Skip to main content

Fungal Biofilms: Update on Resistance

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AMIDPH,volume 931))

Abstract

Over the past decade, the emergence of biofilm-related invasive fungal diseases has been the subject of numerous studies focused on antifungal resistance and its impact on antifungal therapy in severely ill patients. The majority of the studies investigated the molecular mechanisms involved in antifungal resistance and pathogenicity of biofilm production by Candida albicans and Aspergillus fumigatus, the most common etiologic agents of yeast and mold invasive infections. The main mechanism characterizing biofilm-related antifungal resistance is the production of extracellular matrix, a physical barrier preventing the drugs from entering and expressing their activity. However, over-expression of efflux pumps, genetic changes of drug targets, persister cells, biofilm-host immune system interaction, proteins leading to filamentation, all together contribute to the onset of biofilm antifungal resistance. Some of these mechanisms are shared with planktonic cells and are often related to developmental phases of biofilm formation. All physical and genetic factors leading to biofilm-related antifungal resistance have been briefly discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Al-Fattani MA, Douglas LJ (2004) Penetration of Candida biofilms by antifungal agents. Antimicrob Agents Chemother 48(9):3291–3297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Fattani MA, Douglas LJ (2006) Biofilm matrix of Candida albicans and Candida tropicalis: chemical composition and role in drug resistance. J Med Microbiol 55(Pt 8):999–1008

    Article  CAS  PubMed  Google Scholar 

  • Baillie GS, Douglas LJ (2000) Matrix polymers of Candida biofilms and their possible role in biofilm resistance to antifungal agents. J Antimicrob Chemother 46(3):397–403

    Article  CAS  PubMed  Google Scholar 

  • Beauvais A, Fontaine T, Aimanianda V, Latgé JP (2014) Aspergillus cell wall and biofilm. Mycopathologia 178:371–377. doi:10.1007/s11046-014-9766-0

    Article  PubMed  Google Scholar 

  • Bink A, Vandenbosch D, Coenye T, Nelis H, Cammue BP, Thevissen K (2011) Superoxide dismutases are involved in Candida albicans biofilm persistence against miconazole. Antimicrob Agents Chemother 55(9):4033–4037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bink A, Govaert G, Vandenbosch D, Kuchariková S, Coenye T, Nelis H, Van Dijck P, Cammue BP, Thevissen K (2012) Transcription factor Efg1 contributes to the tolerance of Candida albicans biofilms against antifungal agents in vitro and in vivo. J Med Microbiol 61:813–819

    Article  CAS  PubMed  Google Scholar 

  • Bizerra FC, Nakamura CV, de Poersch C, Estivalet Svidzinski TI, Borsato Quesada RM, Goldenberg S, Krieger MA, Yamada-Ogatta SF (2008) Characteristics of biofilm formation by Candida tropicalis and antifungal resistance. FEMS Yeast Res 8(3):442–450

    Article  CAS  PubMed  Google Scholar 

  • Blankenship JR, Mitchell AP (2006) How to build a biofilm: a fungal perspective. Curr Opin Microbiol 9(6):588–594

    Article  CAS  PubMed  Google Scholar 

  • Bowyer P, Moore CB, Rautemaa R, Denning DW, Richardson MD (2011) Azole antifungal resistance today: focus on Aspergillus. Curr Infect Dis Rep 13(6):485–491

    Article  PubMed  Google Scholar 

  • Bugli F, Posteraro B, Papi M, Torelli R, Maiorana A, Paroni Sterbini F et al (2013) In vitro interaction between alginate lyase and amphotericin B against Aspergillus fumigatus biofilm determined by different methods. Antimicrob Agents Chemother 57:1275–1282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandra J, Kuhn DM, Mukherjee PK, Hoyer LL, McCormick T, Ghannoum MA (2001) Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol 183:5385–5394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cobrado L, Silva-Dias A, Azevedo MM, Pina-Vaz C, Rodrigues AG (2013) In vivo antibiofilm effect of cerium, chitosan and hamamelitannin against usual agents of catheter-related bloodstream infections. J Antimicrob Chemother 68(1):126–130

