Skip to main content

Biodegradation of Emerging Organic Contaminants by Composting

  • Chapter
  • First Online:
  • 1528 Accesses

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 24))

Abstract

Sewage sludge is a rich source of organic matter and nutrients, which can be utilized for soil improvement and plant growth. The utilization of sewage sludge for plant growth and conversion of sludge into renewable resource is often restricted by the presence of hazardous organic matter (HOM) including di-(2-ethylhexyl) phthalate (DEHP) and antibiotics. HOM enters the sewerage system through various domestic and industrial sources; they are mostly hydrophobic in nature and recalcitrant to microorganisms. HOM has the tendency to accumulate in the sludge during biological wastewater treatment processes and, subsequently, raise the difficulty of further sludge treatment and/or disposal. The application of sewage sludge containing HOM can create risk to ecosystems. The stability and biodegradation of DEHP and antibiotics during composting are discussed in this chapter. Finally, the recent advances in the bioremoval of these HOM are briefly summarized.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cheng HF, Chen SY, Lin JG (2001) Hazardous organic matters in municipal sewage sludge in Taiwan. Water Sci Technol 44:65–70

    CAS  Google Scholar 

  2. Litz NTh (2000) Harmful organic constituents in sewage sludge and their assessment of relevance. In: Specialized conference on disposal and utilization of sewage sludge: treatment methods and application modalities, Athens, October 13–15

    Google Scholar 

  3. Rogers HR (1996) Sources, behavior and fate of organic contaminants during sewage sludges. Sci Total Environ 185:3–26

    Article  CAS  Google Scholar 

  4. Schnaak W, Kuchler T, Kujawa M, Henschel KP, Sußenbach D, Donau R (1997) Organic contaminants in sewage sludge and their ecotoxicological significance in the agricultural utilization of sewage sludge. Chemosphere 35:5–11

    Article  CAS  Google Scholar 

  5. Fauser P, Vikelsøe J, Sørensen PB, Carlsen L (2003) Phthalates, nonylphenols and LAS in an alternately operated wastewater treatment plant – fate modeling based on measured concentrations in wastewater and sludge. Water Res 37:1288–1295

    Article  CAS  Google Scholar 

  6. Kuch HM, Ballschmiter K (2000) Determination of endogenous and exogenous estrogens in effluents from sewage treatment plants at the ng/L-level. Fresen J Anal Chem 366:392–395

    Article  CAS  Google Scholar 

  7. Lin JG, Arunkumar R, Liu CH (1999) Efficiency of supercritical fluid extraction for determining 4-nonylphenol in the municipal sewage sludge. J Chromatogr A 840:71–79

    Article  CAS  Google Scholar 

  8. Fürhacker M, Haberl R (1995) Composting of sewage sludge in a rotating vessel. Water Sci Technol 32:121–125

    Google Scholar 

  9. O’Connor GA (1996) Organic compounds in sludge-amended soils and their potential for uptake by crop plants. Sci Total Environ 185:71–81

    Google Scholar 

  10. Ejlertsson J, Alnervik M, Jonsson S, Svensson BH (1997) Influence of water solubility, side-chain structure on the degradation of phthalic acid esters under methanogenic conditions. Environ Sci Technol 31:2761–2764

    Article  CAS  Google Scholar 

  11. Wilson SC, Alcock RE, Sewart AP, Jones KC (1997) Persistence of organic contaminants in sewage sludge-amended soil: A field experiment. J Environ Qual 26:1467–1477

    Google Scholar 

  12. Mangas E, Vaquero MT, Comllas L, Broto-Puig F (1998) Analysis and fate of aliphatic hydrocarbons, linear alkylbenzenes, polychlorinated biphenyls and polycyclic aromatic hydrocarbons in sewage sludge-amended soils. Chemosphere 36:61–72

    Google Scholar 

  13. Fromme H, Küchler T, Otto T, Pilz K, Müller J, Wenzel A (2002) Occurrence of phthalates and bisphenol A and F in the environment. Water Res 36:1429–1438

