Skip to main content

Ubiquitous Devices for Chemical Sensing

  • Chapter
  • First Online:
Autonomous Sensor Networks

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 13))

  • 2413 Accesses

Abstract

Widely accepted and deployed commodity consumer products (e.g., laptops, optical disk drives, flatbed scanners, tablets, personal digital assistants, cell phones, wrist watches) as well as high-performance components of consumer products (e.g., micromachined accelerometers, radiofrequency identification tags) present a prominent set of attractive capabilities for advanced sensors. For detection of chemical species in liquids and gases, we take advantage of previously developed, optimized, and mass-produced physical transducers, optoelectronic, radiofrequency identification, and other types of components and rationally combine them with sensing materials to produce new types of chemical sensors. This chapter presents several examples of our recent developments to demonstrate chemical sensors based on mechanical, radiant, and electrical signal-transduction methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CCD:

Charge-coupled device

CD:

Compact disc

DVD:

Digital versatile disc

HF:

High frequency

IC:

Integrated circuit

LCR:

Inductor–capacitor–resistor

LF:

Low frequency

MEMS:

Microelectromechanical system

MeOH:

Methanol

PCA:

Principal component analysis

PDA:

Personal digital assistant

pHEMA:

Polyhydroxyethylmethacrylate

RF:

Radiofrequency

RFID:

Radiofrequency identification

RSD:

Relative standard deviation

S/N:

Signal-to-noise

SACD:

Super audio CD

SAW:

Surface acoustic-wave

TCE:

Trichloroethylene

Tol:

Toluene

TSM:

Thickness shear mode

UHF:

Ultrahigh frequency

References

  1. Hulanicki A, Glab S, Ingman F (1991) Chemical sensors: definitions and classification. Commission on general aspects of analytical chemistry. Pure Appl Chem 63(9):1247–1250

    Article  Google Scholar 

  2. Wolfbeis OS (ed) (1991) Fiber optic chemical sensors and biosensors. CRC, Boca Raton

    Google Scholar 

  3. Taylor RF, Schultz JS (eds) (1996) Handbook of chemical and biological sensors. IOP Publishing, Bristol

    Google Scholar 

  4. Webster JG (ed) (1999) The measurement, instrumentation, and sensors handbook. CRC, Boca Raton

    Google Scholar 

  5. Potyrailo RA (2006) Polymeric sensor materials: toward an alliance of combinatorial and rational design tools ? Angew Chem Int Ed 45:702–723

    Article  CAS  Google Scholar 

  6. Middelhoek S, Noorlag JW (1981/1982) Three-dimensional representation of input and output transducers. Sens Actuators 2:29–41

    Article  Google Scholar 

  7. Janata J (1989) Principles of chemical sensors. Plenum, New York

    Google Scholar 

  8. Hirschfeld T, Callis JB, Kowalski BR (1984) Chemical sensing in process analysis. Science 226:312–318

    Article  CAS  Google Scholar 

  9. Hirschfeld T (1985) Instrumentation in the next decade. Science 230:286–291

    Article  CAS  Google Scholar 

  10. Hagleitner C, Hierlemann A, Brand O, Baltes H (2002) Cmos single chip gas detection systems - part i. In: Baltes H, Göpel W, Hesse J (eds) Sensors update, vol 11. Weinheim, VCH, pp 101–155

    Google Scholar 

  11. Wohltjen H (2006) A journey: from sensor ideas to sensor products. In: Plenary talk at the 11th international meeting on chemical sensors. University of Brescia, Brescia, 16–19 July 2006 (Elsevier Science)

    Google Scholar 

  12. Boussaad S, Tao NJ (2003) Polymer wire chemical sensor using a microfabricated tuning fork. Nano Lett 3:1173–1176

    Article  CAS  Google Scholar 

  13. Ren M, Forzani ES, Tao N (2005) Chemical sensor based on microfabricated wristwatch tuning forks. Anal Chem 77:2700–2707

    Article  CAS  Google Scholar 

  14. Vo-Dinh T, Alarie JP, Isola N, Landis D, Wintenberg AL, Ericson MN (1999) DNA biochip using a phototransistor integrated circuit. Anal Chem 71:358–363

