Skip to main content

Role of P2Y12 Receptor in Thrombosis

  • Chapter
  • First Online:
Thrombosis and Embolism: from Research to Clinical Practice

Part of the book series: Advances in Experimental Medicine and Biology ((AIM,volume 906))

Abstract

P2Y12 receptor is a 342 amino acid Gi-coupled receptor predominantly expressed on platelets. P2Y12 receptor is physiologically activated by ADP and inhibits adenyl cyclase (AC) to decrease cyclic AMP (cAMP) level, resulting in platelet aggregation. It also activates PI3 kinase (PI3K) pathway leading to fibrinogen receptor activation, and may protect platelets from apoptosis. Abnormalities of P2Y12 receptor include congenital deficiencies or high activity in diseases like diabetes mellitus (DM) and chronic kidney disease (CKD), exposing such patients to a prothrombotic condition. A series of clinical antiplatelet drugs, such as clopidogrel and ticagrelor, are designed as indirect or direct antagonists of P2Y12 receptor to reduce incidence of thrombosis mainly for patients of acute coronary syndrome (ACS) who are at high risk of thrombotic events. Studies on novel dual-/multi-target antiplatelet agents consider P2Y12 receptor as a promising part in combined targets. However, the clinical practical phenomena, such as “clopidogrel resistance” due to gene variations of cytochrome P450 or P2Y12 receptor constitutive activation, call for better antiplatelet agents. Researches also showed inverse agonist of P2Y12 receptor could play a better role over neutral antagonists. Personalized antiplatelet therapy is the most ideal destination for antiplatelet therapy in ACS patients with or without other underlying diseases like DM or CKD, however, there is still a long way to go.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Drury AN, Szent-Gyorgyi A (1929) The physiological activity of adenine compounds with especial reference to their action upon the mammalian heart. J Physiol 68(3):213–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Abbracchio MP, Burnstock G (1994) Purinoceptors: are there families of P2X and P2Y purinoceptors? Pharmacol Ther 64(3):445–475

    Article  CAS  PubMed  Google Scholar 

  3. Burnstock G (1978) A basis for distinguishing two types of purinergic receptor. In: Straub RW, Bolis L (eds) Cell membrane receptors for drugs and hormones: a multidisciplinary approach. Raven, New York, pp 107–118

    Google Scholar 

  4. Leon C et al (1997) The P2Y1 receptor is an ADP receptor antagonized by ATP and expressed in platelets and megakaryoblastic cells. FEBS Lett 403(1):26–30

    Article  CAS  PubMed  Google Scholar 

  5. Jin J, Daniel JL, Kunapuli SP (1998) Molecular basis for ADP-induced platelet activation. II. The P2Y1 receptor mediates ADP-induced intracellular calcium mobilization and shape change in platelets. J Biol Chem 273(4):2030–2034

    Article  CAS  PubMed  Google Scholar 

  6. Hollopeter G et al (2001) Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature 409(6817):202–207

    Article  CAS  PubMed  Google Scholar 

  7. Gachet C (2001) Identification, characterization, and inhibition of the platelet ADP receptors. Int J Hematol 74(4):375–381

    Article  CAS  PubMed  Google Scholar 

  8. Shirasaki H et al (2013) Expression and localization of purinergic P2Y(12) receptor in human nasal mucosa. Allergol Int 62(2):239–244

    Article  CAS  PubMed  Google Scholar 

  9. Diehl P et al (2010) Clopidogrel affects leukocyte dependent platelet aggregation by P2Y12 expressing leukocytes. Basic Res Cardiol 105(3):379–387

    Article  CAS  PubMed  Google Scholar 

  10. Wang L et al (2004) P2 receptor mRNA expression profiles in human lymphocytes, monocytes and CD34+ stem and progenitor cells. BMC Immunol 5:16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Ding Z et al (2003) Inactivation of the human P2Y12 receptor by thiol reagents requires interaction with both extracellular cysteine residues, Cys17 and Cys270. Blood 101(10):3908–3914

    Article  CAS  PubMed  Google Scholar 

  12. Kahner BN et al (2006) Nucleotide receptor signaling in platelets. J Thromb Haemost 4(11):2317–2326

    Article  CAS  PubMed  Google Scholar 

  13. Woulfe D et al (2002) Activation of Rap1B by G(i) family members in platelets. J Biol Chem 277(26):23382–23390

    Article  CAS  PubMed  Google Scholar 

  14. von Kugelgen I (2006) Pharmacological profiles of cloned mammalian P2Y-receptor subtypes. Pharmacol Ther 110(3):415–432

    Article  CAS  Google Scholar 

  15. Lombardi F et al (2012) Platelet signalling networks: pathway perturbation demonstrates differential sensitivity of ADP secretion and fibrinogen binding. Platelets 23(1):17–25

