Skip to main content

Activity of Norspermidine on Bacterial Biofilms of Multidrug-Resistant Clinical Isolates Associated with Persistent Extremity Wound Infections

  • Chapter
  • First Online:
Book cover Advances in Microbiology, Infectious Diseases and Public Health

Abstract

Biofilm formation is a major virulence factor for numerous pathogenic bacteria and is cited as a central event in the pathogenesis of chronic human infections, which is in large part due to excessive extracellular matrix secretion and metabolic changes that occur within the biofilm rendering them highly tolerant to antimicrobial treatments. Polyamines, including norspermidine, play central roles in bacterial biofilm development, but have also recently been shown to inhibit biofilm formation in select strains of various pathogenic bacteria. The aim of this study was to evaluate in vitro the biofilm dispersive and inhibitory activities of norspermidine against multidrug-resistant clinical isolates of Acinetobacter baumannii(n = 4), Klebsiella pneumoniae (n = 3), Pseudomonas aeruginosa (n = 5) and Staphylococcus aureus (n = 4) associated with chronic extremity wound infections using the semi-quantitative 96-well plate method and confocal laser microscopy. In addition to the antibiofilm activity, biocompatibility of norspermidine was also evaluated by measuring toxicity in vitro to human cell lines and whole porcine tissue explants using MTT viability assay and histological analysis. Norspermidine (5–20 mM) had variable dispersive and inhibitory activity on biofilms which was dependent on both the strain and species. Of the clinical bacterial species evaluated herein, A. baumannii isolates were the most sensitive to the effect of norspermidine, which was in part due to the inhibitory effects of norspermidine on bacterial motility and expression of genes involved in the production of homoserine lactones and quorum sensing molecules both essential for biofilm formation. Importantly, exposure of cell lines and whole tissues to norspermidine for prolonged periods of time (≥24 h) was observed to reduce viability and alter tissue histology in a time and concentration dependent manner, with 20 mM exposure having the greatest negative effects on both tissues and individual cell lines. Collectively our findings demonstrate that, similar to other polyamines, norspermidine displays both inhibitory and dispersive activities on biofilms of clinical multidrug-resistant bacterial isolates, in particular for strains of A. baumannii. Additionally our findings suggest that direct application may be considered on tissues, albeit for limited exposure times.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akers KS, Mende K, Cheatle KA, Zera WC, Yu X, Beckius ML, Aggarwal D, Li P, Sanchez CJ, Wenke JC, Weintrob AC, Tribble DR, Murray CK, Infectious Disease Clinical Research Program-Trauma Infectious Disease Outcomes Study Group (IDCRP-TIDOS) (2014) Biofilms and persistent wound infections in United States military trauma patients: a case-control analysis. BMC Infect Dis 14:190

    Article  PubMed  PubMed Central  Google Scholar 

  • Anderson GG, O’Toole GA (2008) Innate and induced resistance mechanisms of bacterial biofilms. Curr Top Microbiol Immunol 322:85–105

    CAS  PubMed  Google Scholar 

  • Barsoumian A, Sanchez CJ, Mende K, Tully CC, Beckius ML, Akers KS, Wenke JC, Murray CK (2013) In vitro toxicity and activity of Dakin’s solution, mafenide acetate, and amphotericin B on filamentous fungi and human cells. J Orthop Trauma 27(8):428–436

    Article  PubMed  Google Scholar 

  • Bentancor LV, O’Malley JM, Bozkurt-Guzel C, Pier GB, Maira-Litran T (2012) Poly-N-acetyl-beta-(1–6)-glucosamine is a target for protective immunity against Acinetobacter baumannii infections. Infect Immun 80(2):651–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bjarnsholt T, Kirketerp-Moller K, Jensen PO, Madsen KG, Phipps R, Krogfelt K, Hoiby N, Givskov M (2008) Why chronic wounds will not heal: a novel hypothesis. Wound Repair Regen 16(1):2–10

    Article  PubMed  Google Scholar 

  • Cardile AP, Sanchez CJ Jr, Samberg ME, Romano DR, Hardy SK, Wenke JC, Murray CK, Akers KS (2014) Human plasma enhances the expression of staphylococcal microbial surface components recognizing adhesive matrix molecules promoting biofilm formation and increases antimicrobial tolerance in vitro. BMC Res Notes 7:457

    Article  PubMed  PubMed Central  Google Scholar 

  • Castagnoli C, Alotto D, Cambieri I, Casimiri R, Aluffi M, Stella M, Alasia ST, Magliacani G (2003) Evaluation of donor skin viability: fresh and cryopreserved skin using tetrazolioum salt assay. Burns 29(8):759–767

