Skip to main content

Different Phase Change Material Implementations for Thermal Energy Storage

  • Chapter
  • First Online:

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 34))

Abstract

This paper presents the principal methods available for phase change material (PCM) implementation in different storage applications. The first part is devoted to a non-exhaustive overview of the various chemical processes used to develop stable PCM (such as microencapsulation, emulsion polymerization or suspension polycondensation, polyaddition, etc.) based on the available literature. The second part deals with shape-stabilized PCM, developed from an intimate combination of a polymer matrix and a phase change element. Materials able to include more thermal energy as usual ones are interesting as they increase the thermal inertia of the system that presents by this way advantages. The energy efficiency of buildings may be improved including PCMs that store and provide enthalpy from one hand and without any significant temperature modification during the phase change process on the other hand. If the solid phase of the PCM does not present any problem, it is not the same for the liquid phase which must be maintained mechanically at its assigned location. Furthermore, the PCM in the solid (and furthermore in the liquid phase) does not have mechanical properties which allow to use it as a structural material able to support charge loads. This paper presents different methods to distribute and maintain the PCM in the thermal solid matrix.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Agyenim F, Hewitt N, Eames P, Smyth M (2010) A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renew Sustain Energy Rev 14:615–628

    Article  CAS  Google Scholar 

  2. Jeon J, Lee J-H, Seo J, Jeong S-G, Kim S (2013) Application of PCM thermal energy storage system to reduce building energy consumption. J Therm Anal Calorim 111:279–288

    Article  CAS  Google Scholar 

  3. Li G, Hwang Y, Radermacher R, Chun HH (2013) Review of cold storage materials for subzero applications. Energy 51:1–17

    Article  CAS  Google Scholar 

  4. Tyagi VV, Kaushik SC, Tyagi SK, Akiyam T (2011) Development of phase change materials based microencapsulated technology for buildings: a review. Renew Sustain Energy Rev 15:1373–1391

    Article  CAS  Google Scholar 

  5. Yokota T, Murayama M, Howe JM (2003) In situ transmission-electron-microscopy investigation of melting in submicron Al-Si alloy particles under electron-beam irradiation. Phys Rev Lett 91:265504

    Article  CAS  Google Scholar 

  6. Hawlader MNA, Uddin MS, Zhu HJ (2002) Encapsulated phase change materials for thermal energy storage. Int J Energy Res 26:159–171

    Article  CAS  Google Scholar 

  7. Farid MM, Khudhair AM, Razack SAK, Al-Hallaj S (2004) A review on phase change energy storage: materials and applications. Energy Convers Manag 45(9):1597–1615

    Article  CAS  Google Scholar 

  8. Cho JS, Kwon A, Cho C-G (2002) Microencapsulation of octadecane as a phase-change material by interfacial polymerization in an emulsion system. Colloid Polym Sci 280:260–266

    Article  CAS  Google Scholar 

  9. Delgado M, Lazaro A, Mazo J, Zalba B (2012) Review on phase change material emulsions and microencapsulated phase change material slurries: materials, heat transfer studies and applications. Renew Sust Energ Rev 16:253–273

    Article  CAS  Google Scholar 

  10. Wei J, Li Z, Liu L, Liu X (2013) Preparation and characterization of novel polyamide paraffin MEPCM by interfacial polymerization technique. J Appl Polym Sci 127:4588–4593

    Article  CAS  Google Scholar 

  11. Hu W, Yu X (2014) Thermal and mechanical properties of bio-based PCMs encapsulated with nanofibrous structure. Renew Energy 62:454–458

    Article  CAS  Google Scholar 

  12. Benita S (1996) Microencapsulation: methods and industrial applications. Marcel Dekker, New York

    Google Scholar 

  13. Hawlader MNA, Uddin MS, Khin MM (2003) Microencapsulated PCM thermal-energy storage system. Appl Energy 74:195–202

    Article  CAS  Google Scholar 

  14. Ozonur Y, Mazman M, Paksoy HO, Evliya H (2006) Microencapsulation of coco fatty acid mixture for thermal energy storage with phase change material. Int J Energy Res 30:741–749

    Article  CAS  Google Scholar 

  15. Lee SH, Yoon SJ, Kim YG, Choi YC, Kim JH, Lee JG (2007) Development of building materials by using micro-encapsulated phase change material. Korean J Chem Eng 24:332–335