    Article  CAS  Google Scholar 

  15. Ivanisevic A, Yeh J-Y, Mawst L, Kuech TF, Ellis AB (2001) Light-emitting diodes as chemical sensors. Nature 409:476

    Article  CAS  Google Scholar 

  16. Manzano J, Filippini D, Lundström I (2003) Computer screen illumination for the characterization of colorimetric assays. Sens Actuators B 96:173–179

    Article  CAS  Google Scholar 

  17. Cho EJ, Bright FV (2001) Optical sensor array and integrated light source. Anal Chem 73:3289–3293

    Article  CAS  Google Scholar 

  18. Cho EJ, Tao Z, Tehan EC, Bright FV (2002) Multianalyte pin-printed biosensor arrays based on protein-doped xerogels. Anal Chem 74:6177–6184

    Article  CAS  Google Scholar 

  19. Finkenzeller K (2003) RFID handbook. Fundamentals and applications in contactless smart cards and identification, 2nd edn. Wiley, Hoboken

    Google Scholar 

  20. Potyrailo RA, Morris WG (2007) Multianalyte chemical identification and quantitation using a single radio frequency identification sensor. Anal Chem 79:45–51

    Article  CAS  Google Scholar 

  21. Want R (2004) Enabling ubiquitous sensing with RFID. Computer 37(4):84–86. doi:10.1109/MC.2004.1297315

    Article  Google Scholar 

  22. Potyrailo RA, Morris WG, Leach AM, Hassib L, Krishnan K, Surman C, Wroczynski R, Boyette S, Xiao C, Shrikhande P, Agree A, Cecconie T (2007) Theory and practice of ubiquitous quantitative chemical analysis using conventional computer optical disk drives. Appl Opt 46:7007–7017

    Article  Google Scholar 

  23. Bjorklund R, Filippini D, Lundström I (2008) Automatic optimization of experimental conditions for fast evaluation of diagnostic tests using ubiquitous instrumentation. Sens Actuators B 134:199–205

    Article  CAS  Google Scholar 

  24. Gardner JW, Guha PK, Udrea F, Covington JA (2010) Cmos interfacing for integrated gas sensors: a review. IEEE Sens J 10:1833–1848

    Article  CAS  Google Scholar 

  25. Potyrailo RA, May RJ, Sivavec TM (2004) Recognition and quantification of perchloroethylene, trichloroethylene, vinyl chloride, and three isomers of dichloroethylene using acoustic-wave sensor array. Sens Lett 2:31–36

    Article  CAS  Google Scholar 

  26. Potyrailo RA, Sivavec TM (2004) Boosting sensitivity of organic vapor detection with silicone block polyimide polymers. Anal Chem 76:7023–7027

    Article  CAS  Google Scholar 

  27. Potyrailo RA, Sivavec TM (2005) Dual-response resonant chemical sensors for multianalyte analysis. Sens Actuators B 106:249–252

    Article  CAS  Google Scholar 

  28. Potyrailo RA, Leach AM, Morris WG, Gamage SK (2006) Chemical sensors based on micromachined transducers with integrated piezoresistive readout. Anal Chem 78:5633–5638

    Article  CAS  Google Scholar 

  29. Ballantine DS Jr, White RM, Martin SJ, Ricco AJ, Frye GC, Zellers ET, Wohltjen H (1997) Acoustic wave sensors: theory, design, and physico-chemical applications. Academic, San Diego

    Google Scholar 

  30. Campbell CK (1998) Surface acoustic wave devices for mobile and wireless communications. Academic, San Diego

    Google Scholar 

  31. Filippini D, Alimelli A, Di Natale C, Paolesse R, D'Amico A, Lundström I (2006) Chemical sensing with familiar devices. Angew Chem Int Ed 45:3800–3803

    Article  CAS  Google Scholar 

  32. Macken S, Di Natale C, Paolesse R, D'Amico A, Lundström I, Filippini D (2009) Towards integrated devices for computer screen photo-assisted multi-parameter sensing. Anal Chim Acta 632:143–147

