Skip to main content

Factors Affecting the Complete Mineralization of Azo Dyes

  • Chapter
  • First Online:
Book cover Biodegradation of Azo Dyes

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 9))

Abstract

Azo dyes are complex compounds generally recalcitrant to biodegradation. From their catabolism several toxic and carcinogenic compounds are formed, in particular when their decolorization is reached through a reductive cleavage of the azo groups. For this reason the full degradation of the dyes and the intermediates is necessary to prevent risks for human health. Their mineralization can usually be reached with aerobic treatments or with two-steps anaerobic/aerobic treatments. Several environmental and physiological factors can influence the microbial activity and consequently the efficacy and effectiveness of the complete biodegradation processes. The roles of oxygen, bioavailability, adsorption, nutrients and cometabolic induction, dye concentration, pH, temperature, and salinity are treated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

FMN:

Flavin mononucleotide

LiP:

Lignin peroxidases

MnP:

Manganese peroxidases

NADH:

Nicotinamide adenine dinucleotide

NADPH:

Nicotinamide adenine dinucleotide phosphate

TNT:

Trinitrotoluene

VP:

Versatile peroxidase

References

  1. Chen H (2006) Recent advances in azo dye degrading enzyme research. Curr Protein Pept Sci 7(2):101–111

    Article  CAS  Google Scholar 

  2. Rai HS, Bhattacharyya MS, Singh J, Bansal TK, Vats P, Banerjee UC (2005) Removal of dyes from the effluent of textile and dyestuff manufacturing industry: a review of emerging techniques with reference to biological treatment. Crit Rev Environ Sci Technol 35:219–238

    Article  CAS  Google Scholar 

  3. Gottlieb A, Shaw C, Smith A, Wheatley A, Forsythe S (2003) The toxicity of textile reactive azo dyes after hydrolysis and decolorisation. J Biotechnol 101:49

    Article  CAS  Google Scholar 

  4. Stolz A (2001) Basic and applied aspects in the microbial degradation of azo dyes. Appl Microbiol Biotechnol 56:69–80

    Article  CAS  Google Scholar 

  5. Joe MH, Lim SY, Kim DH, Lee IS (2008) Decolorization of reactive dyes by Clostridium bifermentans SL186 isolated from contaminated soil. World J Microbiol Biotechnol 24:2221–2226

    Article  CAS  Google Scholar 

  6. Adamson RH, Dixon RL, Francis FL, Rall DP (1965) Comparative biochemistry of drug metabolism by azo and nitro reductase. Proc Natl Acad Sci USA 54:1386–1391

    Article  CAS  Google Scholar 

  7. Bragger JL, Lloyd AW, Soozandehfar SH, Bloomfield SF, Marriott C, Martin GP (1997) Investigations into the azo reducing activity of a common colonic microorganisms. Int J Pharmaceut 157:61–71

    Article  CAS  Google Scholar 

  8. Dubin P, Wright KL (1975) Reduction of azo food dyes in cultures of Proteus vulgaris. Xenobiotica 5:563–571

    Article  CAS  Google Scholar 

  9. Rafii F, Franklin W, Cerniglia CE (1990) Azoreductase activity of anaerobic bacteria isolated from human intestinal microflora. Appl Environ Microbiol 56:2146–2151

    CAS  Google Scholar 

  10. Scheline RR, Nygaard RT, Longberg B (1970) Enzymatic reduction of azo dye, Acid Yellow, by extracts of Streptococcus faecalis, isolated from rat intestine. Food Cosmet Toxicol 8:55–58

    Article  CAS  Google Scholar 

  11. Wuhrmann K, Mechsner K, Kappeler T (1980) Investigation on rate-determining factors in the microbial reduction of azo dyes. Eur J Appl Microbiol 9:325–338

    Article  CAS  Google Scholar 

  12. Xu M, Guo J, Sun G (2007) Biodegradation of textile azo dye by Shewanella decolorationis S12 under microaerophilic conditions. Appl Microbiol Biotechnol 76:719–726

    Article  CAS  Google Scholar 

  13. Russ R, Rau J, Stolz A (2000) The function of cytoplasmic flavin reductases in the bacterial reduction of azo dyes. Appl Environ Microbiol 66:1429–1434

