Skip to main content

Decolorization of Azo Dyes by White Rot Fungi

  • Chapter
  • First Online:
Book cover Biodegradation of Azo Dyes

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 9))

Abstract

White rot fungi (WRF) produce various isoforms of extracellular peroxidases (lignin peroxidase-LiP and manganese peroxidase-MnP) and phenoloxidases (laccases), which are involved in the degradation of lignin in their natural lignocellulosic substrates. This ligninolytic system of WRF is directly involved in the degradation of various xenobiotic compounds and dyes. Liquid fermentation or solid-state fermentation techniques can be used for enzyme production. Crude enzymes or purified enzymes of WRF can be used for decolorization of azo dyes. Repeated-batch decolorization technique is a new approach that can be used for decolorization. There are different procedures to determine the enzyme(s) responsible for decolorization. Single step ıisolation and ıidentification procedure (SSIIP) is a new and simple method that can be used for detection of the enzyme responsible for biodegradation of azo dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

LiP:

Lignin peroxidase

LME:

Lignin modifying enzyme

MnP:

Manganese peroxidase

PAGE:

Polyacrylamide gel electrophoresis

SDS-PAGE:

Sodium dodecyl sulphate polyacrylamide gel electrophoresis

SSIIP:

Single step isolation and identification procedure

WRF:

White rot fungi

References

  1. Chung KT, Stevens SE (1993) Decolourisation of azo dyes by environmental microorganisms and helminthes. Environ Toxicol Chem 12:2121–2132

    CAS  Google Scholar 

  2. Spadaro JT, Gold MH, Renganadhan V (1992) Degradation of azo dyes by the lignin-degrading fungus Phanerochaete crysosporium. Appl Environ Microbiol 58:2397–2401

    CAS  Google Scholar 

  3. Hao OJ, Kim H, Chiang PC (2000) Decolourisation of wastewater. Crit Rev Environ Sci Technol 30:449–505

    Article  CAS  Google Scholar 

  4. Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77:247–255

    Article  CAS  Google Scholar 

  5. Churchley JH, Greaves AJ, Hutchings MG, James AE, Phillips DAS (2000) The development of a laboratory method for quantifying the bioelimination of anionic, water-soluble dyes by a biomass. Water Res 34:1673–1679

    Article  CAS  Google Scholar 

  6. Moreira MT, Feijoo G, Sierra-Alvarez R, Lema J, Field JA (1997) Biobleaching of oxygen delignified kraft pulp by several white rot fungal strains. J Biotechnol 53:237–251

    Article  CAS  Google Scholar 

  7. Razo-Flores E, Luijten M, Donlon B, Lettinga G, Field J (1997) Biodegradation of selected azo dyes under methanogenic conditions. Water Sci Technol 36:65–72

    CAS  Google Scholar 

  8. Kulla HG (1981) Aerobic bacterial decolourisation of azo dyes. FEMS Symp 12:387–399

    CAS  Google Scholar 

  9. Becker HG, Sinitsyn AP (1993) Mn-peroxidase from Pleurotus ostreatus: the action on the lignin. Biotechnol Lett 15:289–294

    Article  CAS  Google Scholar 

  10. Hatakka A (1994) Lignin-modifying enzymes from selected white-rot fungi: production and role in lignin degradation. FEMS Microbiol Rev 13:125–135

    Article  CAS  Google Scholar 

  11. Pointing SB (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57:20–33

    Article  CAS  Google Scholar 

  12. Scheibner K, Hofrichter M, Fritsche W (1997) Mineralization of 2-amino-4, 6-dinitrotoluene by manganese peroxidase of the white-rot fungus Nematoloma frowardii. Biotechnol Lett 19:835–839

    Article  CAS  Google Scholar 

  13. Boer CG, Obici L, de Souza CGM, Peralta RM (2004) Decolorization of synthetic dyes by solid state cultures of Lentinula (Lentinus) edodes producing manganese peroxidase as the main ligninolytic enzyme. Bioresour Technol 94:107–112

    Article  CAS  Google Scholar 

  14. Chagas EP, Durrant LR (2001) Decolorization of azo dyes by Phanerochaete chrysosporium and Pleurotus sajorcaju. Enzyme Microb Technol 29(8–9):473–477