    Article  CAS  Google Scholar 

  14. Petersen SO, Henriksen K, Mortensen GK, Krogh PH, Brandt KK, Sørensen J, Madsen T, Petersen J, Grøn C (2003) Recycling of sewage sludge and household compost to arable land: fate and effects of organic contaminants, and impact on soil fertility. Soil Tillage Res 72:139–152

    Google Scholar 

  15. Aparicio I, Santos JL, Alonso E (2007) Simultaneous sonication-assisted extraction, and determination by gas chromatography-mass spectrometry, of di-(2-ethylhexyl)phthalate, nonylphenol, nonylphenol ethoxylates and polychlorinated biphenyls in sludge from wastewater treatment plants. Anal Chim Acta 584:455–461

    Google Scholar 

  16. Staples CA, Peterson DR, Parkerton TF, Adams WJ (1997) The environmental fate of phthalate esters: a literature review. Chemosphere 35:667–749

    Article  CAS  Google Scholar 

  17. Marttinen SK, Hanninen K, Rintala JA (2004) Removal of DEHP in composting and aeration of sewage sludge. Chemosphere 54:265–272

    Article  CAS  Google Scholar 

  18. Bauer MJ, Herrmann R (1997) Estimation of the environmental contamination by phthalic acid esters leaching from household waters. Sci Total Environ 208:49–57

    Article  CAS  Google Scholar 

  19. Cadogan DF, Papez M, Poppe AC, Scheubel J (1993) An assessment of the release, occurrence and possible effect of plasticizers in the environment. Prog Rubber Plast Techol 10:1–19

    Google Scholar 

  20. Lundanes E, Jara S, Lysebo C, Greibrokk T (2000) Determination of phthalates in water samples using polystyrene solid-phase extraction and liquid chromatography quantification. Anal Chim Acta 407:165–171

    Article  Google Scholar 

  21. DeFoe DL, Holcombe GW, Hammermeister DE, Beisinger KE (1990) Solubility and toxicity of eight phthalate esters to four aquatic organisms. Environ Toxicol Chem 9:623–636

    Article  CAS  Google Scholar 

  22. Gibbons JA, Alexander M (1989) Microbial degradation of sparingly soluble organic chemicals: phthalate esters. Environ Toxicol Chem 8:283–291

    Article  CAS  Google Scholar 

  23. Howard PH (1991) Handbook of environmental fate and exposure data for organic chemicals, vol I: Large production and priority pollutants. Lewis, Chelsea, pp 107–292

    Google Scholar 

  24. Rhodes JE, Adams WJ, Biddinger GR, Robillard KA, Gorsuch JG (1995) Chronic toxicity of 14 phthalate esters to Daphnia magna and Rainbow trout (Oncorhynchus mykiss). Environ Toxicol Chem 14:1967–1976

    CAS  Google Scholar 

  25. Sablayrolles C, Montréjaud-Vignoles M, Benanou D, Patria L, Treilhou M (2005) Development and validation of methods for the trace determination of phthalate in sludge and vegetables. J Chrom 1072:233–242

    Google Scholar 

  26. Bagó B, Martín Y, Mejía G, Broto-Puig F, Díaz-Ferrero J, Agut M, Comellas L (2005) Di-(2-ethylhexyl) phthalate in sewage sludge and post-treated sludge: Quantitative determination by HRGC-MS and mass spectral characterization. Chemosphere 59:1191–1195

    Google Scholar 

  27. Jasen J, Jepsen S (2005) The production, use and quality of sewage sludge in Denmark. Waste Manag 25:239–247

    Google Scholar 

  28. Irvine RL, Earley JP, Kehrberger GJ, Delaney BT (1993) Bioremediation of soils contaminated with bis-(2-ethylhexyl) phthalate (BEHP) in a soil slurry-sequencing batch reactor. Environ Progr 12:39–44

    Google Scholar 

  29. Brown D, Croudance CP, Williams NJ, Shearing JM, Johnson PA (1998) The effect of phthalate ester plasticisers tested as surfactant stabilized dispersions on the reproduction of the Daphnia Magna. Chemosphere 36:1367–1379