    Article  CAS  Google Scholar 

  14. Kudlich M, Keck A, Klein J, Stolz A (1997) Localization of the enzyme system involved in the anaerobic degradation of azo dyes by Sphyngomonas sp. BN6 and effect of artificial redox mediators on the rate of azo reduction. Appl Environ Microbiol 63:3691–3694

    CAS  Google Scholar 

  15. Rafii F, Moore JD, Ruseler-van Embden JGH, Cerniglia CE (1995) Bacterial reduction of azo dyes used in foods, drugs and cosmetics. Microecol Ther 25:147–156

    CAS  Google Scholar 

  16. Zimmermann T, Kulla HG, Leisinger T (1982) Properties of purified Orange II azoreductase, the enzyme initiating azo dye degradation by Pseudomonas KF46. Eur J Biochem 129:197–203

    Article  CAS  Google Scholar 

  17. Zimmermann T, Gasser F, Kulla HG, Leisinger T (1984) Comparison of two azoreductases acquarid during adaptation to growth on azo dyes. Arch Microbiol 138:37–43

    Article  CAS  Google Scholar 

  18. Moutaouakkil A, Zeroual Y, Zzayri FZ, Talbi M, Lee K, Blaghen M (2003) Purification and partial characterization of azoreductase from Enterobacter agglomerans. Arch Biochem Biophys 413:139–146

    Article  CAS  Google Scholar 

  19. Chen H, Wang RF, Cerniglia CE (2004) Molecular cloning, overexpression, purification, and characterization of an aerobic FMN-dependent azoreductase from Enterococcus faecalis. Protein Expr Purif 34:302–310

    Article  CAS  Google Scholar 

  20. Chen H, Hopper S, Cerniglia CE (2005) Biochemical and molecular characterization of an azoreductase from Staphylococcus aureus, a tetrameric NADPH-dependent flavoprotein. Microbiology 151:1433–1441

    Article  CAS  Google Scholar 

  21. Nakanishi M, Yatome C, Ishida N, Kitade Y (2001) Putative ACP phosphodiesterase gene (acpD) encodes an azoreductase. J Biol Chem 276:46394–46399

    Article  CAS  Google Scholar 

  22. Suzuki T, Timofei S, Kurunczi L, Dietze U, Schuurmann G (2001) Correlation of aerobic biodegradability of sulfonated azo dyes with the chemical structure. Chemosphere 45:1–9

    Article  CAS  Google Scholar 

  23. Yan B, Zhou J, Wang J, Du C, Hou H, Song Z, Bao Y (2004) Expression and characteristics of the gene encoding azoreductase from Rhodobacter sphaeroides AS1.1737. FEMS Microbiol Lett 236:129–136

    Article  CAS  Google Scholar 

  24. Liger D, Graille M, Zhou CZ, Leulliot N, Quevillon-Cheruel S, Blondeau K, Janin J, van Tilbeurgh H (2004) Crystal structure and functional characterization of yeast YLR011wp, an enzyme with NAD(P)H-FMN and ferric iron reductase activities. J Biol Chem 279:34890–34897

    Article  CAS  Google Scholar 

  25. Ramalho PA, Cardoso MH, Cavaco-Paulo A, Ramalho MT (2004) Characterization of azo reduction activity in a novel ascomycete yeast strain. Appl Environ Microbiol 70:2279–2288

    Article  CAS  Google Scholar 

  26. Carvalho MC, Pereira C, Goncalves IC, Pinheiro HM, Santos AR, Lopes A, Ferra MI (2008) Assessment of the biodegradability of a monosulfonated azo dye and aromatic amines. Int Biodeterior Biodegradation 62(2):96–103

    Article  CAS  Google Scholar 

  27. Pearce C, Guthrie JT, Lloyd JR (2008) Reduction of pigment dispersions by Shewanella strain J18 143. Dyes Pigm 76(3):696–705

    Article  CAS  Google Scholar 

  28. Mechsner K, Wuhrmann K (1982) Cell permeability as a rate limiting factor in the microbial reduction of sulfonated azo dyes. Eur J Appl Microbiol Biotechnol 15(2):123–126

    Article  CAS  Google Scholar 

  29. Chung K-T, Stevens SE (1993) Degradation of azo dyes by environmental microorganisms and helminths. Environ Toxicol Chem 12:2121–2132

