Skip to main content

Heat Transfer as a New Sensing Technique for the Label-Free Detection of Biomolecules

  • Chapter
  • First Online:
Book cover Label-Free Biosensing

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 16))

Abstract

This chapter focuses on a new thermal sensing technique based on analyzing the heat-transfer resistance of a functionalized solid–liquid interface in time. This method, the so-called heat-transfer method (HTM), was developed by the authors in 2012. In order to monitor the thermal resistance of a functional interface in time, the temperature beneath a functionalized chip is controlled, while the output temperature in the measuring chamber is registered in time. Originally, the method was used for the detection of single-nucleotide polymorphisms (SNPs) in deoxyribonucleic acid (DNA). It was found that upon denaturation of double-stranded DNA, the DNA curled up, leading to an increased surface coverage and hence thermal resistance. This transition from low to high thermal resistance regimes could be employed to pinpoint the melting temperature of the DNA strain under study and thereby identify point mutations. In recent years, HTM has been combined with various synthetic and natural receptors for various applications including the detection of whole cells and microorganisms, neurotransmitters and hormones, and proteins using surface imprinted polymers (SIPs), molecularly imprinted polymers (MIPs), and aptamers, respectively. This chapter aims at discussing HTM as a sensing technique and its application in bio-analytics in detail and benchmarking it by providing an overview of other thermal sensing principles and their inherent benefits and drawbacks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Ansevin AT, Vizard DL, Brown BW et al (1976) High-resolution thermal denaturation of DNA. Theoretical and practical considerations for the resolution of thermal subtransitions. Biopolymers 15:153–174

    Article  CAS  PubMed  Google Scholar 

  2. Saiki R, Scharf S, Faloona F et al (1985) Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350–1354

    Article  CAS  Google Scholar 

  3. Spink C, Wads SI (1976) Calorimetry as an analytical tool in biochemistry and biology. Methods Biochem Anal 23:1–159

    PubMed  CAS  Google Scholar 

  4. Lammers F, Scheper T (1999) Thermal biosensors in biotechnology. In: Scheper T (ed) Advances in biochemical engineering/biotechnology, vol 64. Springer-Verlag, Berlin Heidelberg, pp 36–64

    Google Scholar 

  5. Bowers LD, Carr PW (1976) Immobilized-enzyme flow-enthalpimetric analyzer: application to glucose determination by direct phosphorylation catalyzed by hexokinase. Clin Chem 22:1427–1433

    PubMed  CAS  Google Scholar 

  6. Danielsson B, Gadd K, Mattiasson B et al (1976) Determination of urea with an enzyme thermistor using immobilized urease. Anal Lett 9:987–1001

    Article  CAS  Google Scholar 

  7. Danielsson B, Mosbach K (1988) Enzyme thermistors. Methods Enzymol 137:181

    Article  CAS  Google Scholar 

  8. Danielsson B, Bülow L, Lowe CR et al (1981) Evaluation of the enzyme thermistor as a specific detector for chromatographic procedures. Anal Biochem 117:84–93

    Article  CAS  PubMed  Google Scholar 

  9. Lammers F, Scheper T (1997) On-line monitoring of enzyme catalyzed biotransformations with biosensors. Enzyme Microb Technol 20:432–436

    Article  CAS  Google Scholar 

  10. Satoh I, Danielsson B, Mosbach K (1981) Triglyceride determination with use of an enzyme thermistor. Anal Chim Acta 131:255–262

    Article  CAS  Google Scholar 

  11. Xie B, Danielsson B, Norberg P et al (1992) Development of a thermal micro-biosensor fabricated on a silicon chip. Sens Actuators B Chem 6:127–130

    Article  CAS  Google Scholar 

  12. Bhand SG, Soundararajan S, Surugiu-Wärnmark I et al (2010) Fructose-selective calorimetric biosensor in flow injection analysis. Anal Chim Acta 668:13–18

    Article  CAS  PubMed  Google Scholar 

  13. Bjarnason B, Johansson P, Johansson G (1998) A novel thermal biosensor: evaluation for determination of urea in serum. Anal Chim Acta 372:341–348

    Article  CAS  Google Scholar 

  14. Bataillard P, Steffgen E, Haemmerli S et al (1993) An integrated silicon thermopile as biosensor for the thermal monitoring of glucose, urea and penicillin. Biosens Bioelectron 8:89–98

    Article  CAS  PubMed  Google Scholar 

  15. Xie B, Mecklenburg M, Danielsson B et al (1994) Microbiosensor based on an integrated thermopile. Anal Chim Acta 299:165–170

    Article  CAS  Google Scholar 

  16. Urban G, Kamper H, Jachimowicz A et al (1991) The construction of microcalorimetric biosensors by use of high resolution thin-film thermistors. Biosens Bioelectron 6:275–280

    Article  CAS  Google Scholar 

  17. Maskow T, Lerchner J, Peitzsch M et al (2006) Chip calorimetry for the monitoring of whole cell biotransformation. J Biotechnol 122:431–442