    Article  CAS  Google Scholar 

  16. Chen L, Xu L, Shang H, Zhang Z (2009) Microencapsulation of butyl stearate as a phase change material by interfacial polycondensation in a polyurea system. Energy Convers Manag 50:723–729

    Article  CAS  Google Scholar 

  17. Yu F, Chen ZH, Zeng XR (2009) Preparation, characterization, and thermal properties of microPCMs containing n-dodecanol by using different types of styrene–maleic anhydride as emulsifier. Colloid Polym Sci 287:549–560

    Article  CAS  Google Scholar 

  18. Fang G, Li H, Yang F, Liua X, Wu S (2009) Preparation and characterization of nano-encapsulated n-tetradecane as phase change material for thermal energy storage. Chem Eng J 153:217–221

    Article  CAS  Google Scholar 

  19. Su J, Ren L, Wang L (2003) China material report: p. 141.

    Google Scholar 

  20. Su J, Wang L, Ren L (2006) Fabrication and thermal properties of microPCMs: used melamine–formaldehyde resin as shell material. J Appl Polym Sci 101:1522–1528

    Article  CAS  Google Scholar 

  21. Mulligan JC, Colvin DP, Bryant YG (1996) Microencapsulated phase-change material suspensions for heat transfer in spacecraft thermal systems. J Spacecr Rocket 33:278–284

    Article  CAS  Google Scholar 

  22. Zalba B, Marın JM, Cabeza LF, Mehling H (2003) Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng 23:251–283

    Article  CAS  Google Scholar 

  23. Alkan C, Sari A, Karaipekli A, Uzun O (2009) Preparation, characterization, and thermal properties of microencapsulated phase change material for thermal energy storage. Sol Energy Mater Sol Cells 93:143–147

    Article  CAS  Google Scholar 

  24. Alvarado JL, Marsh C, Sohn C, Vilceus M, Hock V, Phetteplace G et al (2006) Characterization of supercooling suppression of microencapsulated phase change material by using DSC. J Therm Anal Calorim 86(2):505–509

    Article  CAS  Google Scholar 

  25. Fan YF, Zhang XX, Wang XC, Li J, Zhu QB (2004) Super-cooling prevention of microencapsulated phase change material. Thermochim Acta 413:1–6

    Article  CAS  Google Scholar 

  26. Zhang S, Niu JL (2010) Experimental investigation of effects of supercooling on microencapsulated phase-change material (MPCM) slurry thermal storage capacities. Sol Energy Mater Sol Cells 94:1038–1048

    Article  CAS  Google Scholar 

  27. Fang YT, Kuang SY, Gao XN, Zhang ZG (2008) Preparation and characterization of novel nanoencapsulated phase change materials. Energy Convers Manag 49:3704–3707

    Article  CAS  Google Scholar 

  28. Yang R, Xu H, Zhang YP (2003) Preparation, physical property and thermal physical property of phase change microcapsule slurry and phase change emulsion. Sol Energy Mater Sol Cells 80:405–416

    Article  CAS  Google Scholar 

  29. Hoffman F, Delbrück K (1909) German Patent. 250,690, 12 Sept 1909

    Google Scholar 

  30. Jin Z, Wang Y, Liu J, Yang Z (2008) Synthesis and properties of paraffin capsules as phase change materials. Polymer 49:2903–2910

    Article  CAS  Google Scholar 

  31. Peng S, Fuchs A, Wirtz RA (2004) Polymeric phase change composites for thermal energy storage. J Appl Polym Sci 93:1240–1251

    Article  CAS  Google Scholar 

  32. Alay S, Göde F, Alkan C (2011) Synthesis and thermal properties of poly(n-butylacrylate)/n-hexadecane microcapsules using different cross-linkers and their application to textile fabrics. J Appl Polym Sci 120:2821–2829

    Article  CAS  Google Scholar 

  33. Luyt AS, Krupa I (2009) Phase change materials formed by uv curable epoxy matrix and Fischer–Tropsch paraffin wax. Energy Convers Manag 50:57–61

    Article  CAS  Google Scholar 

  34. Zhang H, Wang X (2009) Synthesis and properties of microencapsulated n-octadecane with polyurea shell containing different soft segments for heat energy storage and thermal regulation. Sol Energy Mater Sol Cells 93:1366–1376