    Article  CAS  PubMed  Google Scholar 

  • Cowen LE, Sanglard D, Howard SJ, Rogers PD, Perlin DS (2014) Mechanisms of antifungal drug resistance. Cold Spr Harb Perspect Med 5:a019752. doi:10.1101/cshperspect.a019752

    Article  Google Scholar 

  • da Silva Ferreira ME, Malavazi I, Savoldi M, Brakhage AA, Goldman MH, Kim HS, Nierman WC, Goldman GH (2006) Transcriptome analysis of Aspergillus fumigatus exposed to voriconazole. Curr Genet 50(1):32–44

    Article  PubMed  Google Scholar 

  • Fan Z, Li Z, Xu Z, Li H, Li L, Ning C, Ma L, Xie X, Wang G, Yu H (2015) cspA influences biofilm formation and drug resistance in pathogenic fungus Aspergillus fumigatus. Biomed Res Int 2015:960357. doi:10.1155/2015/960357

    PubMed  PubMed Central  Google Scholar 

  • Fernandes T, Silva S, Henriques M (2015) Candida tropicalis biofilm’s matrix-involvement on its resistance to amphotericin B. Diagn Microbiol Infect Dis 83(2):165–169, pii:S0732-8893(15)00218-7. doi: 10.1016/j.diagmicrobio.2015.06.015

    Article  CAS  PubMed  Google Scholar 

  • Ferreira C, Silva S, Faria-Oliveira F, Pinho E, Henriques M, Lucas C (2010) Candida albicans virulence and drug-resistance requires the O-acyltransferase Gup1p. BMC Microbiol 10:238. doi:10.1186/1471-2180-10-238

    Article  PubMed  PubMed Central  Google Scholar 

  • Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8(9):623–633. doi:10.1038/nrmicro2415

    CAS  PubMed  Google Scholar 

  • Gandy JJ, Meeding JP, Snyman JR, Van Rensburg CE (2012) Phase 1 clinical study of the acute and subacute safety and proof-of-concept efficacy of carbohydrate-derived fulvic acid. Clin Pharmacol 4:7–11

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khot PD, Suci PA, Miller RL, Nelson RD, Tyler BJ (2006) A small subpopulation of blastospores in Candida albicans biofilms exhibit resistance to amphotericin B associated with differential regulation of ergosterol and β-1,6-glucan pathway genes. Antimicrob Agents Chemother 50:3708–3716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ (2007) A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130(5):797–810

    Article  CAS  PubMed  Google Scholar 

  • LaFleur MD, Kumamoto CA, Lewis K (2006) Candida albicans biofilms produce antifungal-tolerant persister cells. Antimicrob Agents Chemother 50(11):3839–3846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LaFleur MD, Qi Q, Lewis K (2010) Patients with long-term oral carriage harbor high-persister mutants of Candida albicans. Antimicrob Agents Chemother 54(1):39–44

    Article  CAS  PubMed  Google Scholar 

  • Lattif AA, Mukherjee PK, Chandra J, Roth MR, Welti R, Rouabhia M, Ghannoum MA (2011) Lipidomics of Candida albicans biofilms reveals phase-dependent production of phospholipid molecular classes and role for lipid rafts in biofilm formation. Microbiology 157:3232–3242

    Article  PubMed  PubMed Central  Google Scholar 

  • Lewis K (2010) Persister cells. Annu Rev Microbiol 64:357–372

    Article  CAS  PubMed  Google Scholar 

  • Li P, Seneviratne CJ, Alpi E, Vizcaino JA, Jin L (2015) Delicate metabolic control and coordinated stress response critically determine antifungal tolerance of Candida albicans biofilm persisters. Antimicrob Agents Chemother 59(10):6101–6112 pii: AAC.00543-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loussert C, Schmitt C, Prevost MC, Balloy V, Fadel E, Philippe B et al (2010) In vivo biofilm composition of Aspergillus fumigatus. Cell Microbiol 12(3):405–410

