Skip to main content

Enhanced Biological Wastewater Treatment to Produce Effluents Suitable for Reuse

  • Chapter
  • First Online:
Advanced Treatment Technologies for Urban Wastewater Reuse

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 45))

Abstract

Enhanced performance of biological processes for xenobiotic removal in municipal and industrial wastewater treatment plants can be achieved by adopting the following general strategies based on different principles of operation: increase of the biomass concentration (i.e., using biofilm, immobilized cell, and granular sludge reactors); dynamic operating conditions able to modify the biocenosis composition and to induce alternative metabolic pathways required by xenobiotic biodegradation; two-phase systems, which optimize the substrate delivery to the microorganisms on the basis of their metabolic demand; and combined treatment processes utilizing synergistic physical/chemical methods.

In this chapter, the three following strategies for enhancing the biological process are presented and discussed:

  • Addition of adsorption or absorption media

  • Advanced oxidation processes: UV and UV/H2O2

  • Bioreactors operated with attached and granular biomass

The proposed alternatives have been chosen as representative examples of promising technological solutions still under investigation. For each alternative a short presentation including the principle of operation, the realized applications and potentialities, as well as a case study is reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

4 t-OP:

4-tert-Octylphenol

AC:

Activated carbon

AOPs:

Advanced oxidation processes

BPA:

Bisphenol A

C:

Concentration

C0 :

Initial concentration

COD:

Chemical oxygen demand

DCP:

2,4-Dichlorophenol

DOM:

Dissolved organic matter

E1:

Estrone

E2:

17β-Estradiol

EC50 :

Effective concentration that gives the half-maximal response

EDs:

Endocrine disruptors

EE2:

17α-Ethynylestradiol

GAC:

Granular activated carbon

GSBR:

Granular sequencing batch reactor

HPLC/MS:

High-performance liquid chromatography-mass spectrometry

MMTD:

5-Methyl-1,3,4-thiadiazole-2-thiol

MW:

Molecular weight

OLR:

Organic loading rate

PE:

Population equivalent

PCB:

Polychlorinated biphenyl

PLC:

Programmable logic controller

PVC:

Polyvinyl chloride

SBBGR:

Sequencing batch biofilter granular reactor

SBR:

Sequencing batch reactor

SIM:

Selected ion monitoring

TOC:

Total organic carbon

TPPB:

Two-phase partitioning bioreactor

TSS:

Total suspended solids

UV:

Ultraviolet

Vis:

Visible

VSS:

Volatile suspended solids

WWTP:

Wastewater treatment plant

References

  1. Asano T, Visvanathan C (2001) Industries and water recycling and reuse. In: Business and industry – a driving or braking force on the road towards water security, founders seminar, organized by Stockholm International Water Institute, Stockholm, Sweden, 15th August

    Google Scholar 

  2. Levine AD, Asano T (2004) Recovering sustainable water from wastewater. Environ Sci Technol 38:201A–208A

    Article  CAS  Google Scholar 

  3. Daugulis AJ, Tomei MC, Guieysse B (2011) Overcoming substrate inhibition during biological treatment of mono-aromatics: recent advances in bioprocess design. Appl Microbiol Biotechnol 90:1589–1608

    Article  CAS  Google Scholar 

  4. Tahar A, Choubert JM, Coquery M (2013) Xenobiotics removal by adsorption in the context of tertiary treatment: a mini review. Environ Sci Pollut Res 20:5085–5095

    Article  CAS  Google Scholar 

  5. Jankowska H, Swiatkowski A, Choma J (1991) Active carbon. Ellis Horwood , Chichester

    Google Scholar 

  6. Bansal RC, Goyal M (2005) Activated carbon adsorption. CRC, Boca Raton

    Book  Google Scholar 

  7. Crini G (2005) Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog Polym Sci 30:38–70

    Article  CAS  Google Scholar 

  8. Amsden BG, Bochanysz J, Daugulis AJ (2003) Degradation of xenobiotics in a partitioning bioreactor in which the partitioning phase is a polymer. Biotechnol Bioeng 84:399–405