    CAS  Google Scholar 

  30. Brown MA, De Vito SC (1993) Predicting azo dye toxicity. Crit Rev Environ Sci Technol 23:249–324

    Article  CAS  Google Scholar 

  31. Zbaida S (1995) The mechanisms of microsomal azoreduction: predictions based on electronic aspects of structure-activity relationship. Drug metab Rev 27:497–516

    Article  CAS  Google Scholar 

  32. Coughlin MF, Kinkle BK, Tepper A, Bishop PL (1997) Characterization of aerobic azo dye-degrading bacteria and their activity in biofilms. Water Sci Tech 36:215–220

    CAS  Google Scholar 

  33. Coughlin MF, Kinkle BK, Bishop PL (1999) Degradation of azo dyes containing aminonaphthol by Sphingomonas sp strain 1CX. Ind Microbiol Biotechnol 23:341–346

    Article  CAS  Google Scholar 

  34. Dykes GA, Timm RG, von Holy A (1994) Azoreductase activity in bacteria associated with the greening of instant chocolate puddings. Appl Environ Microbiol 60:3027–3029

    CAS  Google Scholar 

  35. Jiang H, Bishop PL (1994) Aerobic biodegradation of azo dyes in biofilms. Water Sci Tech 29:525–530

    CAS  Google Scholar 

  36. Sugiura W, Miyashita T, Yokoyama T, Arai M (1999) Isolation of azo-dye degrading microorganisms and their application to white discharge printing of fabric. J Biosci Bioeng 88:577–581

    Article  CAS  Google Scholar 

  37. Goszczynski S, Paszczynski A, Pasti-Grisbi MB, Crowford RL, Crawford DL (1994) New pathway for degradation of sulfonated azo dyes by microbial peroxidases of Phanerochaete chrysosporium and Streptomyces chromofuscus. J Bacteriol 176:1339–1347

    CAS  Google Scholar 

  38. Munari FM, Gaio TA, Calloni R, Dillon AJP (2008) Decolorization of textile dyes by enzymatic extract and submerged cultures of Pleurotus sajor-caju. World J Microbiol Biotechnol 24:1383–1392

    Article  CAS  Google Scholar 

  39. Southern TG (1995) Technical solutions to the colour problem: a critical review. In: Cooper P (ed) Colour in dyehouse effluent. Society of Dyes and Colourists, Bradford, p 75

    Google Scholar 

  40. Bras R, Ferra IA, Pinheiro HM, Goncalves IC (2001) Batch tests for assessing decolorization of azo dyes by methanogenic and mixed cultures. J Biotechnol 89:155–162

    Article  CAS  Google Scholar 

  41. El Ahwany AMD (2008) Decolorization of Fast red by metabolizing cells of Oenococcus oeni ML34. World J Microbiol Biotechnol 24:1521–1527

    Article  CAS  Google Scholar 

  42. Wong PK, Yuen PY (1996) Decolorization and biodegradation of methyl red by Klebsiella pneumoniae RS-13. Water Res 30:1736–1744

    Article  CAS  Google Scholar 

  43. Steffan S, Bardi L, Marzona M (2005) Azo dyes biodegradation by microbial cultures immobilized in alginate beads. Environ Int Special Issue: Recent Adv Bioremediat 31(2):201–205

    CAS  Google Scholar 

  44. Ozdemir G, Pazarbasi B, Kocyigit A, Omeroglu EE, Yasa I, Karaboz I (2008) Decolorization of Acid Black 210 by Vibrio harveyi TEMS1, a newly isolated bioluminescent bacterium from Izmir Bay, Turkey. World J Microbiol Biotechnol 24:1375–1381

    Article  Google Scholar 

  45. Khalid A, Arshad M, Crowley DE (2008) Accelerated decolorization of structurally different azo dyes by newly isolated bacterial strains. Appl Microbiol Biotechnol 78:361–369

    Article  CAS  Google Scholar 

  46. Maximo C, Costa-Ferreira MC (2004) Decolourisation of reactive textile dyes by Irpex lacteus and lignin modifying enzymes. Process Biochem 39:1475–1479

    Article  CAS  Google Scholar 

  47. Tatarko M, Bumpus JA (1998) Biodegradation of Congo Red by Phanerochaete chrysosporium. Water Res 32:1713–1717

    Article  CAS  Google Scholar 

  48. Wang Y, Yu J (1998) Adsorption and degradation of synthetic dyes on the mycelium of Trametes versicolor. Water Sci Technol 38:233–238