    Article  CAS  PubMed  Google Scholar 

  • Marie C, White TC (2009) Genetic basis of antifungal drug resistance. Curr Fungal Infect Rep 3(3):163–169

    Article  PubMed  PubMed Central  Google Scholar 

  • Martinez LR, Casadevall A (2007) Cryptococcus neoformans biofilm formation depends on surface support and carbon source and reduces fungal cell susceptibility to heat, cold, and UV light. Appl Environ Microbiol 73:4592–4601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martins M, Uppuluri P, Thomas DP, Cleary IA, Henriques M, Lopez- Ribot JL, Oliveira R (2010) Presence of extracellular DNA in the Candida albicans biofilm matrix and its contribution to biofilms. Mycopathologia 169:323–331

    Article  CAS  PubMed  Google Scholar 

  • Martins M, Henriques M, Lopez-Ribot JL, Oliveira R (2012) Addition of DNase improves the in vitro activity of antifungal drugs against Candida albicans biofilms. Mycoses 55(1):80–85

    Article  CAS  PubMed  Google Scholar 

  • Mathé L, Van Dijck P (2013) Recent insights into Candida albicans biofilm resistance mechanisms. Curr Genet 59(4):251–264. doi:10.1007/s00294-013-0400-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitchell KF, Taff HT, Cuevas MA, Reinicke EL, Sanchez H, Andes DR (2013) Role of matrix β-1,3 glucan in antifungal resistance of non-albicans Candida biofilms. Antimicrob Agents Chemother 57(4):1918–1920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell KF, Zarnowski R, Sanchez H, Edward JA, Reinicke EL, Nett JE, Mitchell AP, Andes DR (2015) Community participation in biofilm matrix assembly and function. Proc Natl Acad Sci U S A 112(13):4092–4097. doi:10.1073/pnas.1421437112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morschhäuser J (2010) Regulation of multidrug resistance in pathogenic fungi. Fungal Genet Biol 47(2):94–106

    Article  PubMed  Google Scholar 

  • Mukherjee PK, Chandra J, Kuhn DM, Ghannoum MA (2003) Mechanism of fluconazole resistance in Candida albicans biofilms: phase-specific role of efflux pumps and membrane sterols. Infect Immun 71(8):4333–4340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nett JE (2014) Future directions for anti-biofilm therapeutics targeting Candida. Expert Rev Anti Infect Ther 12(3):375–382. doi:10.1586/14787210.2014.885838

    Article  CAS  PubMed  Google Scholar 

  • Nett J, Andes D (2006) Candida albicans biofilm development, modeling a host-pathogen interaction. Curr Opin Microbiol 9(4):340–345

    Article  CAS  PubMed  Google Scholar 

  • Nett J, Lincoln L, Marchillo K, Massey R, Holoyda K, Hoff B, VanHandel M, Andes D (2007) Putative role of β-1,3 glucans in Candida albicans biofilm resistance. Antimicrob Agents Chemother 51(2):510–520

    Article  CAS  PubMed  Google Scholar 

  • Nett JE, Lepak AJ, Marchillo K, Andes DR (2009) Time course global gene expression analysis of an in vivo Candida biofilm. J Infect Dis 200(2):307–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nett JE, Crawford K, Marchillo K, Andes DR (2010a) Role of Fks1p and matrix glucan in Candida albicans biofilm resistance to an echinocandin, pyrimidine, and polyene. Antimicrob Agents Chemother 54(8):3505–3508. doi:10.1128/AAC.00227-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nett JE, Sanchez H, Cain MT, Andes DR (2010b) Genetic basis of Candida biofilm resistance due to drug-sequestering matrix glucan. J Infect Dis 202(1):171–175. doi:10.1086/651200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nett JE, Sanchez H, Cain MT, Ross KM, Andes DR (2011) Interface of Candida albicans biofilm matrix-associated drug resistance and cell wall integrity regulation. Eukaryot Cell 10(12):1660–1669. doi:10.1128/EC.05126-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nierman WC, Pain A, Anderson MJ, Wortman JR, Kim HS, Arroyo J et al (2005) Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438:1151–1156