    Google Scholar 

  30. Adams WJ, Biddinger GR, Robillard KA, Gorsuch JW (1995) A summary of the acute toxicity of 14 phthalate-esters to representative aquatic organisms. Environ Toxicol Chem 14:1569–1574

    Article  CAS  Google Scholar 

  31. Wilkinson CF, Lamb JC IV (1999) The potential health effects of phthalate esters in children’s toys: a review and risk assessment. Regul Toxicol Pharmacol 30:140–155

    Article  CAS  Google Scholar 

  32. Huber WW, Grasl KB, Schulte HR (1996) Hepatocarcinogenic potential of di(2-ethylhexyl)phthalate in rodents and its implications on human risk. Crit Rev Toxicol 26:365–481

    Article  CAS  Google Scholar 

  33. Koch HM, Rossbach B, Drexler H, Angerer J (2003) Internal exposure of the general population to DEHP and other phthalates – determination of secondary and primary phthalate monoester metabolites in urine. Environ Res 93:177–185

    Article  CAS  Google Scholar 

  34. Turner T, Rawling MC (2000) The behavior of di-(2-ethylhexyl) phthalate in estuaries. Mar Chem 68:203–217

    Article  CAS  Google Scholar 

  35. Ohlenbusch G, Kumke MU, Frimmel FH (2000) Sorption of phenols to dissolved organic matter investigated by solid phase microextraction. Sci Total Environ 253:63–74

    Article  CAS  Google Scholar 

  36. Shelton DR, Boyd SA, Tiedje JM (1984) Anaerobic biodegradation of phthalic acid esters in sludge. Environ Sci Technol 18:93–97

    Article  CAS  Google Scholar 

  37. Wang JL, Liu P, Qian Y (1995) Microbial degradation of di-n-butyl phthalate. Chemosphere 31:4051–4056

    Article  CAS  Google Scholar 

  38. Madsen PL, Thyme JB, Henriksen K, Møldrup P, Roslev P (1999) Kinetics of di-(2-ethylhexyl) phthalate mineralization in sludge-amended soil. Environ Sci Technol 33:2601–2606

    Article  CAS  Google Scholar 

  39. Roslev P, Madesn PL, Thyme JB, Henriksen K (1998) Degradation of phthalate and di-(2-ethylhexyl) phthalate by indigenous and inoculated microorganisms in sludge-amended soil. Appl Environ Microbiol 64:4711–4719

    CAS  Google Scholar 

  40. Wang JL, Liu P, Shi HC, Qian Y (1997) Biodegradation of phthalic acid ester in soil by indigenous and introduced microorganisms. Chemosphere 35:1747–1754

    Article  CAS  Google Scholar 

  41. Yan H, Ye C, Yin C (1995) Kinetics of phthalate ester biodegradation by Chlorella pyrenoidsa. Environ Toxicol Chem 14:931–938

    CAS  Google Scholar 

  42. Ejlertsson J, Svensson BH (1995) A review of the possible degradation of polyvinyl chloride (PVC) plastics and its components phthalic acids esters and vinyl chloride under anaerobic conditions prevailing in landfills. Dept. of Water and Environmental Studies, Linkoping University, Linkoping, p 20

    Google Scholar 

  43. Wang JL, Chen LJ, Shi HC, Qian Y (2000) Microbial degradation of phthalic acid esters under anaerobic digestion of sludge. Chemosphere 41:1245–1248

    Article  CAS  Google Scholar 

  44. Cheng HF, Chen SY, Lin JG (2000) Biodegradation of di-(2-ethylhexyl) phthalate in sewage sludge. Water Sci Technol 41:1–6

    Google Scholar 

  45. Klinge C, Gejlsbjerg B, Ekelund F, Madsen T (2001) Effects of sludge-amendment on mineralization of pyrene and microorganisms in sludge and soil. Chemosphere 45:625–634

    Article  CAS  Google Scholar 

  46. Epstein E (1997) The science of composting. Technomic Publishing Company, Lancaster

    Google Scholar 

  47. Hassouneh O, Jamrah A, Qaisi K (1999) Sludge stabilization by composting: a Jordanian case study. Bioprocess Eng 20:413–421

