Skip to main content

Non-conventional Electrochemical and Optical Sensor Systems

  • Chapter
  • First Online:

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 40))

Abstract

Electroanalytical methods are a common tool for the assessment of chemical peculiarities of aqueous solutions. Also, the analysis of water based on optical sensors is a mature field of research, which already led to industrial applications and standard laboratory practices. Nevertheless, scientific literature is still offering new sensor techniques and innovative measurement approaches in both fields. In particular, for fast characterisation of liquids and change detection applications in a continuous monitoring context, the technology of taste sensors based on electrochemical techniques is still witnessing a growing interest. Such devices are often defined as “electronic tongues” or “e-tongues”. In addition, emerging inexpensive and portable devices with optical-sensing capabilities can be used for monitoring applications with a novel approach. This chapter gives an overview of recent techniques developed in both fields and presents several potential applications and case studies that deal with the context of water quality assessment. A brief introduction about the basics of each measurement technology, even if not exhaustive, is also provided.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CSPT:

Computer screen photo-assisted technique

HPCA:

Hierarchical PCA

ISE:

Ion-selective electrode

LAPV:

Large amplitude pulse voltammetry

MLAPS:

Multiple light-addressable potentiometric sensor

PCA:

Principal components analysis

REF:

Reference electrode

ST:

Slantnet transform

WE:

Working electrode

References

  1. Hauptmann P, Borngraeber R, Schroeder J, Auge J (2000) Artificial electronic tongue in comparison to the electronic nose—state of the art and trends. In: Proceedings of IEEE/EIA international frequency control symposium and exhibition, p 22–29

    Google Scholar 

  2. Krantz-Rulcker C, Stenberg M, Winquist F, Lundstrom I (2001) Electronic tongues for environmental monitoring based on sensor arrays and pattern recognition: a review. Anal Chim Acta 426(2):217–226

    Article  CAS  Google Scholar 

  3. Lindquist M, Wide P (2001) Virtual water quality tests with an electronic tongue. In: Proceedings of IEEE IMTC, Budapest, Hungary, May 21–23, p 1320–1324

    Google Scholar 

  4. Vlasov Y, Legin A, Rudnitskaya A, Di Natale C, D’Amico A (2005) Nonspecific sensor arrays (“electronic tongue”) for chemical analysis of liquids: (IUPAC technical report). Pure Appl Chem 77:1965–1983

    Article  CAS  Google Scholar 

  5. Scozzari A (2008) Electrochemical sensing methods: a brief review. In: Evangelista V et al. (eds) Algal toxins: nature, occurrence, effect and detection. NATO science for peace and security series A: chemistry and biology. Springer Science + Business Media B.V., p 335–351. doi:10.1007/978-1-4020-8480-5_16

  6. Bard AJ, Faulkner LR (1980, 2000) (1st, 2nd edn) Electrochemical methods, fundamentals and applications. Wiley, New York

    Google Scholar 

  7. Janata J (1989, 2009) (1st, 2nd edn) Principles of chemical sensors. Springer, New York, 340 pp

    Google Scholar 

  8. Di Natale C, Macagnano A, Davide F, D’Amico A, Legin A, Vlasov Y, Rudnitskaya A, Selezenev B (1997) Multicomponent analysis on polluted waters by means of an electronic tongue. Sens Actuator B Chem 44:423–428

    Article  Google Scholar 

  9. Winquist F, Wide P, Lundstrom I (1997) An electronic tongue based on voltammetry. Anal Chim Acta 357(1/2):21–31

    Article  CAS  Google Scholar 

  10. Legin A, Rudnitskaya A, Vlasov Y, Di Natale C, Mazzone E, D’Amico A (1999) Application of electronic tongue for quantitative analysis of mineral water and wine. Electroanalysis 11:814–820

    Article  CAS  Google Scholar 

  11. Paolesse R, Di Natale C, Burgio M, Martinelli E, Mazzone E, Palleschi G, D’Amico A (2003) Porphyrin-based array of cross-selective electrodes for analysis of liquid samples. Sens Actuator B 95:400–405

    Article  CAS  Google Scholar 

  12. Ciosek P, Brzózka Z, Wróblewski W (2004) Classification of beverages using a reduced sensor array. Sens Actuator B 103:76–83

    Article  CAS  Google Scholar 

  13. Lvova L, Martinelli E, Mazzone E, Pede A, Paolesse R, Di Natale C, D’Amico A (2006) Electronic tongue based on an array of metallic potentiometric sensors. Talanta 70:833–839

    Article  CAS  Google Scholar 

  14. Scozzari A (2007) Application of an e-tongue to groundwater monitoring: a measurement perspective. In: Bullen TD, Wang Y (eds), Twelfth symposium on water-rock interaction. Taylor & Francis, Kunming (China), vol 2, p 1115–1118