    Article  CAS  Google Scholar 

  33. Di Natale C, Martinelli E, Paolesse R, D'Amico A, Filippini D, Lundström I (2008) An experimental biomimetic platform for artificial olfaction. PLoS One 3(9):e3139. doi:10.1371/journal.pone.0003139

    Article  CAS  Google Scholar 

  34. Benschop J, Rosmalen GV (1991) Confocal compact scanning optical microscope based on compact disc technology. Appl Opt 30:1179–1184

    Article  CAS  Google Scholar 

  35. Quercioli F, Tiribilli B, Ascoli C, Baschieri P, Frediani C (1999) Monitoring of an atomic force microscope cantilever with a compact disk pickup. Rev Sci Instrum 70:3620–3624

    Article  CAS  Google Scholar 

  36. Chu C-L, Lin C-H (2005) Development of an optical accelerometer with a dvd pick-up head. Meas Sci Technol 16:2498–2502

    Article  CAS  Google Scholar 

  37. Lange SA, Roth G, Wittemann S, Lacoste T, Vetter A, Grässle J, Kopta S, Kolleck M, Breitinger B, Wick M, Hörber JKH, Dübel S, Bernard A (2006) Measuring biomolecular binding events with a compact disc player device. Angew Chem Int Ed 45:270–273

    Article  CAS  Google Scholar 

  38. Gordon JF (1999) Apparatus and method for carrying out analysis of samples. US Patent 5,892,577

    Google Scholar 

  39. La Clair JJ, Burkart MD (2003) Molecular screening on a compact disc. Org Biomol Chem 1:3244–3249

    Article  CAS  Google Scholar 

  40. Jones CL, Thigpen SA (2005) Microbial cell driven website design using genetic algorithms and optical disc computing. In: Australian society for microbiology 2005 national conference, National Convention Centre, Canberra, 25–29 September 2005

    Google Scholar 

  41. Jones CL (2005) Cryptographic hash functions and cd-based optical biosensors. Prob Nonlinear Anal Eng Syst 11(2(23)):17–36

    Google Scholar 

  42. Banuls M-J, González-Pedro V, Puchades R, Maquieira Á (2007) Pmma isocyanate-modified digital discs as a support for oligonucleotide-based assays. Bioconj Chem 18:1408–1414

    Article  CAS  Google Scholar 

  43. Morais S, Carrascosa J, Mira D, Puchades R, Maquieira Á (2007) Microimmunoanalysis on standard compact discs to determine low abundant compounds. Anal Chem 79:7628–7635

    Article  CAS  Google Scholar 

  44. Potyrailo RA, Morris WG, Leach AM, Sivavec TM, Wisnudel MB, Boyette S (2006) Analog signal acquisition from computer optical disk drives for quantitative chemical sensing. Anal Chem 78:5893–5899

    Article  CAS  Google Scholar 

  45. Potyrailo RA, Morris WG, Wroczynski R, Hassib L, Miller P, Dworken B, Leach AM, Boyette S, Xiao C (2009) Multi-wavelength operation of optical disk drives for chemical and biological analysis. Sens Actuators B 136:203–208

    Article  CAS  Google Scholar 

  46. Hruschka WR, Massie DR, Anderson JD (1983) Computerized analysis of two-dimensional electrophoretograms. Anal Chem 55:2345–2348

    Article  CAS  Google Scholar 

  47. Taton TA, Mirkin CA, Letsinger RL (2000) Scanometric DNA array detection with nanoparticle probes. Science 289:1757–1760

    Article  CAS  Google Scholar 

  48. Rakow NA, Suslick KS (2000) A colorimetric sensor array for odour visualization. Nature 406:710–713

    Article  CAS  Google Scholar 

  49. Zhang C, Suslick KS (2005) Colorimetric sensor array for organics in water. J Am Chem Soc 127:11548–11549

    Article  CAS  Google Scholar 

  50. Nath N, Chilkoti A (2002) A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface. Anal Chem 74:504–509

    Article  CAS  Google Scholar 

  51. Hirayama E, Sugiyama T, Hisamoto H, Suzuki K (2000) Visual and colorimetric lithium ion sensing based on digital color analysis. Anal Chem 72:465–474