    Article  CAS  Google Scholar 

  48. Walker LP, Nock TD, Gossett JM, VanderGheynst JS (1999) The role of periodic agitation and water addition in managing moisture limitations during high-solids aerobic decomposition. Process Biochem 34:601–612

    Article  CAS  Google Scholar 

  49. Aggslides SM, Londra PA (2000) Effects of compost produced from town wastes and sewage sludge on the physical properties of a loamy and a clay soil. Bioresour Technol 71:253–259

    Article  Google Scholar 

  50. Wei YS, Fan YB, Wang MJ, Wang JS (2000) Composting and compost application in China. Resour Conserv Recycl 30:277–300

    Article  Google Scholar 

  51. Fang M, Wong JWC, Ma KK, Wong MH (1999) Co-composting of sewage sludge and coal fly ash: nutrient transformations. Bioresour Technol 67:19–24

    Article  CAS  Google Scholar 

  52. Qiao L, Ho G (1997) The effects of clay amendment on composting of digested sludge. Water Res 31:1056–1064

    Article  CAS  Google Scholar 

  53. Said-Pullicino D, Erriquens FG, Gigliotti G (2006) Changes in the chemical characteristics of water-extractable organic matter during composting and their influence on compost stability and maturity. Bioresour Technol. doi:10.1016/j.biortech. 2006.06.018

  54. Yamada Y, Kawase Y (2006) Aerobic composting of waste activated sludge: kinetic analysis for microbiological reaction and oxygen consumption. Waste Manage 26:49–61

    Article  CAS  Google Scholar 

  55. Kim DS, Kim JO, Lee JJ (2000) Aerobic composting performance and simulation of mixed sludges. Bioprocess Eng 22:533–537

    Article  CAS  Google Scholar 

  56. Lazzari L, Sperni L, Salizzato M, Pavoni B (1999) Gas chromatographic determination of organic micropollutants in samples of sewage sludge and compost: behavior of PCB and PAH during composting. Chemosphere 38:1925–1935

    Article  CAS  Google Scholar 

  57. Cheng HF, Kumar M, Lin JG (2010) Assessment of di-(2-ethylhexyl) phthalate (DEHP) removal in attached growth and suspended growth biological treatment systems of a municipal sewage treatment plant. Sep Sci Technol 45:221–227

    Article  CAS  Google Scholar 

  58. Banat FA, Prechtl S, Bischof F (1999) Experimental assessment of bio-reduction of di-2-ethylhexyl phthalate (DEHP) under aerobic thermophilic conditions. Chemosphere 39:2097–2106

    Article  CAS  Google Scholar 

  59. Amir S, Hafidi M, Merlina G, Hamdi H, Jouraiphy A, Gharous ME, Revel JC (2005) Fate of phthalic acid esters during composting of both lagooning and activated sludges. Process Biochem 40:2183–2190

    Article  CAS  Google Scholar 

  60. Hartlieb N, Ertunc T, Schaeffer A, Klein W (2003) Mineralization, metabolism and formation of non-extractable residues of 14C-labelled organic contaminants during pilot-scale composting of municipal biowaste. Environ Pollut 126:83–91

    Article  CAS  Google Scholar 

  61. Moeller J, Reech U (2003) Degradation of DEHP, PAHs and LAS in source separated MSW and sewage sludge during composting. Compos Sci Utiliz 11:370–378

    Google Scholar 

  62. Cheng HF, Kumar M, Lin JG (2008) Degradation kinetics of di-(2-ethylhexyl) phthalate (DEHP) and organic matter of sewage sludge during in-vessel composting. J Hazard Mater 145(1–3):55–62

    Article  Google Scholar 

  63. Gavala HN, Alatriste-Mondragon F, Iranpour R, Ahring BK (2003) Biodegradation of phthalate esters during the mesophilic anaerobic digestion of sludge. Chemosphere 52:673–682

    Article  CAS  Google Scholar 

  64. Thiele-Bruhn S (2003) Pharmaceutical antibiotic compounds in soils – a review. J Plant Nutr Soil Sci 166:145–167

    Article  CAS  Google Scholar 

  65. Kummerer K (2009) Antibiotics in the aquatic environment – a review – Part I. Chemosphere 75:417–434

    Article  Google Scholar 

  66. Sarmah AK, Meyer MT, Boxall ABA (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (Vas) in the environment. Chemosphere 65:725–759

    Article  CAS  Google Scholar 

  67. Ziemianska J, Adamek E, Sobczak A, Lipska I, Makowski A, Baran W (2010) The study of photocatalytic degradation of sulfonamides applied to municipal wastewater. Physicochem Probl Miner Process 45:127–140

    CAS  Google Scholar 

  68. Colinas C, Ingham E, Molina R (1994) Population responses of target and non-target forest soil-organisms to selected biocides. Soil Biol Biochem 26:41–47

    Article  CAS  Google Scholar 

  69. Vieno N, Tuhkanen T, Kronberg L (2007) Elimination of pharmaceuticals in sewage treatment plants in Finland. Water Res 41:1001–1012

    Article  CAS  Google Scholar 

  70. Bao Y, Zhou Q, Guan L, Wang Y (2009) Depletion of chlortetracycline during composting of aged spiked manures. Waste Manage 29:1416–1423

    Article  CAS  Google Scholar 

  71. Kumar K, Gupta SC, Baidoo KS, Chander Y, Rosen CJ (2005) Antibiotic uptake by plants from soil fertilized with animal manure. J Environ Qual 34:2082–2086

    Article  CAS  Google Scholar 

  72. Philips I, Casewell M, Cox T, Degroot B, Friis C, Jones R, Nightingale C, Preston R, Waddell J (2004) Does the use of antibiotics in food animals pose a risk to human health? A critical review of published data. J Antimicrob Chemother 53:28–52

    Article  Google Scholar 

  73. Roman H, Thomas T, Klaus H, Kari-Ludwig K (1999) Occurrence of antibiotics in the aquatic environment. Sci Total Environ 225:109–118

    Article  Google Scholar 

  74. Dolliver H, Gupta S, Noll S (2008) Antibiotic degradation during manure composting. J Environ Qual 37:1245–1253

    Article  CAS  Google Scholar 

  75. Ramaswamy J, Prasher SO, Patel RM, Hussain SA, Barrington SF (2010) The effect of composting on the degradation of a veterinary pharmaceutical. Biores Technol 101:2294–2299

    Google Scholar 

  76. Kim K-R, Owens G, Ok YS, Park W-K, Lee DB, Kwon S-I (2012) Decline of extractable antibiotics in manure-based composts during composting. Waste Manage 32:110–116

    Article  CAS  Google Scholar 

  77. Nonghyup (2007) The list and application guideline for the production companies of composts and organic fertilizers. Nonghyup, Seoul

    Google Scholar 

  78. Arikan OA, Mulbry W, Rice C (2009) Management of antibiotic residues from agricultural sources: use of composting to reduce chlortetracycline residues in beef manure from treated animals. J Hazard Mater 164:483–489

    Article  CAS  Google Scholar 

  79. Mondini C, Farnasier F, Sinicco T (2004) Enzymatic activity as a parameter for the characterization of the composting process. Soil Biol Biochem 36:1587–1594

    Article  CAS  Google Scholar 

  80. Jelic A, Gros M, Ginebreda A, Cespedes-Sanchez R, Ventura F, Petrovic M, Barcelo D (2011) Occurrence, partition and removal of pharmaceuticals in sewage water and sludge during wastewater treatment. Water Res 45:1165–1176

    Article  CAS  Google Scholar 

  81. Prado N, Ochoa J, Amrane A (2009) Biodegradation by activated sludge and toxicity of tetracycline into a semi-industrial membrane bioreactor. Bioresour Technol 100:3769–3774

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathava Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kumar, M. (2012). Biodegradation of Emerging Organic Contaminants by Composting. In: Vicent, T., Caminal, G., Eljarrat, E., Barceló, D. (eds) Emerging Organic Contaminants in Sludges. The Handbook of Environmental Chemistry, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/698_2012_153

Download citation

Publish with us

Policies and ethics