Skip to main content

Oxygen Sensing Mechanisms: A Physiological Penumbra

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((NR,volume 952))

Abstract

This review tackles the unresolved issue of the existence of oxygen sensor in the body. The sensor that would respond to changes in tissue oxygen content, possibly along the hypoxia-normoxia-hyperoxia spectrum, rather than to a given level of oxygen, and would translate the response into lung ventilation changes, the major adaptive process. Studies on oxygen sensing, for decades, concentrated around the hypoxic ventilatory response generated mostly by carotid body chemoreceptor cells. Despite gaining a substantial insight into the cellular transduction pathways in carotid chemoreceptors, the exact molecular mechanisms of the chemoreflex have never been conclusively verified. The article briefly sums up the older studies and presents novel theories on oxygen, notably, hypoxia sensing. These theories have to do with the role of transient receptor potential cation TRPA1 channels and brain astrocytes in hypoxia sensing. Although both play a substantial role in shaping the ventilatory response to hypoxia, neither can yet be considered the ultimate sensor of hypoxia. The enigma of oxygen sensing in tissue still remains to be resolved.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Angelova PR, Abramov AY (2016) Functional role of mitochondrial reactive oxygen species in physiology. Free Radic Biol Med. doi:10.1016/j.freeradbiomed.2016.06.005

    PubMed  Google Scholar 

  • Angelova PR, Kasymov V, Christie I, Sheikhbahaei S, Turovsky E, Marina N, Korsak A, Zwicker J, Teschemacher AG, Ackland GL, Funk GD, Kasparov S, Abramov AY, Gourine AV (2015) Functional oxygen sensitivity of astrocytes. J Neurosci 35:10460–10473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bélanger M, Magistretti PJ (2009) The role of astroglia in neuroprotection. Dialogues Clin Neurosci 11(3):281–295

    PubMed  PubMed Central  Google Scholar 

  • Brouns I, Pintelon I, Timmermans JP, Adriaensen D (2012) Novel insights in the neurochemistry and function of pulmonary sensory receptors. Adv Anat Embryol Cell Biol 211:1–115

    Article  PubMed  Google Scholar 

  • Buckler KJ (2013) TASK-like potassium channels and oxygen sensing in the carotid body. Respir Physiol Neurobiol 157(1):55–64

    Article  Google Scholar 

  • Buniel M, Glazebrook PA, Ramirez-Navarro A, Kunze DL (2008) Distribution of voltage-gated potassium (Kv) and hyperpolarization-activated (HCN) channels in sensory afferent fibers in the rat carotid body. J Comp Neurol 510(4):367–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cutz E, Pan J, Yeger H, Domnik NJ, Fisher JT (2013) Recent advances and controversies on the role of pulmonary neuroepithelial bodies as airway sensors. Semin Cell Dev Biol 24:40–50

    Article  PubMed  Google Scholar 

  • Fukushi I, Takeda K, Yokota S, Hasebe Y, Sato Y, Pokorski M, Horiuchi J, Okada Y (2016) Effects of arundic acid, an astrocytic modulator, on the cerebral and respiratory functions in severe hypoxia. Respir Physiol Neurobiol 226:24–29

    Article  CAS  PubMed  Google Scholar 

  • Gallego-Martin T, Agapito T, Ramirez M, Olea E, Yuber S, Rocher A, Gomez-Nino A, Obeso A, Gonzalez C (2015) Experimental observations on the biological significance of hydrogen sulfide in carotid body chemoreception. Adv Exp Med Biol 860:9–16

    Article  CAS  PubMed  Google Scholar 

  • Ganfornina MD, López-Barneo J (1991) Single K+ channels in membrane patches of arterial chemoreceptor cells are modulated by O2 tension. Proc Natl Acad Sci U S A 88(7):2927–2930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez C, Almaraz L, Obeso A, Rigual R (1994) Carotid body chemoreceptors: from natural stimuli to sensory discharges. Physiol Rev 74(4):829–898

    CAS  PubMed  Google Scholar 

  • Honda Y (1985) Role of carotid chemoreceptors in control of breathing at rest and in exercise: studies on human subjects with bilateral carotid body resection. Jpn J Physiol 35(4):535–544

    Article  CAS  PubMed  Google Scholar 

  • Izumizaki M, Pokorski M, Homma I (2004) The role of the carotid bodies in chemosensory ventilatory responses in the anesthetized mouse. J Appl Physiol 97:1401–1407

