Skip to main content

Illicit Drugs Along the Ebro River Basin: Occurrence in Surface and Wastewater and Derived Consumption Estimations

  • Chapter
  • First Online:

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 13))

Abstract

The study of illicit drugs and metabolites in the aquatic environment has a double objective: (1) to investigate the environmental concentrations of this group of emerging contaminants in order to assess their potential ecotoxicological risk and (2) to estimate drug abuse by the population at the community level. The present work reports on the occurrence of illicit drugs and metabolites in waste and surface waters collected along the Ebro River basin (NE Spain) and evaluates the contribution of discharged treated wastewaters to the presence of these compounds in river waters. Concentrations of drug residues in influent wastewaters were used to back calculate illicit drug use in the areas served by the investigated wastewater treatment facilities.

Cocaine, benzoylecgonine, ephedrine, and ecstasy were identified as the most ubiquitous and abundant compounds in the area of study. Heroin, 6-acetyl morphine, lysergic compounds, and Δ9-tetrahydrocannabinol (THC) were the compounds less frequently identified in the investigated samples. Overall, removal of illicit drugs and metabolites in the investigated wastewater treatment plants was satisfactory. However, ecstasy, methamphetamine, nor-LSD, and 11-nor-9-carboxy-THC were occasionally found at higher concentrations in effluent than in influent waters. Dilution of discharged treated waters resulted in total levels of illicit drugs and metabolites in surface waters at the low ng/L range. Estimates of illicit drug use pointed out cocaine as the most consumed drug in the area of study, followed by cannabis, amphetamine, heroin, ecstasy, and methamphetamine.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. United Nations Office on Drugs and Crime, UNODC. World drug report 2009. Available at: http://www.unodc.org/documents/wdr/WDR_2009/WDR2009_eng_web.pdf

  2. Petrovic M, López De Alda MJ, Díaz-Cruz S, Postigo C, Radjenovic J, Gros M, Barceló D (2009) Fate and removal of pharmaceuticals and illicit drugs in conventional and MBR wastewater treatment plants and by riverbank filtration. Philos Trans R Soc A 367:3979–4003

    Article  CAS  Google Scholar 

  3. Petrovic M, Radjenovic J, Postigo C, Kuster M, Farre M, López de Alda MJ, Barceló D (2008) Emerging contaminants in waste waters: sources and occurrence. In: Barcelo D, Petrovic M (eds) Handbook of environmental chemistry, vol 5. Water pollution. p 1–35

    Google Scholar 

  4. Richardson SD (2008) Environmental mass spectrometry: emerging contaminants and current issues. Anal Chem 80:4373–4402

    Article  CAS  Google Scholar 

  5. Bartelt-Hunt SL, Snow DD, Damon T, Shockley J, Hoagland K (2009) The occurrence of illicit and therapeutic pharmaceuticals in wastewater effluent and surface waters in Nebraska. Environ Pollut 157:786–791

    Article  CAS  Google Scholar 

  6. Bijlsma L, Sancho JV, Pitarch E, Ibáñez M, Hernández F (2009) Simultaneous ultra-high-pressure liquid chromatography–tandem mass spectrometry determination of amphetamine and amphetamine-like stimulants, cocaine and its metabolites, and a cannabis metabolite in surface water and urban wastewater. J Chromatogr A 1216:3078–3089

    Article  CAS  Google Scholar 

  7. Boleda MR, Galcerán MT, Ventura F (2007) Trace determination of cannabinoids and opiates in wastewater and surface waters by ultra-performance liquid chromatography–tandem mass spectrometry. J Chromatogr A 1175:38–48

    Article  CAS  Google Scholar 

  8. Bones J, Thomas KV, Paull B (2007) Using environmental analytical data to estimate levels of community consumption of illicit drugs and abused pharmaceuticals. J Environ Monit 9:701–707