    Article  CAS  PubMed  Google Scholar 

  18. Vermeir S, Nicolaï BM, Verboven P et al (2007) Microplate differential calorimetric biosensor for ascorbic acid analysis in food and pharmaceuticals. Anal Chem 79:6119–6127

    Article  CAS  PubMed  Google Scholar 

  19. Xie B, Tang X, Wollenberger U et al (1997) Hybrid biosensor for simultaneous electrochemical and thermometric detection. Anal Lett 30:2141–2158

    Article  CAS  Google Scholar 

  20. Lai SVH, Kao P, Tadigadapa S (2011) Thermal biosensors from micromachined bulk acoustic wave resonators. Procedia Engin 25:1381–1384

    Article  CAS  Google Scholar 

  21. Brandes W, Maschke HE, Scheper T (1993) Specific flow injection sandwich binding assay for IgG using protein A and a fusion protein. Anal Chem 65:3368–3371

    Article  CAS  PubMed  Google Scholar 

  22. Mecklenburg M, Lindbladh C, Hongshan L et al (1993) Enzymatic amplification of a flow-injected thermometric enzyme-linked immunoassay for human insulin. Anal Biochem 212:388–393

    Article  CAS  PubMed  Google Scholar 

  23. Wang L, Sipe DM, Xu Y (2008) A MEMS thermal biosensor for metabolic monitoring applications. J Microelectromech Syst 17:318–327

    Article  CAS  Google Scholar 

  24. Paul P, Hossain M, Kumar GS (2011) Calorimetric and thermal analysis studies on the binding of phenothiazinium dye thionine with DNA polynucleotides. J Chem Thermodyn 43:1036–1043

    Article  CAS  Google Scholar 

  25. Lee D, Hwang KS, Kim S (2014) Rapid discrimination of DNA strands using an opto-calorimetric microcantilever sensor. Lab Chip 14:4659–4664

    Article  CAS  PubMed  Google Scholar 

  26. Lettau K, Waskinke A, Katterle M et al (2006) A bifunctional molecularly imprinted polymer (MIP): analysis of binding and catalysis by a thermistor. Angew Chem Int Ed Engl 45:6986–6990

    Article  CAS  PubMed  Google Scholar 

  27. Rajkumar R, Katterle M, Warsinke A et al (2008) Thermometric MIP sensor for fructosyl valine. Biosens Bioelectron 23:1195–1199

    Article  CAS  PubMed  Google Scholar 

  28. van Grinsven B, Vanden Bon N, Strauven H et al (2012) Heat-transfer resistance at solid-liquid interfaces: a tool for the detection of single-nucleotide polymorphisms in DNA. ACS Nano 6:2712–2721

    Article  CAS  PubMed  Google Scholar 

  29. van Grinsven B, Eersels K, Peeters M et al (2014) The heat-transfer method: a versatile low-cost, label-free, fast, and user-friendly readout platform for biosensor applications. ACS Appl Mater Interfaces 6:13309–13318

    Article  CAS  PubMed  Google Scholar 

  30. Fodde R, Losekoot M (1994) Mutation detection by denaturing gradient gel electrophoresis (DGGE). Hum Mutat 3:83–94

    Article  CAS  PubMed  Google Scholar 

  31. Bers K, van Grinsven B, Vandenryt T et al (2013) Implementing heat transfer resistivity as a key element in a nanocrystalline diamond based single nucleotide polymorphism detection array. Diam Relat Mater 38:45–51

    Article  CAS  Google Scholar 

  32. Cornelis P, Vandenryt T, Wackers G et al (2014) Heat transfer resistance as a tool to quantify hybridization efficiency of DNA on a nanocrystalline diamond surface. Diam Relat Mater 48:32–36

    Article  CAS  Google Scholar 

  33. Vanden Bon N, van Grinsven B, Murib MS et al (2014) Heat-transfer-based detection of SNPs in the PAH gene of PKU patients. Int J Nanomedicine 9:1629–1640

    Google Scholar 

  34. Murib MS, Yeap WS, Eurlings Y et al (2016) Heat-transfer based characterization of DNA on synthetic sapphire chips. Sens Actuators B Chem 230:260–271

    Article  CAS  Google Scholar 

  35. Ye L, Haupt K (2004) Molecularly imprinted polymers as antibody and receptor mimics for assays, sensors and drug discovery. Anal Bioanal Chem 378:1887–1897

    Article  CAS  PubMed  Google Scholar 

  36. Peeters M, Csipai P, Geerets B et al (2013) Heat-transfer-based detection of L-nicotine, histamine, and serotonin using molecularly imprinted polymers as biomimetic receptors. Anal Bioanal Chem 405:6453–6460

    Article  CAS  PubMed  Google Scholar 

  37. Geerets B, Peeters M, van Grinsven B et al (2013) Optimizing the thermal read-out technique for MIP-based biomimetic sensors: towards nanomolar detection limits. Sensors (Basel) 13:9148–9159