    Article  CAS  Google Scholar 

  52. Suzuki K, Hirayama E, Sugiyama T, Yasuda K, Okabe H, Citterio D (2002) Ionophore-based lithium ion film optode realizing multiple color variations utilizing digital color analysis. Anal Chem 74:5766–5773

    Article  CAS  Google Scholar 

  53. García A, Erenas MM, Marinetto ED, Abad CA, De Orbe-Paya I, Palma AJ, Capitán-Vallvey LF (2011) Mobile phone platform as portable chemical analyzer. Sens Actuators B 156:350–359

    Article  CAS  Google Scholar 

  54. Lim SH, Feng L, Kemling JW, Musto CJ, Suslick KS (2009) An optoelectronic nose for detection of toxic gases. Nat Chem 1:562–567. doi:10.1038/nchem.360

    Article  CAS  Google Scholar 

  55. Forzani E, Tao N (2012) Wearable and wireless sensor for real-time detection of volatile organic compounds, Private communication to R Potyrailo

    Article  CAS  Google Scholar 

  56. Li J (2012) Nanosensors-cellphone integration for extended chemical sensing network. Private communication to R Potyrailo

    Google Scholar 

  57. Nambi S, Nyalamadugu S, Wentworth SM, Chin BA (2003) Radio frequency identification sensors. In: 7th World Multiconference on Systemics, Cybernetics & Informatics (SCI 2003), Dubna, Russia, pp 386–390

    Google Scholar 

  58. Mascaro DJ, Baxter JC, Halvorsen A, White K, Scholz B, Schulz DL (2007) Chemiblock transducers. Sens Actuators B 120:353–361

    Article  CAS  Google Scholar 

  59. Christensen CM (1997) The innovator’s dilemma: when new technologies cause great firms to fail. Harvard Business School Press, Boston

    Google Scholar 

  60. Christensen CM, Raynor ME (2003) The innovator’s solution: creating and sustaining successful growth. Harvard Business School Press, Boston

    Google Scholar 

  61. Wang N, Zhang N, Wang M (2006) Wireless sensors in agriculture and food industry-recent development and future perspective. Comp Electron Agric 50:1–14

    Article  CAS  Google Scholar 

  62. Nicolaou KC, Xiao X-Y, Parandoosh Z, Senyei A, Nova MP (1995) Radiofrequency encoded combinatorial chemistry. Angew Chem Int Ed 34:2289–2291

    Article  CAS  Google Scholar 

  63. Bachner F (2005) Intertech Corp., Presented at Organic RFID Conf., San-Diego, October 19–21

    Google Scholar 

  64. Lawrence D (2005) TechVention. Presented at Organic RFID Conf., San-Diego, October 19–21

    Google Scholar 

  65. Qi P, Vermesh O, Grecu M, Javey A, Wang Q, Dai H, Peng S, Cho KJ (2003) Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection. Nano Lett 3:347–351

    Article  CAS  Google Scholar 

  66. Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6:652–655

    Article  CAS  Google Scholar 

  67. Snow ES, Perkins FK, Robinson JA (2006) Chemical vapor detection using single-walled carbon nanotubes. Chem Soc Rev 35:790–798

    Article  CAS  Google Scholar 

  68. Ratinac KR, Yang W, Ringer SP, Braet F (2010) Toward ubiquitous environmental gas sensors-capitalizing on the promise of graphene. Environ Sci Technol 44:1167–1176

    Article  CAS  Google Scholar 

  69. Grate JW (2008) Hydrogen-bond acidic polymers for chemical vapor sensing. Chem Rev 108:726–745

    Article  CAS  Google Scholar 

  70. Hatchett DW, Josowicz M (2008) Composites of intrinsically conducting polymers as sensing nanomaterials. Chem Rev 108:746–769

    Article  CAS  Google Scholar 

  71. Korotcenkov G (2005) Gas response control through structural and chemical modification of metal oxide films: State of the art and approaches. Sens Actuators B 107:209–232