    CAS  Google Scholar 

  49. Yesiladalil SK, Pekin GI, Bermek H, Arslan-Alaton I, Orhon D, Tamerler C (2006) Bioremediation of textile azo dyes by Trichophyton rubrum LSK-27. World J Microbiol Biotechnol 22:1027–1031

    Article  CAS  Google Scholar 

  50. Mohan SV, Ramanajah SV, Sarma PN (2008) Biosorption of direct azo dye from aqueous phase onto Spirogyra sp. IO2: evaluation of kinetics and mechanistic aspects. Biochem Eng J 38(1):61–69

    Article  CAS  Google Scholar 

  51. Kapdan KI, Kargi F, Mullan G, Marchant R (2000) Decolorization of textile dyestuff by a mixed bacterial consortium. Biotechnol Lett 22:1179–1181

    Article  CAS  Google Scholar 

  52. Pearce CI, Lioyd JR, Guthrie JT (2003) The removal of colour from textile wastewater using whole bacterial cells: a review. Dye Pigm 58:179–196

    Article  CAS  Google Scholar 

  53. Yatman HC, Akyol A, Bayramoglu M (2004) Kinetics of photocatalytic decolorization of an azo reactive dye in aqueous ZnO suspensions. Ind Eng Chem Res 43:6035–6039

    Article  CAS  Google Scholar 

  54. Khalid A, Arshad M, Crowley DE (2008) Decolorization of azo dyes by Shewanella sp. under saline conditions. Appl Microbiol Biotechnol 79:1053–1059

    Article  CAS  Google Scholar 

  55. Mohanty S, Dafale N, Rao NN (2006) Microbial decolorization of reactive Black-5 in a two-stage anaerobic-aerobic reactor using acclimatized activated textile sludge. Biodegradation 17:403–413

    Article  CAS  Google Scholar 

  56. Yang Q, Tao L, Yang M, Zhang H (2008) Effects of glucose on the decolorization of Reactive Black 5 by yeast isolates. J Environ Sci 20(1):105–108

    Article  Google Scholar 

  57. Kim SY, An JY, Kim BW (2008) The effects of reductant and carbon source on the microbial decolorization of azo dyes in an anaerobic sludge process. Dye Pigm 76(1):256–263

    Article  CAS  Google Scholar 

  58. Kulla HG (1981) Aerobic bacterial degradation of azo dyes. In: Leisinger T, Cook AM, Nüesch J, Hütter R (eds) Microbial degradation of xenobiotics and recalcitrant compounds. Academic, London, pp 387–399

    Google Scholar 

  59. Kulla HG, Krieg R, Zimmermann T, Leisinger T (1984) Experimental evolution of azo dye-degrading bacteria. In: Klug MJ, Reddy CA (eds) Current perspectives in microbial ecology. American Society of Microbiology, Washington, DC, pp 663–667

    Google Scholar 

  60. Kulla HG, Klausener F, Meyer U, Lüdeke B, Leisinger T (1983) Interference of aromatic sulfo groups in the microbial degradation of the azo dyes Orange I and Orange II. Arch Microbiol 135:1–7

    Article  CAS  Google Scholar 

  61. Blümel S, Contzen M, Lutz M, Stolz A, Knackmuss H-J (1998) Isolation of a bacterial strain with the ability to utilize the sulfonated azo compound 4-carboxy-4′-sulfoazobenzene as sole source of carbon and energy. Appl Environ Microbiol 64:2315–2317

    Google Scholar 

  62. Feigel BJ, Knackmuss H-J (1993) Syntrophic interactions during degradation of 4-aminobenzenesulfonic acid by a two species bacterial culture. Arch Microbiol 159:124–130

    Article  CAS  Google Scholar 

  63. Carliell CM, Barcaly SJ, Shaw C, Wheatly AD, Buckley CA (1998) The effect of salts used in textile dyeing on microbial decolorization of a reactive azo dye. Environ Technol 19:1133–1137

    Article  CAS  Google Scholar 

  64. Lourenco ND, Novais JM, Pinheiro HM (2000) Reactive textile dye colour removal in a sequencing batch reactor. Water Sci Technol 42:321–328