    Article  CAS  Google Scholar 

  9. Daugulis AJ (2001) Two-phase partitioning bioreactors: a new technology platform for destroying xenobiotics. Trends Biotechnol 19:459–464

    Article  Google Scholar 

  10. Baumann MD, Daugulis AJ, Jessop PG (2005) Phosphonium ionic liquids for degradation of phenol in a two-phase partitioning bioreactor. Appl Microbiol Biotechnol 67:131–137

    Article  CAS  Google Scholar 

  11. Zilouei H, Guieysse B, Mattiasson B (2008) Two-phase partitioning bioreactor for the biodegradation of high concentrations of pentachlorophenol using Sphingobium chlorophenolicum DSM 8671. Chemosphere 72:1788–1794

    Article  CAS  Google Scholar 

  12. Rehmann L, Daugulis AJ (2006) Biphenyl degradation kinetics by Burkholderia xenovorans LB400 in two-phase partitioning bioreactors. Chemosphere 63:972–979

    Article  CAS  Google Scholar 

  13. Katapodis P, Moukouli M, Christakopoul P (2007) Biodegradation of indole at high concentration by persolvent fermentation with the thermophilic fungus Sporotrichum thermophile. Int Biodeter Biodegr 60:267–272

    Article  CAS  Google Scholar 

  14. Janikowski TB, Velicogna D, Punt M, Daugulis AJ (2002) Use of a two-phase partitioning bioreactor for degrading polycyclic aromatic hydrocarbons by a Sphingomonas sp. Appl Microbiol Biotechnol 59:368–376

    Article  CAS  Google Scholar 

  15. Rehmann L, Daugulis AJ (2008) Enhancement of PCB degradation by Burkholderia xenovorans LB400 in biphasic systems by manipulating culture conditions. Biotechnol Bioeng 99:521–528

    Article  CAS  Google Scholar 

  16. Ouellette J, dos Santos SCC, Lépine F, Juteau P, Déziel E, Villemur R (2013) High absorption of endocrine disruptors by hytrel: towards the development of a two-phase partitioning bioreactor. J Chem Technol Biotechnol 88:119–125

    Article  CAS  Google Scholar 

  17. Villemur R, dos Santos SCC, Ouellette J, Juteau P, Lépine F, Déziel E (2013) Biodegradation of endocrine disruptors in solid-liquid two-phase partitioning systems by enrichment cultures. Appl Environ Microbiol 79:4701–4711

    Article  CAS  Google Scholar 

  18. Prpich GP, Rehmann L, Daugulis AJ (2008) On the use, and reuse, of polymers for the treatment of hydrocarbon contaminated water via a solid–liquid partitioning bioreactor. Biotechnol Prog 24:839–844

    Article  CAS  Google Scholar 

  19. Ren SJ, Frymier PD (2005) Toxicity of metals and organic chemicals evaluated with bioluminescence assays. Chemosphere 58:543–550

    Article  CAS  Google Scholar 

  20. Erol Nalbur B, Alkan U (2007) The inhibitory effects of 2-CP and 2,4-DCP containing effluents on sequencing batch reactors. Int Biodeter Biodegr 60:178–188

    Article  Google Scholar 

  21. Tomei MC, Annesini MC, Daugulis AJ (2012) 2,4-Dichlorophenol removal in a solid-liquid two phase partitioning bioreactor (TPPB): kinetics of absorption, desorption and biodegradation. New Biotechnol 30:44–50

    Article  CAS  Google Scholar 

  22. Tomei MC, Annesini MC, Daugulis AJ (2012) Solid-liquid two-phase partitioning bioreactors (TPPBs) operated with waste polymers. Case study: 2,4 dichlorophenol biodegradation with used automobile tires as the partitioning phase. Biotechnol Lett 34:2037–2042