    Article  CAS  PubMed  Google Scholar 

  • Nobile CJ, Fox EP, Hartooni N, Mitchell KF, Hnisz D, Andes DR, Kuchler K, Johnson AD (2014) A histone deacetylase complex mediates biofilm dispersal and drug resistance in Candida albicans. MBio 5(3):e01201-14. doi:10.1128/mBio.01201-14

    Article  PubMed  PubMed Central  Google Scholar 

  • Perlin DS (2014) Echinocandin resistance, susceptibility testing and prophylaxis: implications for patient management. Drugs 74(14):1573–1585. doi:10.1007/s40265-014-0286-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perlin DS, Shor E, Zhao Y (2015) Update on antifungal drug resistance. Curr Clin Microbiol Rep 2(2):84–95

    Article  PubMed  PubMed Central  Google Scholar 

  • Pierce CG, Srinivasan A, Uppuluri P, Ramasubramanian AK, López-Ribot JL (2013) Antifungal therapy with an emphasis on biofilms. Curr Opin Pharmacol 13(5):726–730. doi:10.1016/j.coph.2013.08.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierce CG, Srinivasan A, Ramasubramanian AK, López-Ribot JL (2015) From biology to drug development: new approaches to combat the threat of fungal biofilms. Microbiol Spectr 3:3. doi:10.1128/microbiolspec.MB-0007-2014

    Google Scholar 

  • Pulcrano G, Panellis D, De Domenico G, Rossano F, Catania MR (2012) Ambroxol influences voriconazole resistance of Candida parapsilosis biofilm. FEMS Yeast Res 12:430–438

    Article  CAS  PubMed  Google Scholar 

  • Rajendran R, Mowat E, McCulloch E, Lappin DF, Jones B, Lang S, Majithiya JB, Warn P, Williams C, Ramage G (2011) Azole resistance of Aspergillus fumigatus biofilms is partly associated with efflux pump activity. Antimicrob Agents Chemother 55(5):2092–2097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajendran R, Williams C, Lappin DF, Millington O, Martins M, Ramage G (2013) Extracellular DNA release acts as an antifungal resistance mechanism in mature Aspergillus fumigatus biofilms. Eukaryot Cell 12(3):420–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramage G, Bachmann S, Patterson TF, Wickes BL, Lopez- Ribot JL (2002) Investigation of multidrug efflux pumps in relation to fluconazole resistance in Candida albicans biofilms. J Antimicrob Chemother 49:973–980

    Google Scholar 

  • Ramage G, Saville SP, Thomas DP, López-Ribot JL (2005) Candida biofilms: an update. Eukaryot Cell 4(4):633–638. doi:10.1128/EC.4.4.633-638.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramage G, Rajendran R, Sherry L, Williams C (2012) Fungal biofilm resistance. Int J Microbiol 2012:528521. doi:10.1155/2012/528521

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramage G, Robertson SN, Williams C (2014) Strength in numbers: antifungal strategies against fungal biofilms. Int J Antimicrob Agents 43:114–120. doi:10.1016/j.ijantimicag.2013.10.023

    Article  CAS  PubMed  Google Scholar 

  • Reichhardt C, Ferreira JA, Joubert LM, Clemons KV, Stevens DA, Cegelski L (2015) Analysis of the Aspergillus fumigatus biofilm extracellular matrix by solid-state nuclear magnetic resonance spectroscopy. Eukaryot Cell 14(11):1064–1072, pii: EC.00050-15. [Epub ahead of print]

    Article  PubMed  PubMed Central  Google Scholar 

  • Robbins N, Uppuluri P, Nett J, Rajendran R, Ramage G, Lopez-Ribot JL, Andes D, Cowen LE (2011) Hsp90 governs dispersion and drug resistance of fungal biofilms. PLoS Pathog 7(9):e1002257. doi:10.1371/journal.ppat.1002257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanglard D, Odds FK (2002) Resistance of Candida species to antifungal agents: molecular mechanisms and clinical consequences. Lancet Infect Dis 2(2):73–85

    Article  CAS  PubMed  Google Scholar 

  • Sapaar B, Nur A, Hirota K, Yumoto H, Murakami K, Amoh T, Matsuo T, Ichikawa T, Miyake Y (2014) Effects of extracellular DNA from Candida albicans and pneumonia-related pathogens on Candida biofilm formation and hyphal transformation. J Appl Microbiol 116(6):1531–1542. doi:10.1111/jam.12483

    Article  CAS  PubMed  Google Scholar 

  • Sardi JC, Scorzoni L, Bernardi T, Fusco-Almeida AM, Mendes Giannini MJ (2013) Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J Med Microbiol 62:10–24

    Article  CAS  PubMed  Google Scholar 

  • Seidler MJ, Salvenmoser S, Müller FM (2008) Aspergillus fumigatus forms biofilms with reduced antifungal drug susceptibility on bronchial epithelial cells. Antimicrob Agents Chemother 52(11):4130–4136. doi:10.1128/AAC.00234-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shapiro RS, Zaas AK, Betancourt-Quiroz M, Perfect JR, Cowen LE (2012) The Hsp90 co-chaperone Sgt1 governs Candida albicans morphogenesis and drug resistance. PLoS ONE 7(9):e44734. doi:10.1371/journal.pone.0044734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherry L, Jose A, Murray C, Williams C, Jones B, Millington O et al (2012) Carbohydrate derived Fulvic acid: an in vitro investigation of a novel membrane active antiseptic agent against Candida albicans biofilms. Front Microbiol 3:116. doi:10.3389/fmicb.2012.00116

    Article  PubMed  PubMed Central  Google Scholar 

  • Sherry L, Rajendran R, Lappin DF, Borghi E, Perdoni F, Falleni M, Tosi D, Smith K, Williams C, Jones B, Nile CJ, Ramage G (2014) Biofilms formed by Candida albicans bloodstream isolates display phenotypic and transcriptional heterogeneity that are associated with resistance and pathogenicity. BMC Microbiol 14:182. doi:10.1186/1471-2180-14-182

    Article  PubMed  PubMed Central  Google Scholar 

  • Shopova I, Bruns S, Thywissen A, Kniemeyer O, Brakhage AA, Hillmann F (2013) Extrinsic extracellular DNA leads to biofilm formation and colocalizes with matrix polysaccharides in the human pathogenic fungus Aspergillus fumigatus. Front Microbiol 4:141. doi:10.3389/fmicb.2013.00141

    Article  PubMed  PubMed Central  Google Scholar 

  • Silva S, Henriques M, Martins A, Oliveira R, Williams D, Azeredo J (2009) Biofilms of non-Candida albicans Candida species: quantification, structure and matrix composition. Med Mycol 47(7):681–689. doi:10.3109/13693780802549594

    Article  CAS  PubMed  Google Scholar 

  • Silva S, Negri M, Henriques M, Oliveira R, Williams DW, Azeredo J (2012) Candida glabrata, Candida parapsilosis and Candida tropicalis: biology, epidemiology, pathogenicity and antifungal resistance. FEMS Microbiol Rev 36(2):288-305. doi: 10.1111/j.1574-6976.

    Article  CAS  PubMed  Google Scholar 

  • Song JW, Shin JH, Kee SJ, Kim SH, Shin MG, Suh SP, Ryang DW (2009) Expression of CgCDR1, CgCDR2, and CgERG11 in Candida glabrata biofilms formed by bloodstream isolates. Med Mycol 47(5):545–548