    CAS  Google Scholar 

  65. Chang JS, Chou C, Lin YC, Lin PJ, Ho JY, Hu TL (2001) Kinetics characteristics of bacterial azo dye decolorization by Pseudomonas luteola. Water Res 35:2841–2850

    Article  CAS  Google Scholar 

  66. Hu TL (1996) Removal of reactive dyes from aqueous solutions by different bacterial genera. Water Sci Technol 34:89–95

    CAS  Google Scholar 

  67. Junnarkar N, Murty JD, Bhatt NS, Madamwar D (2006) Decolorization of diazo dye Direct Red 81 by a novel bacterial consortium. World J Microbiol Biotechnol 22:163–168

    Article  CAS  Google Scholar 

  68. Susla M, Svobodova K (2008) Effect of various synthetic dyes on the production of manganese-dependent peroxidase isoenzymes by immobilized Irpex lacteus. World J Microbiol Biotechnol 24:225–230

    Article  CAS  Google Scholar 

  69. Perez J, De La Rubia T, Ben Hamman O, And Martinez J (1998) Phanerochaete flavido-alba laccase induction and modification of manganese peroxidase isoenzyme pattern in decolorized olive oil mill wastewaters. Appl Environ Microbiol 64(7):2726–2729

    CAS  Google Scholar 

  70. Camarero S, Ibarra D, Martinez MJ, Martinez AT (2005) Lignin-derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes. Appl Environ Microbiol 71(4):1775–1784

    Article  CAS  Google Scholar 

  71. Gettemy JM, Ma B, Alic M, Gold MH (1998) Reverse transcription PCR analysis of the regulation on the manganese peroxidases gene family. Appl Environ Microbiol 64(2):569–574

    CAS  Google Scholar 

  72. Moreira MH, Feijoo G, Palma C, Lema JM (1997) Continuous production of manganese peroxidase by Phanerochaete chrysosporium immobilized on polyurethane foam in pulsed packed bed bioreactor. Biotechnol Bioeng 56:130–137

    Article  CAS  Google Scholar 

  73. Rogalski J, Szczodrak J, Janusz G (2006) Manganese peroxidases production in submerged cultures by free and immobilized mycelia of Nematoloma frowardii. Bioresour Technol 97:469–476

    Article  CAS  Google Scholar 

  74. Martinez AT (2002) Molecular biology and structure-function of lignin-degrading heme peroxidases. Enzyme Microb Technol 30:425–444

    Article  CAS  Google Scholar 

  75. Adedayo O, Javadpour S, Taylor C, Anderson WA, Moo-Young M (2004) Decolourization and detoxification of Methyl Red by aerobic bacteria from a wastewater treatment plant. World J Microbiol Biotechnol 20:545–550

    Article  CAS  Google Scholar 

  76. Angelova B, Avramova T, Stefanova L, Mutafov S (2008) Temperature effect of bacterial azo bond reduction kinetics: an Arrhenius plot analysis. Biodegradation 19(3):387–393

    Article  Google Scholar 

  77. Chang J, Kuo T (2000) Kinetics of bacterial decolorization of azo dye with Escherichia coli NO3. Bioresour Technol 75:107–111

    Article  CAS  Google Scholar 

  78. Mali PL, Mahajan MM, Patil DP, Kulkarni MV (2000) Biodecolorization of members of triphenylmethanes and azo groups of dyes. J Sci Ind Res India 59:221–224

    CAS  Google Scholar 

  79. Asad S, Amoozegar MA, Pourbabaee AA, Sarbolouki MN, Dastgheib SMM (2007) Decolorization of textile azo dyes by newly isolated halophilic and halotolerant bacteria. Bioresour Technol 98:2082–2088

    Article  CAS  Google Scholar 

  80. Uddin SM, Zhou J, Qu Y, Wang P, Zhao LH (2007) Biodecolorization of azo dye Acid Red B under high salinity condition. Bull Environ Contam Toxicol 79:440–444

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Bardi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bardi, L., Marzona, M. (2010). Factors Affecting the Complete Mineralization of Azo Dyes. In: Atacag Erkurt, H. (eds) Biodegradation of Azo Dyes. The Handbook of Environmental Chemistry, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/698_2009_50

Download citation

Publish with us

Policies and ethics