    Article  PubMed  Google Scholar 

  • Cegelski L, Pinkner JS, Hammer ND, Cusumano CK, Hung CS, Chorell E, Aberg V, Walker JN, Seed PC, Almqvist F, Chapman MR, Hultgren SJ (2009) Small-molecule inhibitors target Escherichia coli amyloid biogenesis and biofilm formation. Nat Chem Biol 5(12):913–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi AH, Slamti L, Avci FY, Pier GB, Maira-Litran T (2009) The pgaABCD locus of Acinetobacter baumannii encodes the production of poly-beta-1-6-N-acetylglucosamine, which is critical for biofilm formation. J Bacteriol 191(19):5953–5963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christensen GD, Simpson WA, Younger JJ, Baddour LM, Barrett FF, Melton DM, Beachey EH (1985) Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol 22(6):996–1006

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clemmer KM, Bonomo RA, Rather PN (2011) Genetic analysis of surface motility in Acinetobacter baumannii. Microbiology 157(Pt 9):2534–2544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corbella X, Montero A, Pujol M, Dominguez MA, Ayats J, Argerich MJ, Garrigosa F, Ariza J, Gudiol F (2000) Emergence and rapid spread of carbapenem resistance during a large and sustained hospital outbreak of multiresistant Acinetobacter baumannii. J Clin Microbiol 38(11):4086–4095

    CAS  PubMed  PubMed Central  Google Scholar 

  • Costerton JW (1999) Introduction to biofilm. Int J Antimicrob Agents 11(3–4):217–221; discussion 237–219

    Article  CAS  PubMed  Google Scholar 

  • Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284(5418):1318–1322

    Article  CAS  PubMed  Google Scholar 

  • Dijkshoorn L, Nemec A, Seifert H (2007) An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii. Nat Rev Microbiol 5(12):939–951

    Article  CAS  PubMed  Google Scholar 

  • Gaddy JA, Actis LA (2009) Regulation of Acinetobacter baumannii biofilm formation. Future Microbiol 4(3):273–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gordon NC, Wareham DW (2010) Multidrug-resistant Acinetobacter baumannii: mechanisms of virulence and resistance. Int J Antimicrob Agents 35(3):219–226

    Article  CAS  PubMed  Google Scholar 

  • Goytia M, Dhulipala VL, Shafer WM (2013) Spermine impairs biofilm formation by Neisseria gonorrhoeae. FEMS Microbiol Lett 343(1):64–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurung J, Khyriem AB, Banik A, Lyngdoh WV, Choudhury B, Bhattacharyya P (2013) Association of biofilm production with multidrug resistance among clinical isolates of Acinetobacter baumannii and Pseudomonas aeruginosa from intensive care unit. Indian J Crit Care Med 17(4):214–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2(2):95–108

    Article  CAS  PubMed  Google Scholar 

  • Hobley L, Kim SH, Maezato Y, Wyllie S, Fairlamb AH, Stanley-Wall NR, Michael AJ (2014) Norspermidine is not a self-produced trigger for biofilm disassembly. Cell 156(4):844–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hung DT, Shakhnovich EA, Pierson E, Mekalanos JJ (2005) Small-molecule inhibitor of Vibrio cholerae virulence and intestinal colonization. Science 310(5748):670–674

    Article  CAS  PubMed  Google Scholar 

  • James GA, Swogger E, Wolcott R, Pulcini E, Secor P, Sestrich J, Costerton JW, Stewart PS (2008) Biofilms in chronic wounds. Wound Repair Regen 16(1):37–44

    Article  PubMed  Google Scholar 

  • Kaplan JB (2010) Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses. J Dent Res 89(3):205–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karatan E, Michael AJ (2013) A wider role for polyamines in biofilm formation. Biotechnol Lett 35(11):1715–1717

    Article  CAS  PubMed  Google Scholar 

  • Kolodkin-Gal I, Cao S, Chai L, Bottcher T, Kolter R, Clardy J, Losick R (2012) A self-produced trigger for biofilm disassembly that targets exopolysaccharide. Cell 149(3):684–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kostakioti M, Hadjifrangiskou M, Hultgren SJ (2013) Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb Perspect Med 3(4):a010306

    Article  PubMed  PubMed Central  Google Scholar 

  • Kouidhi B, Al Qurashi YM, Chaieb K (2015) Drug resistance of bacterial dental biofilm and the potential use of natural compounds as alternative for prevention and treatment. Microb Pathog 80:39–49