    Article  CAS  PubMed  Google Scholar 

  • Srikantha T, Daniels KJ, Pujol C, Sahni N, Yi S, Soll DR (2012) Nonsex genes in the mating type locus of Candida albicans play roles in a/α biofilm formation, including impermeability and fluconazole resistance. PLoS Pathog 8(1):e1002476. doi:10.1371/journal.ppat.1002476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srikantha T, Daniels KJ, Pujol C, Kim E, Soll DR (2013) Identification of genes upregulated by the transcription factor Bcr1 that are involved in impermeability, impenetrability, and drug resistance of Candida albicans a/α biofilms. Eukaryot Cell 12(6):875–888. doi:10.1128/EC.00071-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taff HT, Nett JE, Zarnowski R, Ross KM, Sanchez H, Cain MT, Hamaker J, Mitchell AP, Andes DR (2012) A Candida biofilm-induced pathway for matrix glucan delivery: implications for drug resistance. PLoS Pathog 8(8):e1002848. doi:10.1371/journal.ppat.1002848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taff HT, Mitchell KF, Edward JA, Andes DR (2013) Mechanisms of Candida biofilm drug resistance. Future Microbiol 8(10):1325–1337. doi:10.2217/fmb.13.101

    Article  CAS  PubMed  Google Scholar 

  • Tetz GV, Artemenko NK, Tetz VV (2009) Effect of DNase and antibiotics on biofilm characteristics. Antimicrob Agents Chemother 53(3):1204–1209

    Article  CAS  PubMed  Google Scholar 

  • TØndervik A, Sletta H, Klinkenberg G, Emanuel C, Powell LC, Pritchard MF et al (2014) Alginate oligosaccharides inhibit fungal cell growth and potentiate the activity of antifungals against Candida and Aspergillus spp. PLoS ONE 9(11):e112518. doi:10.1371/journal.pone.0112518

    Article  PubMed  PubMed Central  Google Scholar 

  • Uppuluri P, Chaturvedi AK, Lopez-Ribot JL (2009) Design of a simple model of Candida albicans biofilms formed under conditions of flow: development, architecture, and drug resistance. Mycopathologia 168(3):101–109

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Acker H, Van Dijck P, Coenye T (2014) Molecular mechanisms of antimicrobial tolerance and resistance in bacterial and fungal biofilms. Trends Microbiol 22(6):326–333. doi:10.1016/j.tim.2014.02.001

    Article  PubMed  Google Scholar 

  • Vediyappan G, Rossignol T, d’Enfert C (2010) Interaction of Candida albicans biofilms with antifungals: transcriptional response and binding of antifungals to beta-glucans. Antimicrob Agents Chemother 54(5):2096–2111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watamoto T, Samaranayake LP, Jayatilake JA, Egusa H, Yatani H, Seneviratne CJ (2009) Effect of filamentation and mode of growth on antifungal susceptibility of Candida albicans. Int J Antimicrob Agents 34(4):333–339

    Article  CAS  PubMed  Google Scholar 

  • Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS (2002) Extracellular DNA required for bacterial biofilm formation. Science 295(5559):1487

    Article  CAS  PubMed  Google Scholar 

  • Wuren T, Toyotome T, Yamaguchi M, Takahashi-Nakaguchi A, Muraosa Y, Yahiro M, Wang DN, Watanabe A, Taguchi H, Kamei K (2014) Effect of serum components on biofilm formation by Aspergillus fumigatus and other Aspergillus species. Jpn J Infect Dis 67(3):172–179

    Article  CAS  PubMed  Google Scholar 

  • Zarnowski R, Westler WM, Lacmbouh GA, Marita JM, Bothe JR, Bernhardt J, Lounes-Hadj Sahraoui A, Fontaine J, Sanchez H, Hatfield RD, Ntambi JM, Nett JE, Mitchell AP, Andes DR (2014) Novel entries in a fungal biofilm matrix encyclopedia. MBio 5(4):e01333-14. doi:10.1128/mBio.01333-14

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Borghi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Borghi, E., Borgo, F., Morace, G. (2016). Fungal Biofilms: Update on Resistance. In: Imbert, C. (eds) Fungal Biofilms and related infections. Advances in Experimental Medicine and Biology(), vol 931. Springer, Cham. https://doi.org/10.1007/5584_2016_7

Download citation

Publish with us

Policies and ethics