    Article  CAS  Google Scholar 

  72. Franke ME, Koplin TJ, Simon U (2006) Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? Small 2:36–50

    Article  CAS  Google Scholar 

  73. Barsan N, Koziej D, Weimar U (2007) Metal oxide-based gas sensor research: how to? Sens Actuators B 121:18–35

    Article  CAS  Google Scholar 

  74. Grate JW, Abraham H, McGill RA (1997) Sorbent polymer materials for chemical sensors and arrays. In: Kress-Rogers E (ed) Handbook of biosensors and electronic noses. Medicine, food, and the environment. CRC, Boca Raton, pp 593–612

    Google Scholar 

  75. Grate JW (2000) Acoustic wave microsensor arrays for vapor sensing. Chem Rev 100:2627–2648

    Article  CAS  Google Scholar 

  76. King WH Jr (1964) Piezoelectric sorption detector. Anal Chem 36:1735–1739

    Article  CAS  Google Scholar 

  77. Ward M, Buttry DA (1990) In situ interfacial mass detection with piezoelectric transducers. Science 249:1000–1007

    Article  CAS  Google Scholar 

  78. Thompson M, Stone DC (1997) Surface-launched acoustic wave sensors: chemical sensing and thin-film characterization. Wiley, New York

    Google Scholar 

  79. Potyrailo RA, Morris WG, Wroczynski RJ (2003) Acoustic-wave sensors for high-throughput screening of materials. In: Potyrailo RA, Amis EJ (eds) High throughput analysis: a tool for combinatorial materials science. Kluwer Academic/Plenum, New York (Chap. 11)

    Google Scholar 

  80. Sepaniak MJ, Datskos PG, Lavrik NV, Tipple C (2002) Microcantilever transducers: a new approach in sensor technology. Anal Chem 74:568A–575A

    Article  Google Scholar 

  81. Lavrik NV, Sepaniak MJ, Datskos PG (2004) Cantilever transducers as a platform for chemical and biological sensors. Rev Sci Instrum 75:2229–2253

    Article  CAS  Google Scholar 

  82. Su M, Li S, Dravid VP (2003) Microcantilever resonance-based DNA detection with nanoparticle probes. Appl Phys Lett 82:3562–3564

    Article  CAS  Google Scholar 

  83. Hansen KM, Ji H-F, Wu G, Datar R, Cote R, Majumdar A, Thundat T (2001) Cantilever-based optical deflection assay for discrimination of DNA single-nucleotide mismatches. Anal Chem 73:1567–1571

    Article  CAS  Google Scholar 

  84. Dutta P, Tipple CA, Lavrik NV, Datskos PG, Hofstetter H, Hofstetter O, Sepaniak MJ (2003) Enantioselective sensors based on antibody-mediated nanomechanics. Anal Chem 75:2342–2348

    Article  CAS  Google Scholar 

  85. Savran CA, Knudsen SM, Ellington AD, Manalis SR (2004) Micromechanical detection of proteins using aptamer-based receptor molecules. Anal Chem 76:3194–3198

    Article  CAS  Google Scholar 

  86. Ahuja A, James DL, Narayan R (1999) Dynamic behavior of ultra-thin polymer films deposited on surface acoustical wave devices. Sens Actuators B 72:234–241

    Article  Google Scholar 

  87. Gomes MTSR, Rocha TA, Duarte AC, Oliveira JABP (1996) The performance of a tetramethylammonium fluoride tetrahydrate coated piezoelectric crystal for carbon dioxide detection. Anal Chim Acta 335:235–238

    Article  CAS  Google Scholar 

  88. Oprea A, Henkel K, Oehmgen R, Appel G, Schmeißer D, Lauer H, Hausmann P (1999) Increased sensor sensitivities obtained by polymer-coated quartz microbalances. Mat Sci Eng C 8–9:509–512

    Article  Google Scholar 

  89. Korsah K, Ma CL, Dress B (1998) Harmonic frequency analysis of saw resonator chemical sensors: application to the detection of carbon dioxide and humidity. Sens Actuators B 50:110–116