    Article  CAS  PubMed  Google Scholar 

  16. Jung SM, Moroi M (2001) Platelet collagen receptor integrin alpha2beta1 activation involves differential participation of ADP-receptor subtypes P2Y1 and P2Y12 but not intracellular calcium change. Eur J Biochem 268(12):3513–3522

    Article  CAS  PubMed  Google Scholar 

  17. Andre P et al (2003) P2Y12 regulates platelet adhesion/activation, thrombus growth, and thrombus stability in injured arteries. J Clin Invest 112(3):398–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jagroop IA, Burnstock G, Mikhailidis DP (2003) Both the ADP receptors P2Y1 and P2Y12, play a role in controlling shape change in human platelets. Platelets 14(1):15–20

    Article  PubMed  Google Scholar 

  19. Tournoij E et al (2012) The platelet P2Y12 receptor contributes to granule secretion through Ephrin A4 receptor. Platelets 23(8):617–625

    Article  CAS  PubMed  Google Scholar 

  20. Foster CJ et al (2001) Molecular identification and characterization of the platelet ADP receptor targeted by thienopyridine antithrombotic drugs. J Clin Invest 107(12):1591–1598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fabre JE et al (1999) Decreased platelet aggregation, increased bleeding time and resistance to thromboembolism in P2Y1-deficient mice. Nat Med 5(10):1199–1202

    Article  CAS  PubMed  Google Scholar 

  22. Leon C et al (1999) Defective platelet aggregation and increased resistance to thrombosis in purinergic P2Y(1) receptor-null mice. J Clin Invest 104(12):1731–1737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang K et al (2014) Structure of the human P2Y12 receptor in complex with an antithrombotic drug. Nature 509(7498):115–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Waldo GL et al (2002) Quantitation of the P2Y(1) receptor with a high affinity radiolabeled antagonist. Mol Pharmacol 62(5):1249–1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ding Z et al (2005) Arg333 and Arg334 in the COOH terminus of the human P2Y1 receptor are crucial for Gq coupling. Am J Physiol Cell Physiol 288(3):C559–67

    Article  CAS  PubMed  Google Scholar 

  26. Ohlmann P et al (2010) Quantification of recombinant and platelet P2Y(1) receptors utilizing a [(125)I]-labeled high-affinity antagonist 2-iodo-N(6)-methyl-(N)-methanocarba-2′-deoxyadenosine-3′,5′-bisphosphate ([(125)I]MRS2500). Pharmacol Res 62(4):344–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Battinelli EM, Markens BA, Italiano JE Jr (2011) Release of angiogenesis regulatory proteins from platelet alpha granules: modulation of physiologic and pathologic angiogenesis. Blood 118(5):1359–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cunningham MR et al (2013) Differential endosomal sorting of a novel P2Y12 purinoreceptor mutant. Traffic 14(5):585–598

    Article  CAS  PubMed  Google Scholar 

  29. Leon C et al (2003) Differential involvement of the P2Y1 and P2Y12 receptors in platelet procoagulant activity. Arterioscler Thromb Vasc Biol 23(10):1941–1947

    Article  CAS  PubMed  Google Scholar 

  30. Gachet C (2005) The platelet P2 receptors as molecular targets for old and new antiplatelet drugs. Pharmacol Ther 108(2):180–192

    Article  CAS  PubMed  Google Scholar 

  31. Hoffmann C et al (1999) The role of amino acids in extracellular loops of the human P2Y1 receptor in surface expression and activation processes. J Biol Chem 274(21):14639–14647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Algaier I et al (2008) Interaction of the active metabolite of prasugrel, R-138727, with cysteine 97 and cysteine 175 of the human P2Y12 receptor. J Thromb Haemost 6(11):1908–14

    Article  CAS  PubMed  Google Scholar 

  33. Savi P et al (2006) The active metabolite of Clopidogrel disrupts P2Y12 receptor oligomers and partitions them out of lipid rafts. Proc Natl Acad Sci U S A 103(29):11069–11074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ding Z et al (2009) Studies on the role of the extracellular cysteines and oligomeric structures of the P2Y receptor when interacting with antagonists. J Thromb Haemost 7(1):232–234

    Article  CAS  PubMed  Google Scholar 

  35. Ding Z, Kim S, Kunapuli SP (2006) Identification of a potent inverse agonist at a constitutively active mutant of human P2Y12 receptor. Mol Pharmacol 69(1):338–345

    CAS  PubMed  Google Scholar 

  36. Dilks JR, Flaumenhaft R (2008) Fluoxetine (Prozac) augments platelet activation mediated through protease-activated receptors. J Thromb Haemost 6(4):705–708

    Article  CAS  PubMed  Google Scholar 

  37. Zhang Y et al (2012) Increased platelet activation and thrombosis in transgenic mice expressing constitutively active P2Y12. J Thromb Haemost 10(10):2149–2157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bhatt DL et al (2013) Effect of platelet inhibition with cangrelor during PCI on ischemic events. New Engl J Med 368(14):1303–1313