    Google Scholar 

  15. Scozzari A, Acito N, Corsini G (2007) A novel method based on voltammetry for the qualitative analysis of water. IEEE Trans Instrum Meas 56(6). doi:10.1109/TIM.2007.903600

    Google Scholar 

  16. Men H, Zou S, Li Y, Wang Y, Ye X, Wang P (2005) A novel electronic tongue combined MLAPS with stripping voltammetry for environmental detection. Sens Actuator B Chem 110(2):350–357. doi:10.1016/j.snb.2005.02.032

    Article  CAS  Google Scholar 

  17. Tymeszki L, Zwierkowska W, Koncki R (2004) Screen printed electrode for potentiometric measurements. Anal Chim Acta 526:3–11

    Article  Google Scholar 

  18. Otto M, Thomas J (1985) Model studies on multiple channel analysis for free magnesium, calcium, sodium and potassium at physiological concentration levels with ion-selective electrode. Anal Chem 57:2647

    Article  CAS  Google Scholar 

  19. Gardner JW, Bartlett PN (1994) A brief history of electronic noses. Sens Actuator B 18–19:211–220

    Google Scholar 

  20. Hayashi H, Yamanaka M, Toko K, Yamafiji K (1990) Multichannel taste sensor using lipid membrane. Sens Actuator B 2:205–213

    Article  CAS  Google Scholar 

  21. Di Natale C, Davide F, Brunink J, D’Amico A, Vlasov Y, Legin A, Rudnitskaya A (1996) Multicomponent analysis of heavy metal cations and inorganic anions in liquids by a non-selective chalcogenide glass sensor array. Sens Actuator B 34:539–542

    Article  Google Scholar 

  22. Riul A, Malmegrim RR, Fonseca FJ, Mattoso LHC (2003) An artificial taste sensor based on conducting polymers. Biosens Bioelectron 18:1365–1369

    Article  CAS  Google Scholar 

  23. Winquist F, Krantz-Rulcker C, Wide P, Lundstrom I (1999) Monitoring of freshness of milk by an electronic tongue on the basis of voltammetry. Meas Sci Technol 9(12):1937–1946. doi:10.1088/0957-0233/9/12/002

    Article  Google Scholar 

  24. Winquist F, Lundstrom I, Wide P (1999) The combination of an electronic tongue and an electronic nose. Sensors and Actuators B: Chemical. In: Twelfth European conference on solid-state transducers—9th UK conference on sensors and their applications, Southampton, UK, vol 58, issue 1–3, p 512–517. doi:10.1016/S0925-4005(99)00155-0

    Google Scholar 

  25. Heyrovský J (1924) The processes at the mercury dropping cathode. Part I. The deposition of metals. Trans Faraday Soc 19:692–702. doi:10.1039/TF9241900692

    Article  Google Scholar 

  26. Heyrovský J (1924) The processes at the mercury dropping cathode. Part II. The hydrogen overpotential. Trans Faraday Soc 19:785–788. doi:10.1039/TF9241900785

    Article  Google Scholar 

  27. Semerano G, Griggio L (1957) Selected values of polarographic data. Arti grafiche Panetto & Petrelli, Spoleto, p 286

    Google Scholar 

  28. Hickling A (1942) Studies in electrode polarisation. Part IV.—the automatic control of the potential of a working electrode. Trans Faraday Soc 38:27–33

    Article  CAS  Google Scholar 

  29. Korthum G (1965) Treatise on electrochemistry. University of Tubingen, Germany, 2nd ed. American Elsevier, New York

    Google Scholar 

  30. Mirceski V, Komorsky-Lovric S, Lovric M (2007) Square-wave voltammetry. ISBN 978-3-540-73739-1, Springer

    Google Scholar 

  31. Scozzari A, Wide P (2008) The process from a redundant and general sensor concept—towards an optimal sensor strategy for the assessment of drinking water quality. In: IEEE instrumentation and measurement technology conference, proceedings, p 836–841. doi:10.1109/IMTC.2008.4547153

  32. Iliev B, Lindquist M, Robertsson L, Wide P (2006) A fuzzy technique for food and water quality assessment with an electronic tongue. Fuzzy Set Syst 157(9):1155–1168

    Article  Google Scholar 

  33. Pereira JMD, Postolache O, Girao PS (2007) A smart and portable solution for heavy metals concentration measurements. In: Proceedings of the IEEE instrumentation and measurement technology conference, p 2427–2430

    Google Scholar 

  34. Scozzari A, Acito N, Corsini G (2006) A supervised algorithm for water classification by voltammetric measurements. In: Proceedings of the IEEE instrumentation and measurement technology conference, p 725–728

    Google Scholar 

  35. Buehler MG, Kuhlman GM, Keymeulen D, Kounaves SP (2002) In: Advanced electronic tongue concept, 2002 I.E. aerospace conference proceedings, p 407–416