    Article  Google Scholar 

  90. Hoyt AE, Ricco AJ, Bartholomew JW, Osbourn GC (1998) Saw sensors for the room-temperature measurement of co2 and relative humidity. Anal Chem 70:2137–2145

    Article  CAS  Google Scholar 

  91. Fatibello-Filho O, de Andrade JF, Suleiman AA, Guilbault GG (1989) Piezoelectric crystal monitor for carbon dioxide in fermentation processes. Anal Chem 61:746–748

    Article  CAS  Google Scholar 

  92. Morris WG, Potyrailo RA (2006) Wireless sensor array system for combinatorial screening of sensor materials. In: Fasolka M, Wang Q, Potyrailo RA, Chikyow T, Schubert US, Korkin A (eds) Combinatorial methods and informatics in materials science. Mrs symposium proceedings, vol 894. Materials Research Society, Warrendale, pp 219–224

    Google Scholar 

  93. Wang W, Lee K, Kim T, Park I, Yang S (2007) Novel wireless, passive co2 sensor incorporating a surface acoustic wave reflective delay line. Smart Mater Struct 16:1382–1389

    Article  CAS  Google Scholar 

  94. Kebabian PL, Freedman A (2006) Fluoropolymer-based capacitive carbon dioxide sensor. Meas Sci Technol 17:703–710

    Article  CAS  Google Scholar 

  95. Ong KG, Zeng K, Grimes CA (2002) A wireless, passive carbon nanotube-based gas sensor. IEEE Sensors J 2:82–88

    Article  CAS  Google Scholar 

  96. Potyrailo RA, Hobbs SE, Hieftje GM (1998) Optical waveguide sensors in analytical chemistry: today's instrumentation, applications and future development trends. Fresenius J Anal Chem 362:349–373

    Article  CAS  Google Scholar 

  97. Potyrailo RA, Mirsky VM (2008) Combinatorial and high-throughput development of sensing materials: the first ten years. Chem Rev 108:770–813

    Article  CAS  Google Scholar 

  98. Potyrailo RA, Morris WG, Leach AM, Sivavec TM, Wisnudel MB, Krishnan K, Surman C, Hassib L, Wroczynski R, Boyette S, Xiao C, Agree A, Cecconie T (2007) A multiplexed, ubiquitous chem/bio detection platform on dvd. Am Lab (May) 32–35

    Google Scholar 

  99. Potyrailo RA, Morris WG, Boyette SM, Wisnudel MB, Leach AM, Stanley ML (2005) Sensor systems and methods for quantification of physical parameters, chemical and biochemical volatile and nonvolatile compounds in fluids. US Patent Application 20050111000

    Google Scholar 

  100. Potyrailo RA, Morris WG, Boyette SM (2005) Sensor systems and methods for remote quantification of compounds. US Patent Application 20050111001

    Google Scholar 

  101. Potyrailo RA, Morris WG, Leach AM (2005) Sensor system and methods for improved quantitation of environmental parameters. US Patent Application 20050111328

    Google Scholar 

  102. Potyrailo RA, Morris WG, Boyette SM, Wisnudel MB, Leach AM, Stanley ML (2007) Sensor systems and methods for quantification of physical parameters, chemical and biochemical volatile and nonvolatile compounds in fluids. US Patent 7,170,609

    Google Scholar 

  103. Potyrailo RA, Morris WG, Boyette SM (2007) Sensor systems and methods for remote quantification of compounds. US Patent 7,271,913

    Google Scholar 

  104. Potyrailo RA, Morris WG, Leach AM (2008) Sensor system and methods for improved quantitation of environmental parameters. US Patent 7,456,968

    Google Scholar 

  105. Potyrailo RA, Wisnudel MB, Boyette SM, Leach AM, Krishnan K (2009) Methods for deposition of sensor regions onto optical storage media substrates and resulting devices. US Patent 7,524,455