    Article  CAS  PubMed  Google Scholar 

  • Lee HW, Koh YM, Kim J, Lee JC, Lee YC, Seol SY, Cho DT, Kim J (2008) Capacity of multidrug-resistant clinical isolates of Acinetobacter baumannii to form biofilm and adhere to epithelial cell surfaces. Clin Microbiol Infect 14(1):49–54

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Sperandio V, Frantz DE, Longgood J, Camilli A, Phillips MA, Michael AJ (2009) An alternative polyamine biosynthetic pathway is widespread in bacteria and essential for biofilm formation in Vibrio cholerae. J Biol Chem 284(15):9899–9907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Longo F, Vuotto C, Donelli G (2014) Biofilm formation in Acinetobacter baumannii. New Microbiol 37(2):119–127

    CAS  PubMed  Google Scholar 

  • Mah TF, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9(1):34–39

    Article  CAS  PubMed  Google Scholar 

  • Malachowa N, Whitney AR, Kobayashi SD, Sturdevant DE, Kennedy AD, Braughton KR, Shabb DW, Diep BA, Chambers HF, Otto M, DeLeo FR (2011) Global changes in Staphylococcus aureus gene expression in human blood. PLoS One 6(4):e18617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munoz-Price LS, Weinstein RA (2008) Acinetobacter infection. N Engl J Med 358(12):1271–1281

    Article  CAS  PubMed  Google Scholar 

  • Nait Chabane Y, Mlouka MB, Alexandre S, Nicol M, Marti S, Pestel-Caron M, Vila J, Jouenne T, De E (2014) Virstatin inhibits biofilm formation and motility of Acinetobacter baumannii. BMC Microbiol 14:62

    Article  PubMed  PubMed Central  Google Scholar 

  • Nesse LL, Berg K, Vestby LK (2015) The effect of norspermidine and spermidine on biofilm formation by potentially pathogenic Escherichia coli and Salmonella enterica wild type strains. Appl Environ Microbiol 81(6):2226–2232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel CN, Wortham BW, Lines JL, Fetherston JD, Perry RD, Oliveira MA (2006) Polyamines are essential for the formation of plague biofilm. J Bacteriol 188(7):2355–2363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peleg AY, Seifert H, Paterson DL (2008) Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev 21(3):538–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramon-Perez ML, Diaz-Cedillo F, Contreras-Rodriguez A, Betanzos-Cabrera G, Peralta H, Rodriguez-Martinez S, Cancino-Diaz ME, Jan-Roblero J, Cancino Diaz JC (2014) Different sensitivity levels to norspermidine on biofilm formation in clinical and commensal Staphylococcus epidermidis strains. Microb Pathog 79C:8–16

    Google Scholar 

  • Rodriguez-Bano J, Marti S, Soto S, Fernandez-Cuenca F, Cisneros JM, Pachon J, Pascual A, Martinez-Martinez L, McQueary C, Actis LA, Vila J, Spanish Group for the Study of Nosocomial I (2008) Biofilm formation in Acinetobacter baumannii: associated features and clinical implications. Clin Microbiol Infect 14(3):276–278

    Article  CAS  PubMed  Google Scholar 

  • Romling U, Balsalobre C (2012) Biofilm infections, their resilience to therapy and innovative treatment strategies. J Intern Med 272(6):541–561

    Article  CAS  PubMed  Google Scholar 

  • Rumbo-Feal S, Gomez MJ, Gayoso C, Alvarez-Fraga L, Cabral MP, Aransay AM, Rodriguez-Ezpeleta N, Fullaondo A, Valle J, Tomas M, Bou G, Poza M (2013) Whole transcriptome analysis of Acinetobacter baumannii assessed by RNA-sequencing reveals different mRNA expression profiles in biofilm compared to planktonic cells. PLoS One 8(8):e72968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez CJ Jr, Mende K, Beckius ML, Akers KS, Romano DR, Wenke JC, Murray CK (2013) Biofilm formation by clinical isolates and the implications in chronic infections. BMC Infect Dis 13:47

    Article  PubMed  PubMed Central  Google Scholar 

  • Saroj SD, Rather PN (2013) Streptomycin inhibits quorum sensing in Acinetobacter baumannii. Antimicrob Agents Chemother 57(4):1926–1929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siala W, Mingeot-Leclercq MP, Tulkens PM, Hallin M, Denis O, Van Bambeke F (2014) Comparison of the antibiotic activities of Daptomycin, Vancomycin, and the investigational Fluoroquinolone Delafloxacin against biofilms from Staphylococcus aureus clinical isolates. Antimicrob Agents Chemother 58(11):6385–6397