    Article  PubMed  Google Scholar 

  • Jiang C, Haddad GG (1994) Oxygen deprivation inhibits a K+ channel independently of cytosolic factors in rat central neurons. J Physiol 481(1):15–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasymov V, Larina O, Castaldo C, Marina N, Patrushev M, Kasparov S, Gourine AV (2013) Differential sensitivity of brainstem versus cortical astrocytes to changes in pH reveals functional regional specialization of astroglia. J Neurosci 33(2):435–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar P (2007) Sensing hypoxia in the carotid body: from stimulus to response. Essays Biochem 43:43–60

    Article  CAS  PubMed  Google Scholar 

  • Lahiri S, Roy A, Baby SM, Hoshi T, Semenza GL, Prabhakar NR (2006) Oxygen sensing in the body. Prog Biophys Mol Biol 91(3):249–286

    Article  CAS  PubMed  Google Scholar 

  • Marczak M, Pokorski M (2004) Oxygen breathing and ventilation. J Physiol Pharmacol 55(1 Pt 1):127–134

    CAS  PubMed  Google Scholar 

  • McNamara CR, Mandel-Brehm J, Bautista DM, Siemens J, Deranian KL, Zhao M, Hayward NJ, Chong JA, Julius D, Moran MM, Fanger CM (2007) TRPA1 mediates formalin-induced pain. Proc Natl Acad Sci U S A 104(33):13525–13530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortega-Sáenz P, Levitsky KL, Marcos-Almaraz MT, Bonilla-Henao V, Pascual A, López-Barneo J (2010) Carotid body chemosensory responses in mice deficient of TASK channels. J Gen Physiol 135(4):379–392

    Article  PubMed  PubMed Central  Google Scholar 

  • Ortiz FC, Del Rio R, Varas R, Iturriaga R (2012) Contribution of TASK-like potassium channels to the enhanced rat carotid body responsiveness to hypoxia. Adv Exp Med Biol 758:365–371

    Article  CAS  PubMed  Google Scholar 

  • Peers C, Wyatt CN, Evans AM (2010) Mechanisms for acute oxygen sensing in the carotid body. Resp Physiol Neurobiol 174(3):292–298

    Article  CAS  Google Scholar 

  • Peng Y-J, Nanduri J, Raghuraman G, Souvannakitti D, Gadalla MM, Kumar GK, Snyder SH, Prabhakar NR (2010) H2S mediates O2 sensing in the carotid body. PNAS 107(23):10719–10724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piskuric NA, Vollmer C, Nurse CA (2011) Confocal immunofluorescence study of rat aortic body chemoreceptors and associated neurons in situ and in vitro. J Comp Neurol 519(5):856–873

    Article  PubMed  Google Scholar 

  • Pokorski M (1999) Control of breathing. In: Cherniack NS, Altose MD, Homma I (eds) Rehabilitation of the patient with respiratory disease. The McGraw-Hill Companies, New York, pp 69–86

    Google Scholar 

  • Pokorski M, Takeda K, Sato Y, Okada Y (2014) The hypoxic ventilatory response and TRPA1 antagonism in conscious mice. Acta Physiol (Oxf) 210(4):928–938

    Article  CAS  Google Scholar 

  • Takahashi N, Kuwaki T, Kiyonaka S, Numata T, Kozai D, Mizuno Y, Yamamoto S, Naito S, Knevels E, Carmeliet P, Oga T, Kaneko S, Suga S, Nokami T, Yoshida J, Mori Y (2011) TRPA1 underlies a sensing mechanism for O2. Nat Chem Biol 7(10):701–711

    Article  CAS  PubMed  Google Scholar 

  • Williams SE, Wootton P, Mason HS, Bould J, Iles DE, Riccardi D, Peers C, Kemp PJ (2004) Hemoxygenase-2 is an oxygen sensor for a calcium-sensitive potassium channel. Science 306(5704):2093–2097

    Article  CAS  PubMed  Google Scholar 

Download references

Conflicts of Interest

The authors declare no conflicts of interest in relation to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mieczyslaw Pokorski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pokorski, M., Takeda, K., Okada, Y. (2016). Oxygen Sensing Mechanisms: A Physiological Penumbra. In: Pokorski, M. (eds) Advancements in Clinical Research. Advances in Experimental Medicine and Biology(), vol 952. Springer, Cham. https://doi.org/10.1007/5584_2016_67

Download citation

Publish with us

Policies and ethics