    Google Scholar 

  106. Potyrailo RA, Sivavec TM, Xiao C, Cecconie TJ, Hassib L, Leach AM, Engel DB (2010) Material compositions for sensors for determination of chemical species at trace concentrations and method of using sensors. US Patent 7,807,473

    Google Scholar 

  107. Xiao C, Potyrailo RA, Morris WG, Boyette SM, Yu LJ, Cecconie TJ, Leach AM, Shrikhande PV (2010) Optical sensor array system and method for parallel processing of chemical and biochemical information. US Patent 7,723,120

    Google Scholar 

  108. Potyrailo RA, Morris WG, Leach AM (2006) Lab-on-dvd: Concept and feasibility demonstration for water analysis. In: Abstracts of papers, american chemical society 232nd national meeting & exposition, San Francisco, 10–14 September 2006, p ANYL-254

    Google Scholar 

  109. Potyrailo RA, Morris WG, Leach AM, Wisnudel MB, Boyette S (2006) Lab-on-DVD: concept and feasibility demonstration for water analysis. In: 2006 international symposium on spectral science research, Bar Harbor, Maine, May 29–June 02, 2006. Organized by the U.S. Army Edgewood Chemical and Biological Center, pp. 221–222

    Google Scholar 

  110. Potyrailo RA, Wisnudel MB, Boyette SM, Leach AM, Krishnan K (2005) Methods for deposition of sensor regions onto optical storage media substrates and resulting devices. US Patent Application 20050112358

    Google Scholar 

  111. Xiao C, Sivavec TM, Engel DB, Leach AM (2007) Self-contained phosphate sensors and method for using same. US Patent Application 20070092972

    Google Scholar 

  112. Yamada M, Kajiyama S, Kanou Y, Matsumura Y, Tsuchiya Y (1998) Dvd/cd/cd-r compatible pick-up with two-wavelength two-beam laser. IEEE Trans Consum Electr 44:591–600

    Article  Google Scholar 

  113. Uchiyama M, Ebihara T, Omi K, Kitano H, Hoshino I, Mori K (2000) Development of optical pickup for digital versatile disc using two-wavelength-integrated laser diode. Jpn J Appl Phys Part 1 39:1549–1553

    Article  CAS  Google Scholar 

  114. Mori E, Komma Y, Yasuda K, Hotta N, Imafuji O, Kikuchi A, Itoh T (2002) Digital versatile disc read-only disc, rewritable disc and compact disc compatible optical pickup with a two-wavelength laser diode unit. Jpn J Appl Phys Part 1 41:4845–4849

    Article  CAS  Google Scholar 

  115. Knittel J, Krackhardt U, Dambach S, Richter H (2002) Compact optical pickup with a two-wavelength laser diode. Jpn J Appl Phys Part 1 41:1817–1820

    Article  CAS  Google Scholar 

  116. Saito R, Ito F, Yokochi Y, Saito T, Ohira T, Sato H, Itonaga M (2004) Polarization-free blu-ray disc/digital versatile disc compatible optical pick-up. Jpn J Appl Phys 43:4799–4800

    Article  CAS  Google Scholar 

  117. Sturm J, Leifhelm M, Schatzmayr H, Groiss S, Zimmermann H (2005) Optical receiver ic for cd/dvd/blue-laser application. IEEE J Solid-State Circ 40:1406–1413

    Article  Google Scholar 

  118. Kang S-M, Lee J-E, Kim W-C, Park N-C, Park Y-P, Cho E-H, Sohn J-S, Suh S-D (2006) Development of integrated small-form-factor optical pickup with blu-ray disc specification. Jpn J Appl Phys 45:6723–6729

    Article  CAS  Google Scholar 

  119. Issiki F, Maeda N, Kimura K, Suenaga H, Kurokawa T (2007) Triple-write one-lens optical pickup for blu-ray Disc/DVD/CD supporting 4x blu-ray read/write. Digest of Technical Papers. International Conference on Consumer Electronics, ICCE 2007, pp 1–2. doi:10.1109/ICCE.2007.341425

