mawhinney DB, Quiñones O, Trenholm RA, Snyder SA (2011) Pilot-scale evaluation of ozone and biological activated carbon for trace organic contaminant mitigation and disinfection. Water Res 45(5):2155–2165. doi:10.1016/j.watres.2010.12.031

    Article  CAS  Google Scholar 

  69. Chi GT, Churchley J, Huddersman KD (2013) Pilot-Scale removal of trace steroid hormones and pharmaceuticals and personal care products from municipal wastewater using a heterogeneous Fenton’s catalytic process. Int J Chem Eng. doi:10.1155/2013/760915

  70. Prieto-Rodríguez L, Oller I, Klamerth N, Agüera A, Rodríguez E, Malato S (2013) Application of solar AOPs and ozonation for elimination of micropollutants in municipal wastewater treatment plant effluents. Water Res 47(4):1521–1528

    Article  Google Scholar 

  71. Bellona C, Heil D, Yu C, Fu P, Drewes J (2012) The pros and cons of using nanofiltration in lieu of reverse osmosis for indirect potable reuse applications. Sep Purif Technol 85:69–76. doi:10.1016/j.seppur.2011.09.046

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. González .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

González, O., Bayarri, B., Aceña, J., Pérez, S., Barceló, D. (2015). Treatment Technologies for Wastewater Reuse: Fate of Contaminants of Emerging Concern. In: Fatta-Kassinos, D., Dionysiou, D., Kümmerer, K. (eds) Advanced Treatment Technologies for Urban Wastewater Reuse . The Handbook of Environmental Chemistry, vol 45. Springer, Cham. https://doi.org/10.1007/698_2015_363

Download citation

Publish with us

Policies and ethics