    Article  CAS  Google Scholar 

  38. Wackers G, Vandenryt T, Cornelis P et al (2014) Array formatting of the heat-transfer method (HTM) for the detection of small organic molecules by molecularly imprinted polymers. Sensors (Basel) 14:11016–11030

    Article  CAS  Google Scholar 

  39. Metters JP, Kadara RO, Banks CE (2011) New directions in screen printed electroanalytical sensors: an over-view of recent developments. Analyst 136:1067–1076

    Article  CAS  PubMed  Google Scholar 

  40. Peeters M, van Grinsven B, Foster CW et al (2016) Introducing thermal wave transport analysis (TWTA): a thermal technique for dopamine detection by screen-printed electrodes functionalized with molecularly imprinted polymer (MIP) particles. Molecules 21:552

    Article  CAS  Google Scholar 

  41. Eersels K, van Grinsven B, Ethirajan A et al (2013) Selective identification of macrophages and cancer cells based on thermal transport through surface-imprinted polymer layers. ACS Appl Mater Interfaces 5:7258–7267

    Article  CAS  PubMed  Google Scholar 

  42. Eersels K, Lieberzeit P, Wagner P (2016) A review on synthetic receptors for bioparticle detection created by surface-imprinting techniques – from principles to applications. ACS Sens 1:1171–1187

    Article  CAS  Google Scholar 

  43. Nakano T, Kikugawa G, Ohara TA (2010) A molecular dynamics study on heat conduction characteristics in DPPC lipid bilayer. J Chem Phys 133:154705

    Article  CAS  PubMed  Google Scholar 

  44. Bers K, Eersels K, van Grinsven B et al (2014) Heat-transfer resistance measurement method (HTM)-based cell detection at trace levels using a progressive enrichment approach with highly selective cell-binding surface imprints. Langmuir 30:3631–3639

    Article  CAS  PubMed  Google Scholar 

  45. Eersels K, van Grinsven B, Khorshid M et al (2015) Heat-transfer-method-based cell culture quality assay through cell detection by surface imprinted polymers. Langmuir 31:2043–2050

    Article  CAS  PubMed  Google Scholar 

  46. Reid Y, Storts D, Riss T et al (2004) Authentic authentication of human cell lines by STR DNA profiling analysis. In: Gall-Edd N, Arkin M (eds) Assay guidance manual. Eli Lilly & Company and the National Center for Advancing Translational Sciences, Bethesda, pp 1–52

    Google Scholar 

  47. van Grinsven B, Eersels K, Akkermans O et al (2016) Label-free detection of Escherichia coli based on thermal transport through surface imprinted polymers. ACS Sens 1:1140–1147

    Article  CAS  Google Scholar 

  48. Losada-Pérez P, Jiménez-Monroy KL, van Grinsven B et al (2014) Phase transitions in lipid vesicles detected by a complementary set of methods: heat-transfer measurements, adiabatic scanning calorimetry and dissipation-mode quartz crystal microbalance. Phys Status Solidi A 211:1377–1388

    Article  CAS  Google Scholar 

  49. Privalov PL (1980) Scanning microcalorimeters for studying macromolecules. Pure Appl Chem 52:479–497

    Article  CAS  Google Scholar 

  50. Zammit U, Marinelli M, Mercuri F et al (2010) Analysis of the order character of the R(II)-R(I) and the R(I)-R(V) rotator phase transitions in alkanes by photopyroelectric calorimetry. J Phys Chem B 114:8134–8139

    Article  CAS  PubMed  Google Scholar 

  51. Peeters M, van Grinsven B, Cleij TJ et al (2015) Label-free protein detection based on the heat-transfer method – a case study with the peanut allergen Ara h 1 and aptamer-based synthetic receptors. ACS Appl Mater Interfaces 7:10316–10323

    Article  CAS  PubMed  Google Scholar 

  52. Burks A, Shin D, Cockrell G et al (1997) Mapping and mutational analysis of the IgE-binding epitopes on Ara h 1, a legume vicilin protein and a major allergen in peanut hypersensitivity. Eur J Biochem 245:334–339

    Article  CAS  PubMed  Google Scholar 

  53. Tran DT, Knez K, Janssen KPF et al (2013) Selection of aptamers against Ara h 1 protein for FOSPR biosensing of peanut allergens in food matrices. Biosens Bioelectron 43:245–251

    Article  CAS  PubMed  Google Scholar 

  54. Das BK, Tlili C, Badhulika S et al (2011) Single-walled carbon nanotubes chemiresistor aptasensors for small molecules: picomolar level detection of adenosine triphosphate. Chem Commun (Camb) 47:3793–3795

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Wagner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Eersels, K., van Grinsven, B., Peeters, M., Cleij, T.J., Wagner, P. (2017). Heat Transfer as a New Sensing Technique for the Label-Free Detection of Biomolecules. In: Schöning, M., Poghossian, A. (eds) Label-Free Biosensing. Springer Series on Chemical Sensors and Biosensors, vol 16. Springer, Cham. https://doi.org/10.1007/5346_2017_1

Download citation

Publish with us

Policies and ethics