    Google Scholar 

  36. Brainina KZ, Kubysheva IV, Miroshnikova EG, Parshakov SI, Maksimov YG, Volkonsky AE (2001) Small-size sensors for the in-field stripping voltammetric analysis of water. Field Anal Chem Tech 5(6):260–271

    Google Scholar 

  37. Landgrebe DA (2003) Signal theory methods in multispectral remote sensing. Wiley, Hoboken, NJ

    Book  Google Scholar 

  38. Richards JA (2012) Remote sensing digital image analysis: an introduction. Springer, Berlin, Heidelberg

    Google Scholar 

  39. Artursson T, Holmberg M (2002) Wavelet transform of electronic tongue data. Sens Actuator B 87:379–391

    Article  CAS  Google Scholar 

  40. Scozzari A (2005) Signal analysis of voltammetric data series for water quality tests and classification. In: Proceedings of the IEEE instrumentation and measurement technology conference, p 89–92

    Google Scholar 

  41. Holmin S, Spångeus P, Krantz-Rülcker C, Winquist F (2001) Compression of electronic tongue data based on voltammetry—a comparative study. Sens Actuator B Chem 76(1–3):455–464. doi:10.1016/S0925-4005(01)00585-8

    Article  CAS  Google Scholar 

  42. Herrero A, Cruz OM (1999) Qualitative and quantitative aspects of the application of genetic algorithm-based variable selection in polarography and stripping voltammetry. Anal Chim Acta 378(1–3):245–259. doi:10.1016/S0003-2670(98)00619-9

    Article  CAS  Google Scholar 

  43. Kundu PK, Chatterjee A, Panchariya PC (2011) Electronic tongue system for water sample authentication: a slantlet-transform-based approach. IEEE Trans Instrum Meas 60(6):1959–1966. doi:10.1109/TIM.2011.2115410

    Article  Google Scholar 

  44. Scozzari A, Peruzzi P, Cioni R, Guidi M (2006) An innovative approach to urban water management based on taste sensors. EGU General Assembly, Wien

    Google Scholar 

  45. Segawa H, Ohnishi E, Arai Y, Yoshida K (2003) Sensitivity of fiber-optic carbon dioxide sensors utilizing indicator dye. Sens Actuator B 94:276–281

    Article  CAS  Google Scholar 

  46. Paolesse R, Monti D, Dini F, Di Natale C (2011) Fluorescence based sensor arrays. Top Curr Chem 300:139–174

    Article  CAS  Google Scholar 

  47. Filippini D, Svensson SPS, Lundström I (2003) Computer screen as a programmable light source for visible absorption characterization of (bio)chemical assays. Chem Commun 2:240–241

    Article  Google Scholar 

  48. Filippini D, Alimelli A, Di Natale C, Paolesse R, D’Amico A, Lundstrom I (2006) Chemical sensing with familiar devices. Angew Chem Int Ed 45:3800–3803. doi:10.1002/anie.200600050

    Article  CAS  Google Scholar 

  49. Filippini D, Alimelli A, Di Natale C, Paolesse R, D’Amico A, Lundström I (2006) Chemical sensing with familiar devices. Angew Chem 118:3884–3887

    Article  Google Scholar 

  50. Schubert EF, Kyu Kim J (2005) Solid-state light sources getting smart. Science 308:1274–1278

    Article  CAS  Google Scholar 

  51. Jackson R, Mac Donald L, Freeman K (1994) Computer generated color. Wiley, New York

    Google Scholar 

  52. Filippini D, Lundström I (2006) Preferential color substances and optimized illuminations for computer screen photo-assisted classification. Anal Chim Acta 557:393–398

    Article  CAS  Google Scholar 

  53. Santonico M, Scozzari A, Brozzo G, Marini L, D’Amico A, Filippini D, Lundstrom I, Di Natale C (2009) Detection of natural Xr(VI) with computer screen photo-assisted technology. Proc Chem 1:317–320

    Article  CAS  Google Scholar 

  54. Nriagu J, Niebner E (eds) (1988) Chromium in the natural and human environments. Wiley, New York

    Google Scholar 

  55. Fantoni D, Brozzo G, Canepa M, Cipolli F, Marini L, Ottonello G, Vetuschi Zoccolino M (2002) Natural hexavalent chromium in groundwaters interacting with opholitic rocks. Environ Geol 42:871–882

    Article  CAS  Google Scholar 

  56. Oze C, Bird D, Fendorf S (2007) Genesis of hexavalent chromium from natural sources in soil and groundwater. Proc Natl Acad Sci U S A 104:6544–6549

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Scozzari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Di Natale, C., Dini, F., Scozzari, A. (2014). Non-conventional Electrochemical and Optical Sensor Systems. In: Scozzari, A., Dotsika, E. (eds) Threats to the Quality of Groundwater Resources. The Handbook of Environmental Chemistry, vol 40. Springer, Berlin, Heidelberg. https://doi.org/10.1007/698_2013_254

Download citation

Publish with us

Policies and ethics