    Article  PubMed  PubMed Central  Google Scholar 

  • Skiebe E, de Berardinis V, Morczinek P, Kerrinnes T, Faber F, Lepka D, Hammer B, Zimmermann O, Ziesing S, Wichelhaus TA, Hunfeld KP, Borgmann S, Grobner S, Higgins PG, Seifert H, Busse HJ, Witte W, Pfeifer Y, Wilharm G (2012) Surface-associated motility, a common trait of clinical isolates of Acinetobacter baumannii, depends on 1,3-diaminopropane. Int J Med Microbiol 302(3):117–128

    Article  CAS  PubMed  Google Scholar 

  • Tomaras AP, Dorsey CW, Edelmann RE, Actis LA (2003) Attachment to and biofilm formation on abiotic surfaces by Acinetobacter baumannii: involvement of a novel chaperone-usher pili assembly system. Microbiology 149(Pt 12):3473–3484

    Article  CAS  PubMed  Google Scholar 

  • Tribble DR, Conger NG, Fraser S, Gleeson TD, Wilkins K, Antonille T, Weintrob A, Ganesan A, Gaskins LJ, Li P, Grandits G, Landrum ML, Hospenthal DR, Millar EV, Blackbourne LH, Dunne JR, Craft D, Mende K, Wortmann GW, Herlihy R, McDonald J, Murray CK (2011) Infection-associated clinical outcomes in hospitalized medical evacuees after traumatic injury: trauma infectious disease outcome study. J Trauma 71(1 Suppl):S33–S42

    Article  PubMed  PubMed Central  Google Scholar 

  • Wand ME, Bock LJ, Turton JF, Nugent PG, Sutton JM (2012) Acinetobacter baumannii virulence is enhanced in Galleria mellonella following biofilm adaptation. J Med Microbiol 61(Pt 4):470–477

    Article  PubMed  Google Scholar 

  • Wortham BW, Patel CN, Oliveira MA (2007) Polyamines in bacteria: pleiotropic effects yet specific mechanisms. Adv Exp Med Biol 603:106–115

    Article  PubMed  Google Scholar 

  • Wortham BW, Oliveira MA, Fetherston JD, Perry RD (2010) Polyamines are required for the expression of key Hms proteins important for Yersinia pestis biofilm formation. Environ Microbiol 12(7):2034–2047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Q, Phillips PL, Sampson EM, Progulske-Fox A, Jin S, Antonelli P, Schultz GS (2013) Development of a novel ex vivo porcine skin explant model for the assessment of mature bacterial biofilms. Wound Repair Regen 21(5):704–714

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by intramural funding from the Combat Casualty Research Program, Medical Research and Materiel Command. Additional support for this work (IDCRP-024) was provided by in part by the Infectious Disease Clinical Research Program (IDCRP), a Department of Defense program executed through the Uniformed Services University of the Health Sciences. This project has been funded by the Department of Defense Global Emerging Infections Surveillance and Response System (GEIS), a division of the Armed Forces Health Surveillance Center, National Institute of Allergy and Infectious Diseases, National Institute of Health, under Inter-Agency Agreement Y1-AI-5072, and the Department of the Navy under the Wounded, Ill, and Injured Program. We are indebted to the Infectious Disease Clinical Research Program TIDOS study team. Lastly we would also like to thank Kinton Armmer and Douglas Cortez for their assistance with isolation and preparation of the porcine tissues used in this study.

Competing Interests

The authors declare that they have no competing interests.

Disclaimer

The opinions or assertions contained herein are the private views of the authors are not to be construed as official or as reflecting the views of the Uniformed Services University of the Health Sciences, the National Institute of Health or the Department of Health and Human Services, the Department of Defense, the Departments of the Army, Navy or Air Force, or the United States Army Institute of Surgical Research. Mention of trade names, commercial products, or organization does not imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin S. Akers .

Editor information

Editors and Affiliations

Additional information

Authors’ Contributions

APC, RLW and CJS conceived and designed the experiments. RLW, SCB, RAG and CJS performed the experiments. APC and CJS analyzed the data. APC, KM, KSA, JCW and CJS contributed to preparation and review of the final manuscript. All authors read and approved the final manuscript.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cardile, A.P. et al. (2016). Activity of Norspermidine on Bacterial Biofilms of Multidrug-Resistant Clinical Isolates Associated with Persistent Extremity Wound Infections. In: Donelli, G. (eds) Advances in Microbiology, Infectious Diseases and Public Health. Advances in Experimental Medicine and Biology(), vol 973. Springer, Cham. https://doi.org/10.1007/5584_2016_93

Download citation

Publish with us

Policies and ethics