  120. Göpel W (1996) Ultimate limits in the miniaturization of chemical sensors. Sens Actuators A 56:83–102

    Article  Google Scholar 

  121. Potyrailo RA, Surman C, Nagraj NN, Burns A (2011) Materials and transducers toward selective wireless gas sensing. Chem Rev 111:7315–7354. doi:10.1021/cr2000477

    Article  CAS  Google Scholar 

  122. Mackay RS, Jaconson B (1957) Endoradiosonde. Nature 179:1239–1240

    Article  CAS  Google Scholar 

  123. Lehpamer H (2008) RFID design principles. Artech House, Norwood

    Google Scholar 

  124. Potyrailo RA, Morris WG, Sivavec T, Tomlinson HW, Klensmeden S, Lindh K (2009) Rfid sensors based on ubiquitous passive 13.56-mhz rfid tags and complex impedance detection. Wirel Commun Mob Comput 9:1318–1330

    Article  Google Scholar 

  125. Potyrailo RA, Surman C, Go S, Lee Y, Sivavec T, Morris WG (2009) Development of radio-frequency identification sensors based on organic electronic sensing materials for selective detection of toxic vapors. J Appl Phys 106:124902

    Article  CAS  Google Scholar 

  126. Potyrailo RA, Wortley T, Surman C, Monk D, Morris WG, Vincent M, Diana R, Pizzi V, Carter J, Gach G, Klensmeden S, Ehring H (2011) Passive multivariable temperature and conductivity rfid sensors for single-use biopharmaceutical manufacturing components. Biotechnol Prog 27:875–884

    Article  CAS  Google Scholar 

  127. Potyrailo RA, Surman C, Monk D, Morris WG, Wortley T, Vincent M, Diana R, Pizzi V, Carter J, Gach G, Klensmeden S, Ehring H (2011) RFID sensors as the common sensing platform for single-use biopharmaceutical manufacturing. Meas Sci Technol 22:082001. doi:10.1088/0957-0233/22/8/082001

    Article  CAS  Google Scholar 

  128. Surman C, Potyrailo RA, Morris WG, Wortley T, Vincent M, Diana R, Pizzi V, Carter J, Gach G (2011) Temperature-independent passive rfid pressure sensors for single-use bioprocess components. In: IEEE international conference on RFID (IEEE RFID), pp 78–84

    Google Scholar 

  129. Madrid RE, Felice CJ, Valentinuzzi ME (1999) Automatic on-line analyser of microbial growth using simultaneous measurements of impedance and turbidity. Med Biol Eng Comput 37:789–793

    Article  CAS  Google Scholar 

  130. Biswas K, Sen S, Dutta PK (2006) A constant phase element sensor for monitoring microbial growth. Sens Actuators B 119:186–191

    Article  CAS  Google Scholar 

  131. Martens H, Martens M (2001) Multivariate analysis of quality. An introduction. Wiley, Chichester

    Google Scholar 

Download references

Acknowledgements

I am grateful to my colleagues at GE who coauthored numerous original publications cited in this review: A. Agree, S. Boyette, A. Burns, J. Carter, T. Cecconie, R. Diana, B. Dworken, H. Ehring, D. B. Engel, G. Gach, S. K. Gamage, S. Go, L. Hassib, S. Klensmeden, K. Krishnan, A. M. Leach, Y. Lee, K. Lindh, R. J. May, P. Miller, D. Monk, W. G. Morris, N. N. Nagraj, V. Pizzi, P. Shrikhande, T. M. Sivavec, C. Surman, H. W. Tomlinson, L. J. Yu, M. Vincent, M. B. Wisnudel, T. Wortley, R. Wroczynski, and C. Xiao. The author acknowledges E. Forzani and N. Tao (Arizona State University) for providing Figure 1i and J. Li (NASA Ames Research Center) for providing Figure 1j. This work has been supported from General Electric’s fundamental research and business funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radislav A. Potyrailo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Potyrailo, R.A. (2012). Ubiquitous Devices for Chemical Sensing. In: Filippini, D. (eds) Autonomous Sensor Networks. Springer Series on Chemical Sensors and Biosensors, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/5346_2012_35

Download citation

Publish with us

Policies and ethics