    Article  CAS  PubMed  Google Scholar 

  39. Zhang S et al (2013) P2Y12 protects platelets from apoptosis via PI3k-dependent Bak/Bax inactivation. J Thromb Haemost 11(1):149–160

    Article  CAS  PubMed  Google Scholar 

  40. Cannon CP et al (2007) Safety, tolerability, and initial efficacy of AZD6140, the first reversible oral adenosine diphosphate receptor antagonist, compared with clopidogrel, in patients with non-ST-segment elevation acute coronary syndrome: primary results of the DISPERSE-2 trial. J Am Coll Cardiol 50(19):1844–1851

    Article  CAS  PubMed  Google Scholar 

  41. Husted S et al (2006) Pharmacodynamics, pharmacokinetics, and safety of the oral reversible P2Y12 antagonist AZD6140 with aspirin in patients with atherosclerosis: a double-blind comparison to clopidogrel with aspirin. Eur Heart J 27(9):1038–1047

    Article  CAS  PubMed  Google Scholar 

  42. Van Giezen JJ et al (2009) Ticagrelor binds to human P2Y(12) independently from ADP but antagonizes ADP-induced receptor signaling and platelet aggregation. J Thromb Haemost 7(9):1556–1565

    Google Scholar 

  43. Mega JL, Simon T (2015) Pharmacology of antithrombotic drugs: an assessment of oral antiplatelet and anticoagulant treatments. Lancet 386(9990):281–91

    Article  CAS  PubMed  Google Scholar 

  44. Kauffenstein G et al (2004) Adenine triphosphate nucleotides are antagonists at the P2Y receptor. J Thromb Haemost 2(11):1980–1988

    Article  CAS  PubMed  Google Scholar 

  45. Yang J et al (2002) Signaling through Gi family members in platelets. Redundancy and specificity in the regulation of adenylyl cyclase and other effectors. J Biol Chem 277(48):46035–46042

    Article  CAS  PubMed  Google Scholar 

  46. Schwarz UR, Walter U, Eigenthaler M (2001) Taming platelets with cyclic nucleotides. Biochem Pharmacol 62(9):1153–1161

    Article  CAS  PubMed  Google Scholar 

  47. Trumel C et al (1999) A key role of adenosine diphosphate in the irreversible platelet aggregation induced by the PAR1-activating peptide through the late activation of phosphoinositide 3-kinase. Blood 94(12):4156–4165

    CAS  PubMed  Google Scholar 

  48. Kauffenstein G et al (2001) The P2Y(12) receptor induces platelet aggregation through weak activation of the alpha(IIb)beta(3) integrin – a phosphoinositide 3-kinase-dependent mechanism. FEBS Lett 505(2):281–290

    Article  CAS  PubMed  Google Scholar 

  49. Lova P et al (2003) A selective role for phosphatidylinositol 3,4,5-trisphosphate in the Gi-dependent activation of platelet Rap1B. J Biol Chem 278(1):131–138

    Article  CAS  PubMed  Google Scholar 

  50. Kim S, Jin J, Kunapuli SP (2004) Akt activation in platelets depends on Gi signaling pathways. J Biol Chem 279(6):4186–4195

    Article  CAS  PubMed  Google Scholar 

  51. Shankar H et al (2006) G-protein-gated inwardly rectifying potassium channels regulate ADP-induced cPLA2 activity in platelets through Src family kinases. Blood 108(9):3027–3034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nieswandt B et al (2002) Costimulation of Gi- and G12/G13-mediated signaling pathways induces integrin alpha IIbbeta 3 activation in platelets. J Biol Chem 277(42):39493–39498

    Article  CAS  PubMed  Google Scholar 

  53. Peerschke EI et al (1980) Correlation between fibrinogen binding to human platelets and platelet aggregability. Blood 55(5):841–847

    CAS  PubMed  Google Scholar 

  54. Nguyen TA, Diodati JG, Pharand C (2005) Resistance to clopidogrel: a review of the evidence. J Am Coll Cardiol 45(8):1157–1164

    Article  CAS  PubMed  Google Scholar 

  55. Cosemans JM et al (2006) Continuous signaling via PI3K isoforms beta and gamma is required for platelet ADP receptor function in dynamic thrombus stabilization. Blood 108(9):3045–3052

    Article  CAS  PubMed  Google Scholar 

  56. Kamae T et al (2006) Critical role of ADP interaction with P2Y12 receptor in the maintenance of alpha(IIb)beta3 activation: association with Rap1B activation. J Thromb Haemost 4(6):1379–1387

    Article  CAS  PubMed  Google Scholar 

  57. Roger S et al (2004) Costimulation of the Gi-coupled ADP receptor and the Gq-coupled TXA2 receptor is required for ERK2 activation in collagen-induced platelet aggregation. FEBS Lett 556(1–3):227–235