    Article  CAS  Google Scholar 

  23. Tomei MC, Mosca Angelucci D, Daugulis AJ (2014) The use of used automobile tires in a partitioning bioreactor for the biodegradation of xenobiotic mixtures. Environ Technol 35:75–81

    Article  Google Scholar 

  24. Tomei MC, Annesini MC, Bussoletti S (2004) 4-Nitrophenol biodegradation in a sequencing batch reactor: kinetic study and effect of filling time. Water Res 38:375–384

    Article  CAS  Google Scholar 

  25. Legrini O, Oliveros E, Braun AM (1993) Photochemical processes for water treatment. Chem Rev 93:671–698

    Article  CAS  Google Scholar 

  26. Oller I, Malato S, Sánchez-Pérez JA (2011) Combination of advanced oxidation processes and biological treatments for wastewater decontamination – a review. Sci Total Environ 409:4141–4166

    Article  CAS  Google Scholar 

  27. Glaze WH, Kang JW, Chapin DH (1987) The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone Sci Eng 9:335–352

    Article  CAS  Google Scholar 

  28. Huang CP, Dong C, Tang Z (1993) Advanced chemical oxidation: its present role and potential future in hazardous waste treatment. Waste Manag 13:361–377

    Article  CAS  Google Scholar 

  29. Carbonaro S, Sugihara MN, Strathmann TJ (2013) Continuous-flow photocatalytic treatment of pharmaceutical micropollutants: activity, inhibition, and deactivation of TiO2 photocatalysts in wastewater effluent. Appl Catal B Environ 129:1–12

    Article  CAS  Google Scholar 

  30. De Lorenzo M, Fleming J (2008) Individual and mixture effects of selected pharmaceuticals and personal care products on the marine phytoplankton species Dunaliella tertiolecta. Arch Environ Contam Toxicol 54:203–210

    Article  Google Scholar 

  31. Harrison EZ, Oakes SR, Hysell M, Hay A (2006) Organic chemicals in sewage sludges. Sci Total Environ 367:481–497

    Article  CAS  Google Scholar 

  32. Klamerth N, Rizzo L, Malato S, Maldonado MI, Agüera A, Fernández-Alba AR (2010) Degradation of fifteen emerging contaminants at μgL−1 initial concentrations by mild solar photo-Fenton in MWTP effluents. Water Res 44:545–554

    Article  CAS  Google Scholar 

  33. Lopez A, Bozzi A, Mascolo G, Kiwi J (2003) Kinetic investigation on UV and UV/H2O2 degradations of pharmaceutical intermediates in aqueous solution. J Photochem Photobiol A Chem 156(1–3):121–126

    Article  CAS  Google Scholar 

  34. Rivera-Utrilla J, Sánchez-Polo M, Ferro-García MÁ, Prados-Joya G, Ocampo-Pérez R (2013) Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere 93:1268–1287

    Article  CAS  Google Scholar 

  35. Buxton GV, Greenstock CL, Helman WP, Ross ABJ (1988) Critical-review of rate constants for reactions of hydrated electrons, hydrogen-atoms and hydroxyl radicals(OH/O)in aqueous-solution. J Phys Chem Ref Data 17:513–886

    Article  CAS  Google Scholar 

  36. Ho Te-Fu L, Bolton JR (1998) Toxicity changes during the UV treatment of pentachlorophenol in dilute aqueous solution. Water Res 32:489–497

    Article  Google Scholar 

  37. Lipsky JJ, Lewis JC, Novick WJ (1986) Production of hypoprothrombinaemia by cefazolin and 2-methyl-1,3,4-thiadiazole-5-thiol in the rat. J Antimicrob Chemother 18:131–137

    Article  CAS  Google Scholar 

  38. Kerremans AL, Lipsky JJ, Van Loon J, Gallego MO, Weinshilboum RM (1985) Cephalosporin-induced hypoprothrombinemia: possible role for thiol methylation of 1-methyltetrazole-5-thiol and 2-methyl-1,3,4-thiadiazole-5-thiol. J Pharmacol Exp Ther 235:382–388