    Article  CAS  Google Scholar 

  35. Sarı A, Alkan C, Döğüşcü DK, Bicer A (2014) Micro/nano-encapsulated n-heptadecane with polystyrene shell for latent heat thermal energy storage. Sol Energy Mater Sol Cells 126:42–50

    Article  CAS  Google Scholar 

  36. Zhang GH, Zhao CY (2011) Thermal and rheological properties of microencapsulated phase change materials. Renew Energy 36:2959–2966

    Article  CAS  Google Scholar 

  37. Jyothi NVN, Prasanna PM, Sakarkar SN, Prabha KS, Ramaiah PS, Srawan G (2010) Microencapsulation techniques, factors influencing encapsulation efficiency. J Microencapsul 27:187–197

    Article  CAS  Google Scholar 

  38. Hawlader MNA, Uddin MS, Zhu HJ (2000) Preparation and evaluation of a novel solar storage material: microencapsulated paraffin. Int J Sol Energy 22:227–238

    Article  Google Scholar 

  39. Su JF, Wang LX, Ren L, Huang Z (2007) Mechanical properties and thermal stability of double-shell thermal-energy-storage microcapsules. J Appl Polym Sci 103:1295–1302

    Article  CAS  Google Scholar 

  40. Sari A, Alkan C, Karaipekli A, Uzun O (2009) Microencapsulated n-octacosane as phase change material for thermal energy storage. Sol Energy 83:1757–1763

    Article  CAS  Google Scholar 

  41. Bayés-García L, Ventolà L, Cordobilla R, Benages R, Calvet T, Cuevas-Diarte MA (2010) Phase change materials(PCM) microcapsules with different shell compositions: preparation, characterization and thermal stability. Sol Energy Mater Sol Cells 94:1235–1240

    Article  CAS  Google Scholar 

  42. Sanchez L, Sanchez P, de Lucas A, Carmona M, Rodriguez JF (2007) Microencapsulation of PCMs with a polystyrene shell. Colloid Polym Sci 285:1377–1385

    Article  CAS  Google Scholar 

  43. Sánchez L, Sánchez P, Carmona M, deLucas A, Rodríguez J (2008) Influence of operation conditions on the microencapsulation of PCMs by means of suspension-like polymerization. Colloid Polym Sci 286:1019–1027

    Article  CAS  Google Scholar 

  44. Sánchez L, Lacasa E, Carmona M, Rodriǵuez JF, Sánchez P (2008) Applying an experimental design to improve the characteristics of microcapsules containing phase change materials for fabric uses. Ind Eng Chem Res 47:9783–90

    Article  CAS  Google Scholar 

  45. Sánchez-Silva L, Carmona M, de Lucas A, Sánchez P, Rodríguez JF (2010) Scale-up of a suspension-like polymerization process for the microencapsulation of phase change materials. J Microencapsul 27:583–593

    Article  CAS  Google Scholar 

  46. Li W, Song G, Tang G, Chu X, Ma S, Liu C (2011) Morphology, structure and thermal stability of microencapsulated phase change material with copolymer shell. Energy 36:785–791

    Article  CAS  Google Scholar 

  47. Wang H, Wang JP, Wang X, Li W, Zhang X (2013) Preparation and properties of microencapsulated phase change materials containing two-phase core materials. Ind Eng Chem Res 52:14706–14712

    Article  CAS  Google Scholar 

  48. Yin D, Ma L, Liu J, Zhang Q (2014) Pickering emulsion: an oval template for microencapsulated phase change materials with polymer–silica hybrid shell. Energy 64:575–581

    Google Scholar 

  49. Ma S, Song G, Li W, Fan P, Tang G (2010) UV irradiation-initiated MMA polymerization to prepare microcapsules containing phase change paraffin. Sol Energy Mater Sol Cells 94(10):1643–1647

    Google Scholar 

  50. Alkan C, Sari A, Karaipekli A (2011) Preparation, thermal properties and thermal reliability of microencapsulated n-eicosane as novel phase change material for thermal energy storage. Energy Convers Manag 52:687–692

    Article  CAS  Google Scholar 

  51. Baek KH, Lee JY, Kim JH (2007) Core/shell structured PCM nanocapsules obtained by resin fortified emulsion process. J Dispers Sci Technol 28:1059–1065

    Article  CAS  Google Scholar 

  52. Alay S, Göde F, Alkan C (2010) Preparation and characterization of poly(methyl-methacrylate-co-glycidyl methacrylate)/n-hexadecane nanocapsules as a fiber additive for thermal energy storage. Fibers Polym 11:1089–1093