    Article  CAS  PubMed  Google Scholar 

  58. Falker K, Lange D, Presek P (2004) ADP secretion and subsequent P2Y12 receptor signalling play a crucial role in thrombin-induced ERK2 activation in human platelets. Thromb Haemost 92(1):114–123

    PubMed  Google Scholar 

  59. Garcia A et al (2007) Regulation and functional consequences of ADP receptor-mediated ERK2 activation in platelets. Biochem J 404(2):299–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Garcia A et al (2010) Role of phosphoinositide 3-kinase beta in platelet aggregation and thromboxane A2 generation mediated by Gi signalling pathways. Biochem J 429(2):369–377

    Article  CAS  PubMed  Google Scholar 

  61. Khan A et al (2014) The physical association of the P2Y12 receptor with PAR4 regulates arrestin-mediated Akt activation. Mol Pharmacol 86(1):1–11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Moore SF, Hunter RW, Hers I (2014) Protein kinase C and P2Y12 take center stage in thrombin-mediated activation of mammalian target of rapamycin complex 1 in human platelets. J Thromb Haemost 12(5):748–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wu CC et al (2010) The roles and mechanisms of PAR4 and P2Y12/phosphatidylinositol 3-kinase pathway in maintaining thrombin-induced platelet aggregation. Br J Pharmacol 161(3):643–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hardy AR, Hill DJ, Poole AW (2005) Evidence that the purinergic receptor P2Y12 potentiates platelet shape change by a Rho kinase-dependent mechanism. Platelets 16(7):415–429

    Article  CAS  PubMed  Google Scholar 

  65. Quinton TM et al (2004) Different G protein-coupled signaling pathways are involved in alpha granule release from human platelets. J Thromb Haemost 2(6):978–984

    Article  CAS  PubMed  Google Scholar 

  66. van Gestel MA et al (2003) In vivo blockade of platelet ADP receptor P2Y12 reduces embolus and thrombus formation but not thrombus stability. Arterioscler Thromb Vasc Biol 23(3):518–523

    Article  PubMed  Google Scholar 

  67. Lopez JJ et al (2008) Thrombin induces activation and translocation of Bid, Bax and Bak to the mitochondria in human platelets. J Thromb Haemost 6(10):1780–1788

    Article  CAS  PubMed  Google Scholar 

  68. Morrell CN et al (2014) Emerging roles for platelets as immune and inflammatory cells. Blood 123(18):2759–2767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Liu Y et al (2011) Novel role of platelets in mediating inflammatory responses and ventricular rupture or remodeling following myocardial infarction. Arterioscler Thromb Vasc Biol 31(4):834–841

    Article  CAS  PubMed  Google Scholar 

  70. von Hundelshausen P, Weber C (2007) Platelets as immune cells: bridging inflammation and cardiovascular disease. Circ Res 100(1):27–40

    Article  CAS  Google Scholar 

  71. Zarbock A, Polanowska-Grabowska RK, Ley K (2007) Platelet-neutrophil-interactions: linking hemostasis and inflammation. Blood Rev 21(2):99–111

    Article  CAS  PubMed  Google Scholar 

  72. Paruchuri S et al (2009) Leukotriene E4-induced pulmonary inflammation is mediated by the P2Y12 receptor. J Exp Med 206(11):2543–2555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Boilard E et al (2010) Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science 327(5965):580–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Garcia AE et al (2011) Clopidogrel, a P2Y12 receptor antagonist, potentiates the inflammatory response in a rat model of peptidoglycan polysaccharide-induced arthritis. PLoS One 6(10):e26035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Liverani E et al (2014) LPS-induced systemic inflammation is more severe in P2Y12 null mice. J Leukoc Biol 95(2):313–323

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Hagiwara S et al (2011) Adenosine diphosphate receptor antagonist clopidogrel sulfate attenuates LPS-induced systemic inflammation in a rat model. Shock 35(3):289–292

    Article  CAS  PubMed  Google Scholar 

  77. Seidel M et al (2009) Beneficial effect of clopidogrel in a mouse model of polymicrobial sepsis. J Thromb Haemost 7(6):1030–1032

    Article  CAS  PubMed  Google Scholar 

  78. Larsen SB et al (2015) The influence of low-grade inflammation on platelets in patients with stable coronary artery disease. Thromb Haemost 114(4):519–529

    Article  PubMed  Google Scholar 

  79. Moheimani F, Jackson DE (2012) P2Y12 receptor: platelet thrombus formation and medical interventions. Int J Hematol 96(5):572–587

    Article  PubMed  Google Scholar 

  80. Fontana P et al (2003) Adenosine diphosphate-induced platelet aggregation is associated with P2Y12 gene sequence variations in healthy subjects. Circulation 108(8):989–995

    Article  CAS  PubMed  Google Scholar 

  81. Fontana P et al (2003) P2Y12 H2 haplotype is associated with peripheral arterial disease: a case-control study. Circulation 108(24):2971–2973