    Article  CAS  Google Scholar 

  15. Eichlerova I, Homolka L, Lisa L, Nerud F (2005) Orange G and Remazol Brilliant Blue R decolorization by white rot fungi Dichomitus squalens Ischnoderma resinosum and Pleurotus calyptratus. Chemosphere 60:398–404

    Article  CAS  Google Scholar 

  16. Erkurt EA, Unyayar A, Kumbur H (2007) Decolorization of synthetic dyes by white rot fungi, involving laccase enzyme in the process. Process Biochem 42:1429–1435

    Article  CAS  Google Scholar 

  17. Murugesan K, Dhamija A, Nam IH, Kim YM, Chang YS (2007) Decolourization of reactive black 5 by laccase: optimization by response surface methodology. Dyes Pigm 75:176–184

    Article  CAS  Google Scholar 

  18. Unyayar A, Mazmanci MA, Atacag H, Erkurt EA, Coral GA (2005) Drimaren Blue X3LR dye decolorizing enzyme from Funalia trogii: one step isolation and identification. Enzyme Microb Technol 36:10–16

    Article  CAS  Google Scholar 

  19. Dec J, Bollag JM (1990) Detoxification of substituted phenols by oxidoreductive enzymes through polymerization reactions. Arch Environ Contam Toxicol 19:543–550

    Article  CAS  Google Scholar 

  20. Duran N, Esposito E (2000) Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review. Appl Catal B Environ 28:83–99

    Article  CAS  Google Scholar 

  21. Gianfreda L, Sannino F, Filazzola MT, Leonowicz A (1998) Catalytic behavior and detoxifying ability of a laccase from the fungal strain Cerrena unicolor. J Mol Catal B Enzym 4:13–23

    Article  CAS  Google Scholar 

  22. Unyayar A, Demirbilek M, Turkoglu M, Celik A, Mazmancı MA, Erkurt EA, Ünyayar S, Cekic Ö, Atacag H (2006) Evaluation of cytotoxic and mutagenic effects of Coriolus versicolor and Funalia trogii extracts on mammalian cells. Drug Chem Toxicol 1:69–83

    Article  CAS  Google Scholar 

  23. Van Deurzen MPJ, Seelbach K, van Rantwijk F, Kragl U, Sheldon RA (1997) Chloroperoxidase: use of a hydrogen peroxide-stat for controlling reactions and improving enzyme performance. Biocatal Biotransformation 15:1–16

    Article  Google Scholar 

  24. Wesenberg D, Kyriakides I, Agathos N (2003) White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol Adv 22:161–187

    Article  CAS  Google Scholar 

  25. Kariminiaae-Hamedaani HR, Sakurai A, Sakakibara M (2007) Decolorization of synthetic dyes by a new manganese peroxidase-producing white rot fungus. Dyes Pigm 72:157–162

    Article  CAS  Google Scholar 

  26. Tien M, Kirk TK (1983) Lignin-degrading enzyme from the Hymenomycete Phanerochaete chrysosporium Burds. Science 221:661–663

    Article  CAS  Google Scholar 

  27. Kersten PJ, Tien M, Kalyanaraman B, Kirk TK (1985) The ligninase from Phanerochaete chrysosporium generates cation radicals from methoxybenzenes. J Biol Chem 260:2609–2612

    CAS  Google Scholar 

  28. Umezawa T, Higuchi T (1987) Mechanism of aromatic ring cleavage of h-O-4 lignin substructure models by lignin proxidase. FEBS Lett 218:255–260

    Article  CAS  Google Scholar 

  29. Call HP, Mucke I (1997) Minireview: history, overview and applications of mediated ligninolytic systems, especially laccase-mediator-systems (Lignozym-Process). J Biotechnol 53:163–202

    Article  CAS  Google Scholar 

  30. Reinhammar B (1984) Laccase. In: Lontie R (ed) Copper proteins and copper enzymes, vol 3. CRC, Boca Raton, pp 1–36

    Google Scholar 

  31. Thurston CF (1994) The structure and function of fungal laccase. Microbiology 140:19–26

    Article  CAS  Google Scholar 

  32. Levin L, Forchiassin F (2001) Ligninolytic enzymes of the white rot basidiomycete Trametes trogii. Acta Biotechnol 21:179–186