    CAS  Google Scholar 

  39. Hoyer O, Kryschi R, Piecha I, Schuchmann MN, Schuchmann HP, von Sonntag CJ (1992) UV fluence rate determination of the low-pressure mercury arc in the UV disinfection of drinking water. J Water Supply Res Technol AQUA 41:75–81

    CAS  Google Scholar 

  40. Mark G, Schuchmann MN, Schuchmann HP, von Sonntag C (1990) The photolysis of potassium peroxodisulphate in aqueous solution in the presence of tert-butanol: a simple actinometer for 254 nm radiation. J Photochem Photobiol A Chem 55:157–168

    Article  CAS  Google Scholar 

  41. De la Cruz N, Gimenez J, Esplugas S, Grandjean D, de Alencastro LF, Pulgarin C (2012) Degradation of 32 emergent contaminants by UV and neutral photo-fenton in domestic wastewater effluent previously treated by activated sludge. Water Res 46:1947–1957

    Article  Google Scholar 

  42. Nick K, Scholer HF, Mark G, Soylemez T, Akhlaq MS, Schuchmann H-P, von Sonntag CJ (1992) Degradation of some triazine herbicides by UV radiation such as used in the UV disinfection of drinking water. J Water Supply Res Technol AQUA 41:82–87

    CAS  Google Scholar 

  43. Haag WR, Yao CCD (1992) Rate constants for reaction of hydroxyl radicals with several drinking water contaminants. Environ Sci Technol 26:1005–1013

    Article  CAS  Google Scholar 

  44. Pellizzetti E, Maurino V, Minero C, Carlin V, Pramauro E, Zerbinati O, Tosato ML (1990) Photocatalytic degradation of atrazine and other s-triazine herbicides. Environ Sci Technol 24:1559–1565

    Article  Google Scholar 

  45. Jakimska A, Śliwka-Kaszyńska M, Nagórski P, Namieśnik J, Kot-Wasik A (2014) Phototransformation of amlodipine: degradation kinetics and identification of its photoproducts. PLoS One 9(10):e109206

    Article  Google Scholar 

  46. Diniz MS, Salgado R, Pereira VJ, Carvalho G, Oehmen A, Reis MAM, Noronha JP (2015) Ecotoxicity of ketoprofen, diclofenac, atenolol and their photolysis byproducts in zebrafish (Danio rerio). Sci Total Environ 505:282–289

    Article  CAS  Google Scholar 

  47. Postigo C, Richardson SD (2014) Transformation of pharmaceuticals during oxidation/disinfection processes in drinking water treatment. J Hazard Mater 279:461–475

    Article  CAS  Google Scholar 

  48. Ramadori R, Di Iaconi C, Lopez A, Passino R (2006) An innovative technology based on aerobic granular biomass for treating municipal and/or industrial wastewater with low environmental impact. Wat Sci Technol 53:321–329

    Article  CAS  Google Scholar 

  49. Di Iaconi C, De Sanctis M, Rossetti S, Ramadori R (2010) SBBGR technology for minimizing excess sludge production in biological processes. Water Res 44:1825–1832

    Article  Google Scholar 

  50. Di Iaconi C, Ramadori R, Lopez A, Passino R (2007) Aerobic granular sludge systems: the new generation of wastewater treatment technologies. Ind Eng Chem Res 46:6661–6665

    Article  Google Scholar 

  51. Di Iaconi C, De Sanctis M, Rossetti S, Ramadori R (2008) Technological transfer to demonstrative scale of sequencing batch biofilter granular reactor (SBBGR) technology for municipal and industrial wastewater treatment. Wat Sci Technol 58:367–372

    Article  Google Scholar 

  52. Lotito AM, Fratino U, Mancini A, Bergna G, Di Iaconi C (2012) Effective aerobic granular sludge treatment of a real dyeing wastewater. Int Biodeter Biodegr 69:62–68

    Article  CAS  Google Scholar 

  53. Ternes T, Joss A (2007) Human pharmaceuticals, hormones and fragrances: the challenge of micropollutants in urban water management. IWA , London, p 468