    Article  PubMed  Google Scholar 

  82. Staritz P et al (2009) Platelet reactivity and clopidogrel resistance are associated with the H2 haplotype of the P2Y12-ADP receptor gene. Int J Cardiol 133(3):341–345

    Article  PubMed  Google Scholar 

  83. Cavallari U et al (2007) Gene sequence variations of the platelet P2Y12 receptor are associated with coronary artery disease. BMC Med Genet 8:59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Bonello L et al (2010) Impact of P2Y12-ADP receptor polymorphism on the efficacy of clopidogrel dose-adjustment according to platelet reactivity monitoring in coronary artery disease patients. Thromb Res 125(4):e167–e170

    Article  CAS  PubMed  Google Scholar 

  85. von Beckerath N et al (2005) P2Y12 gene H2 haplotype is not associated with increased adenosine diphosphate-induced platelet aggregation after initiation of clopidogrel therapy with a high loading dose. Blood Coagul Fibrinolysis 16(3):199–204

    Article  Google Scholar 

  86. Angiolillo DJ et al (2005) Lack of association between the P2Y12 receptor gene polymorphism and platelet response to clopidogrel in patients with coronary artery disease. Thromb Res 116(6):491–497

    Article  CAS  PubMed  Google Scholar 

  87. Ziegler S et al (2005) Association of a functional polymorphism in the clopidogrel target receptor gene, P2Y12, and the risk for ischemic cerebrovascular events in patients with peripheral artery disease. Stroke 36(7):1394–1399

    Article  CAS  PubMed  Google Scholar 

  88. Smith SM et al (2006) Common sequence variations in the P2Y12 and CYP3A5 genes do not explain the variability in the inhibitory effects of clopidogrel therapy. Platelets 17(4):250–258

    Article  CAS  PubMed  Google Scholar 

  89. Bierend A et al (2008) P2Y12 polymorphisms and antiplatelet effects of aspirin in patients with coronary artery disease. Br J Clin Pharmacol 65(4):540–547

    Article  CAS  PubMed  Google Scholar 

  90. Cattaneo M (2011) Molecular defects of the platelet P2 receptors. Purinergic Signal 7(3):333–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Cattaneo M et al (1992) Identification of a new congenital defect of platelet function characterized by severe impairment of platelet responses to adenosine diphosphate. Blood 80(11):2787–2796

    CAS  PubMed  Google Scholar 

  92. Cattaneo M et al (2000) Platelets from a patient heterozygous for the defect of P2CYC receptors for ADP have a secretion defect despite normal thromboxane A2 production and normal granule stores: further evidence that some cases of platelet ‘primary secretion defect’ are heterozygous for a defect of P2CYC receptors. Arterioscler Thromb Vasc Biol 20(11):E101–E106

    Article  CAS  PubMed  Google Scholar 

  93. Cattaneo M et al (1994) Role of ADP in platelet aggregation at high shear: studies in a patient with congenital defect of platelet responses to ADP. Br J Haematol 88(4):826–829

    Article  CAS  PubMed  Google Scholar 

  94. Halushka PV et al (1981) Increased platelet thromboxane synthesis in diabetes mellitus. J Lab Clin Med 97(1):87–96

    CAS  PubMed  Google Scholar 

  95. Colwell JA, Nesto RW (2003) The platelet in diabetes: focus on prevention of ischemic events. Diabetes Care 26(7):2181–2188

    Article  PubMed  Google Scholar 

  96. Angiolillo DJ et al (2005) Platelet function profiles in patients with type 2 diabetes and coronary artery disease on combined aspirin and clopidogrel treatment. Diabetes 54(8):2430–2435

    Article  CAS  PubMed  Google Scholar 

  97. Marcucci R et al (2009) Cardiovascular death and nonfatal myocardial infarction in acute coronary syndrome patients receiving coronary stenting are predicted by residual platelet reactivity to ADP detected by a point-of-care assay: a 12-month follow-up. Circulation 119(2):237–242

    Article  PubMed  Google Scholar 

  98. Angiolillo DJ et al (2006) Insulin therapy is associated with platelet dysfunction in patients with type 2 diabetes mellitus on dual oral antiplatelet treatment. J Am Coll Cardiol 48(2):298–304

    Article  CAS  PubMed  Google Scholar 

  99. Leoncini M et al (2014) Pharmacodynamic effects of adjunctive high dose atorvastatin on double dose clopidogrel in patients with high on-treatment platelet reactivity depending on diabetes mellitus status. J Thromb Thrombolysis 37(4):427–434

    Article  CAS  PubMed  Google Scholar 

  100. Ferreira IA et al (2006) Platelet inhibition by insulin is absent in type 2 diabetes mellitus. Arterioscler Thromb Vasc Biol 26(2):417–422