    Article  CAS  Google Scholar 

  53. Sari A, Karaipekli A (2008) Preparation, thermal properties and thermal reliability of capric acid/expanded perlite composite for thermal energy storage. Mater Chem Phys 109:459–464

    Article  CAS  Google Scholar 

  54. Alay S, Alkan C, Göde F (2011) Synthesis and characterization of poly(methyl methacrylate)/n-hexadecane microcapsules using different cross-linkers and their application to some fabrics. Thermochim Acta 518:1–8

    Article  CAS  Google Scholar 

  55. SarI A, Alkan C, Karaipekli A (2010) Preparation, characterization and thermal properties of PMMA/n-heptadecane microcapsules as novel solid–liquid microPCM for thermal energy storage. Appl Energy 87:1529–1534

    Article  CAS  Google Scholar 

  56. Wang Y, Zhang Y, Xia T, Zhao W, Yang W (2014) Effects of fabricated technology on particle size distribution and thermal properties of stearic–eicosanoic acid/polymethylmethacrylate nanocapsules. Sol Energy Mater Sol Cells Part B 120:481–490

    Article  CAS  Google Scholar 

  57. Blackley DC (1975) Emulsion polymerization, theory and practice. Applied Science, London

    Google Scholar 

  58. Zhang H, Wang X, Wu D (2010) Silica encapsulation of n-octadecane via sol–gel process: a novel microencapsulated phase change material with enhanced thermal conductivity and performance. J Colloid Interface Sci 343:246–255

    Article  CAS  Google Scholar 

  59. Yang R, Zhang Y, Wang X, Zhang Y, Zhang Q (2009) Preparation of n-tetradecane-containing microcapsules with different shell materials by phase separation method. Sol Energy Mater Sol Cells 93:1817–1822

    Article  CAS  Google Scholar 

  60. Jin Y, Lee W, Musinab Z, Ding Y (2010) A one-step method for producing microencapsulated phase change materials. Particuology 8:588–590

    Article  CAS  Google Scholar 

  61. Wang JP, Zhang XX, Wang XC (2011) Preparation, characterization and permeation kinetics description of calcium alginate macro-capsules containing shape-stabilize phase change materials. Renew Energy 36:2984–2991

    Article  CAS  Google Scholar 

  62. Su J, Ren L, Wang L (2005) Preparation and mechanical properties of thermal energy storage microcapsules. Colloid Polym Sci 284:224–228

    Article  CAS  Google Scholar 

  63. Zhang X, Tao XM, Yick K-L, Wang X-C (2004) Structure and thermal stability of microencapsulated phase-change materials. Colloid Polym Sci 282:330–336

    Article  CAS  Google Scholar 

  64. Zhang X, Fan Y, Tao X, Yick K (2005) Crystallization and prevention of supercooling of microencapsulated n-alkanes. J Colloid Interface Sci 281:299–306

    Article  CAS  Google Scholar 

  65. Trigui A, Karkri M, Boudaya C, Candau Y, Ibos L (2013) Development and characterization of composite phase change material: thermal conductivity and latent heat thermal energy storage. Compos Part B 49:22–35

    Article  CAS  Google Scholar 

  66. Trigui A, Karkri M, Boudaya C, Candau Y, Ibos L, Fois M (2014) Experimental investigation of a composite phase change material: thermal-energy storage and release. J Compos Mater 48:49–62

    Article  CAS  Google Scholar 

  67. Trigui A, Karkri M, Krupa I (2014) Thermal conductivity and latent heat thermal energy storage properties of LDPE/wax as a shape-stabilized composite phase change material. Energy Convers Manag 77:586–596

    Article  CAS  Google Scholar 

  68. Aadmi M, Karkri M, El hammouti M (2014) Heat transfer characteristics of thermal energy storage of a composite phase change materials: numerical and experimental investigation. Energy 72:381–392

    Article  CAS  Google Scholar 

  69. Krupa I, Nógellová Z, Špitalsky Z, Janigová I, Boh B, Sumiga B, Kleinová A, Karkri M, AlMaadeed MA (2014) Phase change materials based on high-density polyethylene filled with microencapsulated paraffin wax. Energy Convers Manag 87:400–409