    Google Scholar 

  54. Roembke J, Knacker T, Stahlschmidt-Allner P (1996) Study about environmental problems in context with drugs. Vorhabens Nr. 106 04 121, Umweltbundesamt, Berlin

    Google Scholar 

  55. Purdom CE, Hardiman PA, Bye VJ, Eno NC, Tyler CR, Sumpter JP (1994) Estrogenic effects of effluents from sewage treatment work. Chem Ecol 8:275–285

    Article  CAS  Google Scholar 

  56. Barel-Cohen K, Shore LS, Shemesh M, Wenzel A, Mueller J, Kronfeld-Schor N (2006) Monitoring of natural and synthetic hormones in a polluted river. J Environ Manag 78:16–23

    Article  CAS  Google Scholar 

  57. Johnson AC, Sumpter JP (2001) Removal of endocrine-disrupting chemicals in activated sludge treatment works. Environ Sci Technol 35:4697–4703

    Article  CAS  Google Scholar 

  58. Hanselman TA, Graetzand DA, Wilie AC (2003) Manure-borne estrogens as potential environmental contaminants: a review. Environ Sci Technol 37:5471–5478

    Article  CAS  Google Scholar 

  59. Baronti C, Curini R, D’Ascenzo G, Di Corcia A, Gentili A, Samperi R (2000) Monitoring natural and synthetic estrogens at activated sludge sewage treatment plants and in a receiving river water. Environ Sci Technol 34:5059–5066

    Article  CAS  Google Scholar 

  60. Braga O, Smythe GA, Schafer AI, Feitz AJ (2005) Steroid estrogens in primary and tertiary wastewater treatment plants. Water Sci Technol 52:273–278

    CAS  Google Scholar 

  61. Johnson AC, Belfroid A, Di Corcia A (2000) Estimating estrogen input to activated sludge treatment works and observations on their removal from effluent. Sci Total Environ 256:163–173

    Article  CAS  Google Scholar 

  62. Naylor CG (1995) Environmental fate and safety of nonylphenol ethoxylates. Tex Chem Color 27:29–33

    CAS  Google Scholar 

  63. Tyl RW, Myers CB, Marr MC, Brine DR, Fail PA, Seely JC, Van Miller JP (1999) Two-generation reproduction study with para-tertoctylphenol in rats. Regul Toxicol Pharmacol 30:81–95

    Article  CAS  Google Scholar 

  64. Isoboe T, Shiraishi H, Yasuda M, Shinoda A, Suzuki H, Morita M (2003) Determination of estrogens and their conjugates in water using solid-phase extraction followed by liquid chromatography–tandem mass spectrometry. J Chromatogr A 984:195–202

    Article  Google Scholar 

  65. Korner W, Bolz U, Submuth B, Hiller G, Schuller W, Hanf V (2000) Input/output balance of estrogenic active compounds in a major municipal sewage plant in Germany. Chemosphere 40:1131–1142

    Article  CAS  Google Scholar 

  66. Lin AYC, Reinhard M (2005) Photodegradation of common environmental pharmaceuticals and estrogens in river water. Environ Toxicol Chem 24:1303–1309

    Article  CAS  Google Scholar 

  67. Lazarova V, Savoye P (2004) Technical and sanitary aspects of wastewater disinfection by UV irradiation for landscape irrigation. Water Sci Technol 50(2):203–209

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Concetta Tomei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tomei, M.C., Del Moro, G., Di Iaconi, C., Mascolo, G. (2015). Enhanced Biological Wastewater Treatment to Produce Effluents Suitable for Reuse. In: Fatta-Kassinos, D., Dionysiou, D., Kümmerer, K. (eds) Advanced Treatment Technologies for Urban Wastewater Reuse . The Handbook of Environmental Chemistry, vol 45. Springer, Cham. https://doi.org/10.1007/698_2015_362

Download citation

Publish with us

Policies and ethics