    Article  CAS  PubMed  Google Scholar 

  101. Robledo-Nolasco R et al (2015) Efficacy of change to new P2Y12 receptor antagonists in patients high on treatment platelet reactivity undergoing percutaneous coronary intervention. Clin Appl Thromb Hemost 21(7):619–25

    Article  CAS  PubMed  Google Scholar 

  102. Capranzano P et al (2013) Pharmacodynamic effects of adjunctive cilostazol therapy in patients with coronary artery disease on dual antiplatelet therapy: impact of high on-treatment platelet reactivity and diabetes mellitus status. Catheter Cardiovasc Interv 81(1):42–49

    Article  PubMed  Google Scholar 

  103. Baber U et al (2013) Combined and independent impact of diabetes mellitus and chronic kidney disease on residual platelet reactivity. Thromb Haemost 110(1):118–123

    Article  CAS  PubMed  Google Scholar 

  104. Morel O et al (2013) Impaired platelet P2Y12 inhibition by thienopyridines in chronic kidney disease: mechanisms, clinical relevance and pharmacological options. Nephrol Dial Transplant 28(8):1994–2002

    Article  CAS  PubMed  Google Scholar 

  105. Dorsam RT, Kunapuli SP (2004) Central role of the P2Y12 receptor in platelet activation. J Clin Invest 113(3):340–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Farid NA, Kurihara A, Wrighton SA (2010) Metabolism and disposition of the thienopyridine antiplatelet drugs ticlopidine, clopidogrel, and prasugrel in humans. J Clin Pharmacol 50(2):126–142

    Article  CAS  PubMed  Google Scholar 

  107. Hu L et al (2011) BF061, a novel antiplatelet and antithrombotic agent targeting P2Y(1)(2) receptor and phosphodiesterase. Thromb Haemost 106(6):1203–1214

    Article  CAS  PubMed  Google Scholar 

  108. Wiviott SD, Steg PG (2015) Clinical evidence for oral antiplatelet therapy in acute coronary syndromes. Lancet 386:292–302

    Article  CAS  PubMed  Google Scholar 

  109. Kam PC, Nethery CM (2003) The thienopyridine derivatives (platelet adenosine diphosphate receptor antagonists), pharmacology and clinical developments. Anaesthesia 58(1):28–35

    Article  CAS  PubMed  Google Scholar 

  110. Kuzniar J et al (1996) Pharmacodynamics of ticlopidine: relation between dose and time of administration to platelet inhibition. Int J Clin Pharmacol Ther 34(8):357–361

    CAS  PubMed  Google Scholar 

  111. Bertrand ME et al (2000) Double-blind study of the safety of clopidogrel with and without a loading dose in combination with aspirin compared with ticlopidine in combination with aspirin after coronary stenting: the clopidogrel aspirin stent international cooperative study (CLASSICS). Circulation 102(6):624–629

    Article  CAS  PubMed  Google Scholar 

  112. Belanger P et al (2004) Effects of high ticlopidine doses on platelet function in acute coronary syndrome patients. J Cardiovasc Pharmacol 43(1):128–132

    Article  CAS  PubMed  Google Scholar 

  113. Byrne RA et al (2009) Rationale and design of a randomized, double-blind, placebo-controlled trial of 6 versus 12 months clopidogrel therapy after implantation of a drug-eluting stent: the Intracoronary Stenting and Antithrombotic Regimen: Safety And EFficacy of 6 months dual antiplatelet therapy after drug-eluting stenting (ISAR-SAFE) study. Am Heart J 157(4):620–4.e2

    Article  CAS  PubMed  Google Scholar 

  114. Amsterdam EA et al (2014) 2014 AHA/ACC guideline for the management of patients with non-ST-elevation acute coronary syndromes: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 64(24):e139–e228

    Article  PubMed  Google Scholar 

  115. Patti G et al (2013) Efficacy of clopidogrel reloading in patients with acute coronary syndrome undergoing percutaneous coronary intervention during chronic clopidogrel therapy (from the Antiplatelet therapy for Reduction of MYocardial Damage during Angioplasty [ARMYDA-8 RELOAD-ACS] trial). Am J Cardiol 112(2):162–168

    Article  CAS  PubMed  Google Scholar 

  116. O’Gara PT et al (2013) 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: developed in collaboration with the American College of Emergency Physicians and Society for Cardiovascular Angiography and Interventions. Catheter Cardiovasc Interv 82(1):E1–E27

    Article  PubMed  Google Scholar 

  117. Wright RS et al (2011) 2011 ACCF/AHA focused update incorporated into the ACC/AHA 2007 guidelines for the management of patients with unstable angina/non-ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines developed in collaboration with the American Academy of Family Physicians, Society for Cardiovascular Angiography and Interventions, and the Society of Thoracic Surgeons. J Am Coll Cardiol 57(19):e215–e367