    Article  CAS  Google Scholar 

  9. Castiglioni S, Zuccato E, Crisci E, Chiabrando C, Fanelli R, Bagnati R (2006) Identification and measurement of illicit drugs and their metabolites in urban wastewater by liquid chromatography–tandem mass spectrometry. Anal Chem 78:8421–8429

    Article  CAS  Google Scholar 

  10. Chiaia AC, Banta-Green C, Field J (2008) Eliminating solid phase extraction with large-volume injection LC/MS/MS: analysis of illicit and legal drugs and human urine indicators in US wastewaters. Environ Sci Technol 42:8841–8848

    Article  CAS  Google Scholar 

  11. Gheorghe A, Van Nuijs A, Pecceu B, Bervoets L, Jorens PG, Blust R, Neels H, Covaci A (2008) Analysis of cocaine and its principal metabolites in waste and surface water using solid-phase extraction and liquid chromatography–ion trap tandem mass spectrometry. Anal Bioanal Chem 391:1309–1319

    Article  CAS  Google Scholar 

  12. González-Mariño I, Quintana JB, Rodríguez I, Rodil R, González-Peñas J, Cela R (2009) Comparison of molecularly imprinted, mixed-mode and hydrophilic balance sorbents performance in the solid-phase extraction of amphetamine drugs from wastewater samples for liquid chromatography–tandem mass spectrometry determination. J Chromatogr A 1216:8435–8441

    Article  Google Scholar 

  13. Huerta-Fontela M, Galcerán MT, Ventura F (2007) Ultraperformance liquid chromatography–tandem mass spectrometry analysis of stimulatory drugs of abuse in wastewater and surface waters. Anal Chem 79:3821–3829

    Article  CAS  Google Scholar 

  14. Hummel D, Löffler D, Fink G, Ternes TA (2006) Simultaneous determination of psychoactive drugs and their metabolites in aqueous matrices by liquid chromatography mass spectrometry. Environ Sci Technol 40:7321–7328

    Article  CAS  Google Scholar 

  15. Jones-Lepp TL, Alvarez DA, Petty JD, Huckins JN (2004) Polar organic chemical integrative sampling and liquid chromatography–electrospray/ion-trap mass spectrometry for assessing selected prescription and illicit drugs in treated sewage effluents. Arch Environ Contam Toxicol 47:427–439

    Article  CAS  Google Scholar 

  16. Kasprzyk-Hordern B, Dinsdale RM, Guwy AJ (2007) Multi-residue method for the determination of basic/neutral pharmaceuticals and illicit drugs in surface water by solid-phase extraction and ultra performance liquid chromatography–positive electrospray ionisation tandem mass spectrometry. J Chromatogr A 1161:132–145

    Article  CAS  Google Scholar 

  17. Kasprzyk-Hordern B, Dinsdale RM, Guwy AJ (2008) Multiresidue methods for the analysis of pharmaceuticals, personal care products and illicit drugs in surface water and wastewater by solid-phase extraction and ultra performance liquid chromatography–electrospray tandem mass spectrometry. Anal Bioanal Chem 391:1293–1308

    Article  CAS  Google Scholar 

  18. Mari F, Politi L, Biggeri A, Accetta G, Trignano C, Di Padua M, Bertol E (2009) Cocaine and heroin in waste water plants: a 1-year study in the city of Florence, Italy. Forensic Sci Int 189:88–92

    Article  CAS  Google Scholar 

  19. Postigo C, López De Alda MJ, Barceló D (2008) Fully automated determination in the low nanogram per liter level of different classes of drugs of abuse in sewage water by on-line solid-phase extraction–liquid chromatography–electrospray-tandem mass spectrometry. Anal Chem 80:3123–3134

    Article  CAS  Google Scholar 

  20. Van Nuijs ALN, Tarcomnicu I, Bervoets L, Blust R, Jorens PG, Neels H, Covaci A (2009) Analysis of drugs of abuse in wastewater by hydrophilic interaction liquid chromatography–tandem mass spectrometry. Anal Bioanal Chem 395:819–828