    Article  CAS  Google Scholar 

  33. Birhanli E, Yesilada O (2006) Increased production of laccase by pellets of Funalia trogii ATCC 200800 and Trametes versicolor ATCC 200801 in repeated-batch mode. Enzyme Microb Technol 39:1286–1293

    Article  CAS  Google Scholar 

  34. Yesilada O, Asma D, Cing S (2003) Decolourization of textile dyes by fungal pellets. Process Biochem 38:933–938

    Article  CAS  Google Scholar 

  35. Pickard MA, Vandertol H, Roman R, Vanzquez-Duhalt R (1999) High production of ligninolytic enzymes from white rot fungi in ceral bran liquid medium. Can J Microbiol 45:627–631

    Article  CAS  Google Scholar 

  36. Nam IH, Kim YM, Chang YS (2007) Decolorization of reactive dyes by a thermostable laccase produced by Ganoderma lucidum in solid state culture. Enzyme Microb Technol 40:1662–1672

    Article  CAS  Google Scholar 

  37. Pandey A, Selvakumar P, Soccol CR, Nigam P (1999) Solid-State fermentation for the production of industrial enzymes. Curr Sci 77:149–162

    CAS  Google Scholar 

  38. Robinson T, Chandran B, Nigam P (2002) Effect of pre-treatments of three waste residues, wheat straw, corncobs and barley husks on dye adsorption. Bioresour Technol 85:119–124

    Article  CAS  Google Scholar 

  39. Zilly A, de Souza CGM, Barbosa-Tessmann IP, Peralta RM (2002) Decolourisation of industrial dyes by a Brazilian strain of Pleurotus pulmonarius producing laccase as the sole phenol-oxidizing enzyme. Folia Microbiol 47:315–319

    Article  Google Scholar 

  40. Lorenzo MD, Moldes D, Rodriguez Couto S, Sanroman A (2002) Improving laccase production by employing different lignocellulosic wastes in submerged cultures of Trametes versicolor. Bioresour Technol 82:109–113

    Article  CAS  Google Scholar 

  41. Guerra G, Domínguez O, Ramos-Leal M, Manzano AM, Sanchez MI, Hernandez I, Palacios J, Arguelles J (2008) Production of laccase and manganese peroxidase by white-rot fungi from sugarcane bagasse in solid bed: use for dyes decolourisation. Sugar Tech 10(3):260–264

    Article  CAS  Google Scholar 

  42. Forss J, Welander U (2009) Decolourization of reactive azo dyes with microorganisms growing on soft wood chips. Int Biodeterior Biodegradation 63:752–758

    Article  CAS  Google Scholar 

  43. Murugesan K, Nam IH, Kim YM, Chang YS (2007) Decolorization of reactive dyes by a thermostable laccase produced by Ganoderma lucidum in solid state culture. Enzyme Microb Technol 40:1662–1672

    Article  CAS  Google Scholar 

  44. Jiang-Ping L, Wei L, Li-Ming X, Pei-Lin C (2001) Production of laccase by Coriolus versicolor and its application in decolorization of dyestuffs. I. Production of laccase by batch and repeated-batch processes. J Environ Sci 15:1–4

    Google Scholar 

  45. Soares GMB, Amorim MTP, Hrdina R, Costa-Ferreira M (2002) Studies on the biotransformation of novel disazo dyes by laccase. Process Biochem 37:581–587

    Article  CAS  Google Scholar 

  46. Michniewicz A, Ledakowicz S, Ullrich R, Hofrichter M (2008) Kinetics of the enzymatic decolorization of textile dyes by laccase from Cerrena unicolor. Dyes Pigm 77:295–302

    Article  CAS  Google Scholar 

  47. Hailei W, Pingb L, Mina P, Zhijuna Z, Guanglib Y, Guoshengb L, Jianminga Y (2009) Rapid decolourization of azo dyes by a new isolated higher manganese peroxidase producer: Phanerochaete sp. HSD. Biochem Eng J 46:327–333

    Article  CAS  Google Scholar 

  48. Hublik G, Schinnera F (2000) Characterization and immobilization of the laccase from Pleurotus ostreatus and its use for the continuous elimination of phenolic pollutants. Enzyme Microb Technol 27:330–336

    Article  CAS  Google Scholar 

  49. Hofer C, Schlosser D (2000) Novel enzymatic oxidation of Mn+2 to Mn+3 catalyzed by a fungal laccase. FEBS 451:186–190

    Article  Google Scholar 

  50. Schliephake K, Mainwaring DE, Lonergan GT, Jones KI, Baker WL (2000) Transformation and degradation of the disazo dye chicago sky blue by a purified laccase from Pycnoporus cinnabarinus. Enzyme Microb Biotechnol 27:100–107

    Article  CAS  Google Scholar 

  51. Lucas M, Mertens V, Corbisier A-M, Vanhulle S (2008) Synthetic dyes decolourisation by white-rot fungi: development of original microtitre plate method and screening. Enzyme Microb Technol 42:97–106

    Article  CAS  Google Scholar 

  52. Paszczynski A, Pasti MB, Goszczynski S, Crawford DL, Crawford RL (1991) New approach to improve degradation of recalcitrant azo dyes by Streptomyces spp. and Phanerochaete chrysosporium. Enzyme Microb Technol 13(5):378–384

    Article  CAS  Google Scholar 

  53. Adosinda M, Martins M, Ferreira IC, Santos IM, Queiroz MJ, Lima N (2001) Biodegradation of bioaccessible textile azo dyes by Phanerochaete chrysosporium. J Biotechnol 89(2–3):91–98

    Google Scholar 

  54. Yu G, Wen X, Li R, Qian Y (2006) In vitro degradation of a reactive azo dye by crude ligninolytic enzymes from nonimmersed liquid culture of Phanerochaete chrysosporium. Process Biochem 41(9):1987–1993

    Article  CAS  Google Scholar 

  55. Nilsson I, Moller A, Mattiasson B, Rubindamayugi MST, Welander U (2006) Decolorization of synthetic and real textile wastewater by the use of white-rot fungi. Enzyme Microb Technol 38:94–100

    Article  CAS  Google Scholar 

  56. Aksu Z, Kilic NK, Ertugrul S, Donmez G (2007) Inhibitory effects of chromium(VI) and Remazol Black B on chromium(VI) and dyestuff removals by Trametes versicolor. Enzyme Microb Technol 40:1167–1174

    Article  CAS  Google Scholar 

  57. Zhao X, Hardin IR, Hwanga HM (2006) Biodegradation of a model azo disperse dye by the white rot fungus Pleurotus ostreatus. Int Biodeterior Biodegradation 57(1):1–6

    Article  CAS  Google Scholar 

  58. Zhao X, Hardin IR (2007) HPLC and spectrophotometric analysis of biodegradation of azo dyes by Pleurotus ostreatus. Dyes Pigm 73:322–325

    Article  CAS  Google Scholar 

  59. Harazono K, Watanabe Y, Nakamura K (2003) Decolorization of azo dye by the white-rot basidiomycete Phanerochaete sordida and by ıts manganese peroxidase. J Biosci Bioeng 95(5):455–495

    CAS  Google Scholar 

  60. Novotny C, Rawal B, Bhatt M, Patel M, Sasek V, Molitoris PH (2001) Capacity of Irpex lacteus and Pleurotus ostreatus for decolorization of chemically different dyes. J Biotechnol 89(2–3):113–122

    Article  CAS  Google Scholar 

  61. Novotny C, Svobodova K, Erbanova P, Cajthamal T, Kasinath A, Lang E (2004) Lignolytic fungi in bioremediation: extracellular enzyme production and degradation rate. Soil Biol Biochem 36:1545–1551

    Article  CAS  Google Scholar 

  62. Revankar MS, Lele SS (2007) Synthetic dye decolourization by white rot fungus, Ganoderma sp. WR-1. Bioresour Technol 98:775–780

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emrah Ahmet Erkurt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Erkurt, E.A., Erkurt, H.A., Unyayar, A. (2010). Decolorization of Azo Dyes by White Rot Fungi. In: Atacag Erkurt, H. (eds) Biodegradation of Azo Dyes. The Handbook of Environmental Chemistry, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/698_2009_48

Download citation

Publish with us

Policies and ethics