    Article  PubMed  Google Scholar 

  118. Schror K (1998) Clinical pharmacology of the adenosine diphosphate (ADP) receptor antagonist, clopidogrel. Vasc Med 3(3):247–251

    Article  CAS  PubMed  Google Scholar 

  119. Grove EL et al (2013) Gastrointestinal events with clopidogrel: a nationwide population-based cohort study. J Gen Intern Med 28(2):216–222

    Article  PubMed  Google Scholar 

  120. Agewall S et al (2013) Expert position paper on the use of proton pump inhibitors in patients with cardiovascular disease and antithrombotic therapy. Eur Heart J 34(23):1708–1713, 1713a–1713b

    Google Scholar 

  121. Li SN et al (2013) The effects of cytochrome P450 2C19 genetic polymorphism on clopidogrel resistance and recent prognosis of patients with acute coronary syndrome. Zhonghua Nei Ke Za Zhi 52(11):961–965

    CAS  PubMed  Google Scholar 

  122. Su J et al (2014) Association of P2Y12 gene promoter DNA methylation with the risk of clopidogrel resistance in coronary artery disease patients. Biomed Res Int 2014:450814

    PubMed  PubMed Central  Google Scholar 

  123. O I et al (2013) Evaluation of Aspirin and Clopidogrel resistance in patients with Acute Coronary Syndrome by using Adenosine Diphosphate Test and Aspirin Test. Pak J Med Sci 29(1):97–102

    PubMed  PubMed Central  Google Scholar 

  124. Kar R et al (2013) Clopidogrel resistance in North Indian patients of coronary artery disease and lack of its association with platelet ADP receptors P2Y1 and P2Y12 gene polymorphisms. Platelets 24(4):297–302

    Article  CAS  PubMed  Google Scholar 

  125. Wang A, Lella LK, Brener SJ (2014) Efficacy and safety of prasugrel compared With clopidogrel for patients with acute coronary syndrome undergoing percutaneous coronary intervention. Am J Ther 2014 [Epub ahead of print]

    Google Scholar 

  126. Coons JC et al (2014) Pharmacokinetic evaluation of prasugrel for the treatment of myocardial infarction. Expert Opin Drug Metab Toxicol 10(4):609–620

    Article  CAS  PubMed  Google Scholar 

  127. Wiviott SD et al (2007) Prasugrel versus clopidogrel in patients with acute coronary syndromes. N Engl J Med 357(20):2001–2015

    Article  CAS  PubMed  Google Scholar 

  128. Almendro-Delia M et al (2015) Safety and efficacy of in-hospital clopidogrel-to-prasugrel switching in patients with acute coronary syndrome. An analysis from the ‘real world’. J Thromb Thrombolysis 39(4):499–507

    Article  CAS  PubMed  Google Scholar 

  129. Olson WH et al (2014) Prasugrel vs. clopidogrel in acute coronary syndrome patients treated with prasugrel. J Clin Pharm Ther 39(6):663–672

    Article  CAS  PubMed  Google Scholar 

  130. Kozinski M et al (2014) Prasugrel overcomes high on-clopidogrel platelet reactivity in the acute phase of acute coronary syndrome and maintains its antiplatelet potency at 30-day follow-up. Cardiol J 21(5):547–556

    Article  PubMed  Google Scholar 

  131. Brandt JT et al (2007) Common polymorphisms of CYP2C19 and CYP2C9 affect the pharmacokinetic and pharmacodynamic response to clopidogrel but not prasugrel. J Thromb Haemost 5(12):2429–2436

    Article  CAS  PubMed  Google Scholar 

  132. Teng R, Butler K (2010) Pharmacokinetics, pharmacodynamics, tolerability and safety of single ascending doses of ticagrelor, a reversibly binding oral P2Y(12) receptor antagonist, in healthy subjects. Eur J Clin Pharmacol 66(5):487–496

    Article  CAS  PubMed  Google Scholar 

  133. Dobesh PP, Oestreich JH (2014) Ticagrelor: pharmacokinetics, pharmacodynamics, clinical efficacy, and safety. Pharmacotherapy 34(10):1077–1090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Butler K, Teng R (2010) Pharmacokinetics, pharmacodynamics, safety and tolerability of multiple ascending doses of ticagrelor in healthy volunteers. Br J Clin Pharmacol 70(1):65–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Teng R et al (2010) Absorption, distribution, metabolism, and excretion of ticagrelor in healthy subjects. Drug Metab Dispos 38(9):1514–1521

    Article  CAS  PubMed  Google Scholar 

  136. Tantry US et al (2010) First analysis of the relation between CYP2C19 genotype and pharmacodynamics in patients treated with ticagrelor versus clopidogrel: the ONSET/OFFSET and RESPOND genotype studies. Circ Cardiovasc Genet 3(6):556–566