    Article  CAS  Google Scholar 

  70. Karkri M, Lachheb M, Nogellová Z, Boh B, Sumiga B, AlMaadeed MA, Albouchi F, Krupa I (2015) Thermal properties of phase-change materials based on high-density polyethylene filled with micro-encapsulated paraffin wax for thermal energy storage. Energy Build 88:144–152

    Article  Google Scholar 

  71. Karkri M, Lachheb M, Albouchi F, Ben Nasrallah S, Krupa I (2015) Thermal properties of smart microencapsulated paraffin/plaster composites for the thermal regulation of buildings. Energy Build 88:183–192

    Article  Google Scholar 

  72. Krupa I, Nogellova Z, Špitalský Z, Malíková M, Sobolciak P, Ouederni M, Karkri M, AlMaadeed M (2014) Phase change materials based on high density polyethylene filled with microencapsulated paraffin wax. Energy Convers Manag 87:400–409

    Article  CAS  Google Scholar 

  73. AlMaadeed M, Labidi S, Krupa I, Karkri M (2014) Effect of expanded graphite on the phase change materials of high density polyethylene/wax blends. Thermochim Acta 600:35–44

    Article  CAS  Google Scholar 

  74. Trigui I, Karkri M, Krupa I (2014) Thermal conductivity and latent heat thermal energy storage properties of LDPE/wax as a shape-stabilized composite phase change material. Energy Convers Manag 77:586–596

    Article  CAS  Google Scholar 

  75. Hong Y, Xin-shi G (2000) Preparation of polyethylene/paraffin compound as a form–stable solid–liquid phase change material. Sol Energy Mater Sol Cells 64:37–44

    Article  CAS  Google Scholar 

  76. Sari A (2004) Form–stable paraffin/high density polyethylene composites as solid–liquid phase change material for thermal energy storage: preparation and thermal properties. Energy Convers Manag 45:2033–2042

    Article  CAS  Google Scholar 

  77. Kaygusuz K, Sari A (2007) High density polyethylene/paraffin composites as form–stable phase change material for thermal energy storage. Energy Sources Part A 29:261–270

    Article  CAS  Google Scholar 

  78. Krupa I, Mikova G, Luyt A (2007) Phase change materials based on low-density polyethylene/paraffin wax blends. Eur Polym J 43:4695–4705

    Article  CAS  Google Scholar 

  79. Cai Y, Hu Y, Song L, Lu H, Chen Z, Fan W (2006) Preparation and characterizations of HDPE–EVA alloy/OMT nanocomposites/paraffin compounds as a shape stabilized phase change thermal energy storage material. Thermochim Acta 451:44–51

    Article  CAS  Google Scholar 

  80. Alkan C, Sari A, Uzun O (2006) Poly(ethylene glycol)/acrylic polymer blends for latent heat thermal energy storage. AICHE J 52:3310–3314

    Article  CAS  Google Scholar 

  81. Sari A, Alkan C, Kolemen U, Uzun O (2006) Eudragit S (methyl methacrylate methacrylic acid copolymer)/fatty acid blends as form–stable phase change material for latent heat thermal energy storage. J Appl Polym Sci 101:1402–1406

    Article  CAS  Google Scholar 

  82. Kaygusuz K, Alkan C, Sari A, Uzun O (2008) Encapsulated fatty acids in an acrylic resin as shape-stabilized phase change materials for latent heat thermal energy storage. Energy Sources Part A 30:1050–1059

    Article  CAS  Google Scholar 

  83. Alkan C, Sari A (2008) Fatty acid/poly(methyl methacrylate) (PMMA) blends as form–stable phase change materials for latent heat thermal energy storage. Sol Energy 82:118–124

    Article  CAS  Google Scholar 

  84. Zhang L, Zhu J, Zhou W, Wang J, Wang Y (2011) Characterization of polymethyl methacrylate/polyethylene glycol/aluminum nitride composite as form–stable phase change material prepared by in situ polymerization method. Thermochim Acta 254:128–134

    Article  CAS  Google Scholar 

  85. Sari A, Karaipekli A, Akcay M, Onal A, Kavak F (2005) Polymer/palmitic acid blends as shape-stabilized phase change material for latent heat thermal energy storage. Asian J Chem 18:439–446

    Google Scholar 

  86. Sari A, Kaygusuz K (2006) Studies on poly(vinyl chloride)/fatty acid blends as shape-stabilized phase change material for latent heat thermal energy storage. Indian J Eng Mater Sci 13:253–258

    CAS  Google Scholar 

  87. Sarier N, Onder E (2007) Thermal characteristics of polyurethane foams incorporated with phase change materials. Thermochim Acta 454:90–98

    Article  CAS  Google Scholar 

  88. Sarier N, Onder E (2008) Thermal insulation capability of PEG-containing polyurethane foams. Thermochim Acta 475:15–21

    Article  CAS  Google Scholar 

  89. You M, Zhang XX, Li W, Wang XC (2008) Effects of microPCMs on the fabrication of microPCMs/polyurethane composite foams. Thermochim Acta 472:20–24

    Article  CAS  Google Scholar 

  90. Ke GZ, Xie JHF, Ruan RP, Yu WD (2010) Preparation and performance of porous phase change polyethylene glycol/polyurethane membrane. Energy Convers Manag 51:2294–2298

    Article  CAS  Google Scholar 

  91. Sari A, Kaygusuz K (2007) Poly(vinyl alcohol)/fatty acid blends for thermal energy storage. Energy Sources Part A 29:873–883

    Article  CAS  Google Scholar 

  92. Sari A, Alkan C, Karaipekli A, Onal A (2008) Preparation, characterization and thermal properties of styrene maleic anhydride copolymer (SMA)/fatty acid composites as form stable phase change materials. Energy Convers Manag 49:373–380

    Article  CAS  Google Scholar 

  93. Mengjin J, Xiaoqing S, Jianjun X, Guangdou Y (2008) Preparation of a new thermal regulating fiber based on PVA and paraffin. Sol Energy Mater Sol Cells 92:1657–1660

    Article  CAS  Google Scholar 

  94. Chen C, Wang L, Huang Y (2009) Ultrafine electrospun fibers based on stearyl stearate/polyethylene terephthalate composite as form stable phase change materials. Chem Eng J 150:269–274

    Article  CAS  Google Scholar 

  95. Chen C, Wang L, Huang Y (2008) Morphology and thermal properties of electrospun fatty acids/polyethylene terephthalate composite fibers as novel form–stable phase change materials. Sol Energy Mater Sol Cells 92:1382–1387

    Article  CAS  Google Scholar 

  96. Cai Y, Ke H, Dong J, Wei Q, Lin J, Zhao Y et al (2011) Effects of nano-SiO2 on morphology, thermal energy storage, thermal stability, and combustion properties of electrospun lauric acid/PET ultrafine composite fibers as form–stable phase change materials. Appl Energy 88:2106–2112

    Article  CAS  Google Scholar 

  97. Luyt AS, Krupa I, Assumption HJ, Ahmad EEM, Mofokeng JP (2010) Blends of polyamide 12 and maleic anhydride grafted paraffin wax as potential phase change materials. Polym Test 29:100–106

    Article  CAS  Google Scholar 

  98. Fang Y, Kang H, Wang W, Liu H, Gao X (2010) Study on polyethylene glycol/epoxy resin composite as a form–stable phase change material. Energy Convers Manag 51:2757–2761

    Article  CAS  Google Scholar 

  99. Zhang X, Deng P, Feng R, Song J (2011) Novel gelatinous shape-stabilized phase change materials with high heat storage density. Sol Energy Mater Sol Cells 95:1213–1218

    Article  CAS  Google Scholar 

  100. Sari A, Karaipekli A (2007) Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material. Appl Therm Eng 27:1271–1277

    Article  CAS  Google Scholar 

  101. Sari A, Karaipekli A, Kaygusuz K (2008) Fatty acid/expanded graphite composites as phase change material for latent heat thermal energy storage. Energy Sources Part A 30:464–474

    Article  CAS  Google Scholar 

  102. Sari A, Karaipekli A (2009) Preparation, thermal properties and thermal reliability of palmitic acid/expanded graphite composite as form–stable PCM for thermal energy storage. Sol Energy Mater Sol Cells 93:571–576

    Article  CAS  Google Scholar 

  103. Feng L, Zheng J, Yang H, Guo Y, Li W, Li X (2011) Preparation and characterization of polyethylene glycol/active carbon composites as shape-stabilized phase change materials. Sol Energy Mater Sol Cells 95:644–650

    Article  CAS  Google Scholar 

  104. Zhang Z, Fang X (2006) Study on paraffin/expanded graphite composite phase change thermal energy storage material. Energy Convers Manag 47:303–310

    Article  CAS  Google Scholar 

  105. Wang W, Yang X, Fang Y, Ding J, Yan J (2009) Preparation and thermal properties of polyethylene glycol/expanded graphite blends for energy storage. Appl Energy 86:1479–1483

    Article  CAS  Google Scholar 

  106. Xia L, Zhang P, Wang RZ (2010) Preparation and thermal characterization of expanded graphite/paraffin composite phase change material. Carbon 48:2538–2548

    Article  CAS  Google Scholar 

  107. Xing L, Hongyan L, Shujun W, Lu Z, Hua C (2006) Preparation and thermal properties of form stable paraffin phase change material encapsulation. Energy Convers Manage 47:2515–2522

    Article  CAS  Google Scholar 

  108. Wang W, Yang X, Fang Y, Ding J (2009) Preparation and performance of form–stable polyethylene glycol/silicon dioxide composites as solid–liquid phase change materials. Appl Energy 86:170–174

    Article  CAS  Google Scholar 

  109. Tang B, Qiu M, Zhang S (2012) Thermal conductivity enhancement of PEG/SiO2 composite PCM by in situ Cu doping. Sol Energy Mater Sol Cells 105:242–248

    Article  CAS  Google Scholar 

  110. Zhang D, Zhou J, Wu K, Li Z (2005) Granular phase changing composites for thermal energy storage. Sol Energy 78:471–480

    Article  CAS  Google Scholar 

  111. Karaipekli A, Sari A (2008) Capric–myristic acid/expanded perlite composite as form–stable phase change material for latent heat thermal energy storage. Renew Energy 33:2599–2605

    Article  CAS  Google Scholar 

  112. Sari A, Karaipekli A, Alkan C (2009) Preparation, characterization and thermal properties of lauric acid/expanded perlite as novel form–stable composite phase change material. Chem Eng J 155:899–904

    Article  CAS  Google Scholar 

  113. Karaipekli A, Sari A (2009) Capric–myristic acid/vermiculite composite as form–stable phase change material for thermal energy storage. Sol Energy 83:323–332

    Article  CAS  Google Scholar 

  114. Li M, Wu M, Kao H (2011) Study on preparation, structure and thermal energy storage property of capric–palmitic acid/ attapulgite composite phase change materials. Appl Energy 88:3125–3132

    Article  CAS  Google Scholar 

  115. Li M, Wu Z, Kao H (2011) Study on preparation and thermal properties of binary fatty acid/diatomite shape-stabilized phase change materials. Sol Energy Mater Sol Cells 95:2412–2416

    Article  CAS  Google Scholar 

  116. Karaman S, Karaipekli A, Sari A, Bicer A (2011) Polyethylene glycol (PEG)/diatomite composite as a novel form–stable phase change material for thermal energy storage. Sol Energy Mater Sol Cells 95:1647–1653

    Article  CAS  Google Scholar 

  117. Mesalhy O, Lafdi K, Elgafy A (2006) Carbon foam matrices saturated with PCM for thermal protection purposes. Carbon 44:2080–2088

    Article  CAS  Google Scholar 

  118. Wanga Y, Xia TD, Zheng H, Feng HX (2011) Stearic acid/silica fume composite as form–stable phase change material for thermal energy storage. Energy Build 43:2365–2370

    Article  Google Scholar 

  119. Li M, Wu Z, Kao H, Tan J (2011) Experimental investigation of preparation and thermal performances of paraffin/bentonite composite phase change material. Energy Convers Manag 52:3275–3281

    Article  CAS  Google Scholar 

  120. Mei D, Zhang B, Liu R, Zhang Y, Liu J (2011) Preparation of capric acid/halloysite nanotube composite as form–stable phase change material for thermal energy storage. Sol Energy Mater Sol Cells 95:2772–2777

    Article  CAS  Google Scholar 

  121. Zhou M, Lin T, Huang F, Zhong Y, Wang Z, Tang Y et al (2013) Highly conductive porous graphene/ceramic composites for heat transfer and thermal energy storage. Adv Funct Mater 23:2263–2269

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilles Lefebvre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Karkri, M., Lefebvre, G., Royon, L. (2015). Different Phase Change Material Implementations for Thermal Energy Storage. In: Lefebvre, G., Jiménez, E., Cabañas, B. (eds) Environment, Energy and Climate Change II. The Handbook of Environmental Chemistry, vol 34. Springer, Cham. https://doi.org/10.1007/698_2015_332

Download citation

Publish with us

Policies and ethics