    Article  Google Scholar 

  21. Zuccato E, Castiglioni S, Bagnati R, Chiabrando C, Grassi P, Fanelli R (2008) Illicit drugs, a novel group of environmental contaminants. Water Res 42:961–968

    Article  CAS  Google Scholar 

  22. Loganathan B, Phillips M, Mowery H, Jones-Lepp TL (2009) Contamination profiles and mass loadings of macrolide antibiotics and illicit drugs from a small urban wastewater treatment plant. Chemosphere 75:70–77

    Article  CAS  Google Scholar 

  23. Banta-Green CJ, Field JA, Chiaia AC, Sudakin DL, Power L, De Montigny L (2009) The spatial epidemiology of cocaine, methamphetamine and 3, 4-methylenedioxymethamphetamine (MDMA) use: a demonstration using a population measure of community drug load derived from municipal wastewater. Addiction 104:1874–1880

    Article  Google Scholar 

  24. Zuccato E, Chiabrando C, Castiglioni S, Calamari D, Bagnati R, Schiarea S, Fanelli R (2005) Cocaine in surface water: a new evidence-based tool to monitor community drug abuse. Environ Health A Global Access Sci Source 4:1–7

    Article  Google Scholar 

  25. Zuccato E, Chiabrando C, Castiglioni S, Bagnati R, Fanelli R (2008) Estimating community drug abuse by wastewater analysis. Environ Health Perspect 116:1027–1032

    Article  CAS  Google Scholar 

  26. Kasprzyk-Hordern B, Dinsdale RM, Guwy AJ (2008) The occurrence of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs in surface water in South Wales, UK. Water Res 42:3498–3518

    Article  CAS  Google Scholar 

  27. Kasprzyk-Hordern B, Dinsdale RM, Guwy AJ (2009) The removal of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters. Water Res 43:363–380

    Article  CAS  Google Scholar 

  28. Kasprzyk-Hordern B, Dinsdale RM, Guwy AJ (2009) Illicit drugs and pharmaceuticals in the environment – forensic applications of environmental data. Part 1: Estimation of the usage of drugs in local communities. Environ Pollut 157:1773–1777

    Article  CAS  Google Scholar 

  29. Van Nuijs ALN, Pecceu B, Theunis L, Dubois N, Charlier C, Jorens PG, Bervoets L, Blust R, Neels H, Covaci A (2009) Spatial and temporal variations in the occurrence of cocaine and benzoylecgonine in waste- and surface water from Belgium and removal during wastewater treatment. Water Res 43:1341–1349

    Article  Google Scholar 

  30. Van Nuijs ALN, Pecceu B, Theunis L, Dubois N, Charlier C, Jorens PG, Bervoets L, Blust R, Neels H, Covaci A (2009) Cocaine and metabolites in waste and surface water across Belgium. Environ Pollut 157:123–129

    Article  Google Scholar 

  31. Boleda MR, Galcerán MT, Ventura F (2009) Monitoring of opiates, cannabinoids and their metabolites in wastewater, surface water and finished water in Catalonia, Spain. Water Res 43:1126–1136

    Article  CAS  Google Scholar 

  32. Huerta-Fontela M, Galcerán MT, Martin-Alonso J, Ventura F (2008) Occurrence of psychoactive stimulatory drugs in wastewaters in north-eastern Spain. Sci Total Environ 397:31–40

    Article  CAS  Google Scholar 

  33. Huerta-Fontela M, Galcerán MT, Ventura F (2008) Stimulatory drugs of abuse in surface waters and their removal in a conventional drinking water treatment plant. Environ Sci Technol 42:6809–6816

    Article  CAS  Google Scholar 

  34. Postigo C, López de Alda MJ, Barceló D (2010) Drugs of abuse and their metabolites in the Ebro River basin: occurrence in sewage and surface water, sewage treatment plants removal efficiency, and collective drug usage estimation. Environ Int 36:75–84

    Article  CAS  Google Scholar 

  35. Postigo C, López de Alda MJ, Barceló D (2008) Analysis of drugs of abuse and their human metabolic byproducts in water by LC–MS/MS: a non-intrusive tool for drug abuse estimation at the community level. Trends Anal Chem 27:1053–1069

    Article  CAS  Google Scholar 

  36. Van Nuijs ALN, Pecceu B, Theunis L, Dubois N, Charlier C, Jorens PG, Bervoets L, Blust R, Meulemans H, Neels H, Covaci A (2009) Can cocaine use be evaluated through analysis of wastewater? A nation-wide approach conducted in Belgium. Addiction 104:734–741

    Article  Google Scholar 

  37. Van Nuijs ALN, Castiglioni S, Tarcomnicu I, Postigo C, López De Alda MJ, Neels H, Zuccato E, Barceló D, Covaci A (in press) Illicit drug consumption estimations derived from wastewater analysis: a critical review. Sci Total Environ

    Google Scholar 

  38. 2002/657/EC, Commission Decision of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results

    Google Scholar 

  39. SAIHEbro, Automatic hidrologic information system of the Ebro River basin. Available at: http://195.55.247.237/saihebro/index.php?url=/principal

  40. Baselt RC (2004) Disposition of toxic drugs and chemicals in man, 7th edn. Biomedical Publications, Foster City, p 1254

    Google Scholar 

  41. Canezin J, Cailleux A, Turcant A, Le Bouil A, Harry P, Allain P (2001) Determination of LSD and its metabolites in human biological fluids by high-performance liquid chromatography with electrospray tandem mass spectrometry. J Chromatogr B Biomed Sci Appl 765:15–27

    Article  CAS  Google Scholar 

  42. Nelson CC, Foltz RL (1992) Chromatographic and mass spectrometric methods for determination of lysergic acid diethylamide (LSD) and metabolites in body fluids. J Chromatogr Biomed Appl 580:97–109

    Article  CAS  Google Scholar 

  43. Daughton CG (2001) Illicit drugs in municipal sewage in Pharmaceuticals and personal care products in the environment: scientific and regulatory issues. In: Daughton CG, Jones-Lepp TL (eds) ACS symposium series 791. The American Chemical Society, Washington, DC, p 116–139

    Google Scholar 

  44. INEbase, National Statistics Institute on-line database. http://www.ine.es/

  45. Zuccaro P, Palmi I, Pacifici R, Da Cas R, Raschetti R (2006) L'utilizzo dei farmaci enalgesici nella terapia del dolore. La Rivista Italiana di Cure Palliative 1:41–45

    Google Scholar 

  46. Spanish Drug Observatory, OED (2007) Informe 2007 del observartorio español sobre drogas: Situación y tendencias de los problemas de drogas en España. Available at: http://www.pnsd.msc.es/Categoria2/publica/pdf/oed-2007.pdf

Download references

Acknowledgments

This work has been supported by the EU Project MODELKEY [GOCE 511237] and by the Spanish Ministry of Science and Innovation through the projects CEMAGUA (CGL2007-64551/HID) and SCARCE (Consolider-Ingenio 2010 CSD2009-00065). It reflects the authors’ views only. The EU is not liable for any use that may be made of the information contained in it. Cristina Postigo acknowledges the European Social Fund and AGAUR (Generalitat de Catalunya, Spain) for their economical support through the FI predoctoral grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miren López de Alda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Postigo, C., de Alda, M.L., Barceló, D. (2010). Illicit Drugs Along the Ebro River Basin: Occurrence in Surface and Wastewater and Derived Consumption Estimations. In: Barceló, D., Petrovic, M. (eds) The Ebro River Basin. The Handbook of Environmental Chemistry(), vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/698_2010_79

Download citation

Publish with us

Policies and ethics