    Article  CAS  PubMed  Google Scholar 

  137. Wallentin L et al (2009) Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N Engl J Med 361(11):1045–1057

    Article  CAS  PubMed  Google Scholar 

  138. Storey RF et al (2007) Inhibition of platelet aggregation by AZD6140, a reversible oral P2Y12 receptor antagonist, compared with clopidogrel in patients with acute coronary syndromes. J Am Coll Cardiol 50(19):1852–1856

    Article  CAS  PubMed  Google Scholar 

  139. Patel MR et al (2015) Cardiovascular events in acute coronary syndrome patients with peripheral arterial disease treated with ticagrelor compared with clopidogrel: data from the PLATO Trial. Eur J Prev Cardiol 22(6):734–42

    Article  PubMed  Google Scholar 

  140. Bonaca MP et al (2015) Long-term use of ticagrelor in patients with prior myocardial infarction. N Engl J Med 373:1272–1273

    Google Scholar 

  141. Shah R et al (2015) Ticagrelor as an alternative in clopidogrel-associated neutropenia. Platelets 26(1):80–82

    Article  CAS  PubMed  Google Scholar 

  142. Cattaneo M, Faioni EM (2012) Why does ticagrelor induce dyspnea? Thromb Haemost 108(6):1031–1036

    Article  PubMed  Google Scholar 

  143. Tamborini Permunian E et al (2015) Cangrelor for the treatment of arterial thrombosis: pharmacokinetics/pharmacodynamics and clinical data. Expert Opin Drug Metab Toxicol 11(4):625–637

    Article  CAS  PubMed  Google Scholar 

  144. Akers WS et al (2010) Pharmacokinetics and pharmacodynamics of a bolus and infusion of cangrelor: a direct, parenteral P2Y12 receptor antagonist. J Clin Pharmacol 50(1):27–35

    Article  CAS  PubMed  Google Scholar 

  145. Genereux P et al (2014) Impact of intraprocedural stent thrombosis during percutaneous coronary intervention: insights from the CHAMPION PHOENIX Trial (Clinical Trial Comparing Cangrelor to Clopidogrel Standard of Care Therapy in Subjects Who Require Percutaneous Coronary Intervention). J Am Coll Cardiol 63(7):619–629

    Article  PubMed  Google Scholar 

  146. Ueno M, Rao SV, Angiolillo DJ (2010) Elinogrel: pharmacological principles, preclinical and early phase clinical testing. Future Cardiol 6(4):445–453

    Article  CAS  PubMed  Google Scholar 

  147. Bonadei I et al (2014) New frontiers in the management of acute coronary syndromes: cangrelor and elinogrel. Recent Pat Cardiovasc Drug Discov 9(1):22–27

    Article  CAS  PubMed  Google Scholar 

  148. Leonardi S et al (2010) Rationale and design of the randomized, double-blind trial testing INtraveNous and Oral administration of elinogrel, a selective and reversible P2Y(12)-receptor inhibitor, versus clopidogrel to eVAluate Tolerability and Efficacy in nonurgent Percutaneous Coronary Interventions patients (INNOVATE-PCI). Am Heart J 160(1):65–72

    Article  CAS  PubMed  Google Scholar 

  149. Oestreich JH (2010) Elinogrel, a reversible P2Y12 receptor antagonist for the treatment of acute coronary syndrome and prevention of secondary thrombotic events. Curr Opin Investig Drugs 11(3):340–348

    CAS  PubMed  Google Scholar 

  150. Welsh RC et al (2012) A randomized, double-blind, active-controlled phase 2 trial to evaluate a novel selective and reversible intravenous and oral P2Y12 inhibitor elinogrel versus clopidogrel in patients undergoing nonurgent percutaneous coronary intervention: the INNOVATE-PCI trial. Circ Cardiovasc Interv 5(3):336–346

    Article  CAS  PubMed  Google Scholar 

  151. Schmidt P et al (2013) Identification of determinants required for agonistic and inverse agonistic ligand properties at the ADP receptor P2Y12. Mol Pharmacol 83(1):256–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Schaff M et al (2013) Integrin alpha6beta1 is the main receptor for vascular laminins and plays a role in platelet adhesion, activation, and arterial thrombosis. Circulation 128(5):541–552

    Article  CAS  PubMed  Google Scholar 

  153. Waite LH, Phan YL, Spinler SA (2014) Cangrelor: a novel intravenous antiplatelet agent with a questionable future. Pharmacotherapy 34(10):1061–1076

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongren Ding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhang, Y., Zhang, S., Ding, Z. (2016). Role of P2Y12 Receptor in Thrombosis. In: Islam, M. (eds) Thrombosis and Embolism: from Research to Clinical Practice. Advances in Experimental Medicine and Biology(), vol 906. Springer, Cham. https://doi.org/10.1007/5584_2016_123

Download citation

  • DOI: https://doi.org/10.1007/5584_2016_123

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22107-6

  • Online ISBN: 978-3-319-22108-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics