Skip to main content

Smart Textiles: Technology and Wireless System Network Applications

  • Chapter
  • First Online:

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 13))

Abstract

In the last two decades, many research groups and industrial companies have been and are putting much efforts in developing and using fabrics in which electronics, digital components as well as computing can be embedded. These fabrics are identified as E-textiles (e.g., electronic textiles or smart textiles). Starting from the established concept, which asserts that future systems need to be more suitably interfaced with the humans with minimal discomfort and maximum acceptability, the possibility enabled by the E-textile platforms of developing wearable and intelligent technology in terms of everyday textiles and clothes, has made them one of the most important and interesting front-end between the biological and the technological world. One field of application of these innovative textiles is the ambient intelligence, where the use of wireless system network (WSN), body area network (BAN), or wireless body/personal area network (WB/PAN) has made it possible to integrate information coming from the environment, context awareness, and the habits of people during their activities, opening new areas of research on mental and emotional status as well as human behavior in different cultural environments. This chapter is focused on the research literature of the textile-based systems and aims at showing how and where they are currently used. Starting from the textile apparel, i.e. the technology used today for their construction, the chapter reports on the characterization, integration of electronic components and, finally, briefly it illustrates some E-textile-based WBAN platforms applications on network architecture for health care and lifestyle.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

BAN:

Body area network

DOFs:

Degrees of freedom

EAPs:

Electro active polymers

HIPAA:

Health Insurance Portability and Accountability Act

IBC:

Intra-body communications

PA:

Personal activity

PC:

Personal computer

PDA:

Personal digital assistant

PHS:

Personalized health systems

PPG:

PhotoPlethysmoGram

PPy:

Polypyrrole

PSKA:

Physiological signal based key agreement

PVC:

Polyvinylchloride

SFIT:

Smart fabrics and interactive textiles

TDMA:

Time-division multiple access

WB/PAN:

Wireless body/personal area network

WEALTHY:

Wearable Health Care System

WHMS:

Wearable Health Monitoring Systems

WSN:

Wireless system network

References

  1. Lukowicz P, Kirstein T, Troster G (2004) Wearable systems for health care applications. Methods Inform Med 43(3):232–238

    CAS  Google Scholar 

  2. Cao H, Leung V, Chow C, Chan H (2009) Enabling technologies for wireless body area networks: a survey and outlook. Commun Mag IEEE 47(12):84–93

    Article  Google Scholar 

  3. Lymberis A, Paradiso R (2008) Smart fabrics and interactive textile enabling wearable personal applications: R&D state of the art and future challenges. In: Engineering in Medicine and Biology Society, 2008 (EMBS 2008). 30th annual international conference of the IEEE, IEEE, pp 5270–5273

    Google Scholar 

  4. Lymberis A, Gatzoulis L (2006) Wearable health systems: from smart technologies to real applications. In: EMBS annual international conference. Proceedings of the 28th IEEE, New York

    Google Scholar 

  5. Post E, Orth M (1997) Smart fabric, or wearable clothing. In: First international symposium on wearable computers. Digest of papers, IEEE, pp 167–168

    Google Scholar 

  6. Lind E, Jayaraman S, Park S, Rajamanickam R, Eisler R, Burghart G, McKee T (1997) A sensate liner for personnel monitoring applications. In: ISWC, IEEE Computer Society, p 98

    Google Scholar 

  7. Ishijima M (1997) Cardiopulmonary monitoring by textile electrodes without subject-awareness of being monitored. Med Biol Eng Comput 35(6):685–690

    Article  CAS  Google Scholar 

  8. De Rossi D, Santa A, Mazzoldi A (1997) Dressware: wearable piezo and thermoresistive fabrics for ergonomics and rehabilitation. In: Engineering in Medicine and Biology Society, 1997. Proceedings of the 19th annual international conference of the IEEE, vol 5, IEEE, Chicago, 1997, pp 1880–1883

    Google Scholar 

  9. Marculescu D, Marculescu R, Khosla P (2002) Challenges and opportunities in electronic textiles modeling and optimization. In: Proceedings of the 39th annual design automation conference, ACM, New Orleans, pp 175–180

    Google Scholar 

  10. Cottet D, Grzyb J, Kirstein T, Troster G (2003) Electrical characterization of textile transmission lines. Adv Packag IEEE Trans 26(2):182–190

    Article  Google Scholar 

  11. Karayianni E (2007) Electrically conductive elastic composite yarn, methods for making the same, and articles incorporating the same. EP Patent 1,631,711 (27 June 2007)

    Google Scholar 

  12. Gimpel S, Mohring U, Muller H, Neudeck A, Scheibner W (2004) Textile-based electronic substrate technology. J Ind Text 33(3):179

    Article  CAS  Google Scholar 

  13. Benson M, Neudecker B, Emerson B (2003) Power fibers: thin-film batteries on fiber substrates

    Google Scholar 

  14. Axisa F, Schmitt P, Gehin C, Delhomme G, McAdams E, Dittmar A (2005) Flexible technologies and smart clothing for citizen medicine, home healthcare, and disease prevention. Inform Technol Biomed IEEE Trans 9(3):325–336

    Article  Google Scholar 

  15. Hill I, Trotz S, Riddle G, Brookstein D, Govindaraj M (2006) Plural layer woven electronic textile, article and method. US Patent 7,144,830 (5 December 2006)

    Google Scholar 

  16. Post E, Orth M, Russo P, Gershenfeld N (2000) E-broidery: design and fabrication of textile-based computing. IBM Syst J 39(3/4):840–860

    Article  Google Scholar 

  17. Chou T (1992) Microstructural design of fiber composites. Cambridge University Press, Cambridge

    Google Scholar 

  18. Chou T, Kamiya R, Cheeseman B (1998) An assessment of the textile preform technology for structural composites. Recent advances in mechanics of aerospace structures and materials, pp 165–171

    Google Scholar 

  19. Curiskis J, Durie A, Nicolaidis A, Herszberg I (1997) Developments in multiaxial weaving for advanced composite materials. In: Proceedings of the ICCM-11 (six volumes), p 86

    Google Scholar 

  20. Hearle J (1994) Textiles for composites. Text Horizons 14(6):12–15

    Google Scholar 

  21. Evans R (1998) Method, machine and diagonal pattern fabric for threedimensional flat panel fabric. US Patent 5,791,384 (11 August 1998)

    Google Scholar 

  22. Dirk Philips I, Van RaemdonckJ J (1997) Optimising the mechanical properties of 3d-knitted sandwich structures. In: Proceedings of the ICCM-11 (six volumes), p 211

    Google Scholar 

  23. Yasui Y, Anahara M, Hori F, Takeuchi J (1994) Method of producing fabric reinforcing matrix for composites. US Patent 5,327,621 (12 July 1994)

    Google Scholar 

  24. Popper P, McConnell R (1987) A new 3d braid for integrated parts manufacture and improved delamination resistance- the 2-step process. In: Advanced materials technology’87, Anaheim, pp 92–103

    Google Scholar 

  25. Li W, Shiekh A (1988) Effect of processes and processing parameters on 3-d braided preforms for composites. SAMPE Q (United States) 19(4):22–28

    Google Scholar 

  26. Kostar T, Chou T (1994) Process simulation and fabrication of advanced multi-step three-dimensional braided preforms. J Mater Sci 29(8):2159–2167

    Article  Google Scholar 

  27. Kostar T (1998) Analysis, design, fabrication, and performance of threedimensional braided composites. Diss Abstr Int 59(4B):1811–2051

    Google Scholar 

  28. Ostmann A, Loher T, Seckel M, Bottcher L, Reichl H (2008) Manufacturing concepts for stretchable electronic systems. In: Microsystems, Packaging, Assembly & Circuits Technology Conference, 2008 (IMPACT 2008), 3rd international, IEEE, Taipei, Taiwan, pp 24–27

    Google Scholar 

  29. Kallmayer C, Pisarek R, Neudeck A, Cichos S, Gimpel S, Aschenbrenner R, Reichlt H (2003) New assembly technologies for textile transponder systems. In: Proceedings of the 53rd electronic components and technology conference, IEEE, pp 1123–1126

    Google Scholar 

  30. Bossuyt F, Güenther J, Löher T, Seckel M, Sterken T, De Vries J (2011) Cyclic endurance reliability of stretchable electronic substrates. Micro Electron Reliab 51(3):628–635

    Article  CAS  Google Scholar 

  31. Lozano A (1997) Electrode errors in bioimpedance measurement systems for long-term applications. In: Proceedings of the 1997 sixteenth southern biomedical engineering conference, IEEE, Biloxi, Mississippi, USA, pp 3–6

    Google Scholar 

  32. Scilingo E, Gemignani A, Paradiso R, Taccini N, Ghelarducci B, De Rossi D (2005) Performance evaluation of sensing fabrics for monitoring physiological and biomechanical variables. Inform Technol Biomed IEEE Trans 9(3):345–352

    Article  Google Scholar 

  33. Mestrovic M, Helmer R, Kyratzis L, Kumar D (2007) Preliminary study of dry knitted fabric electrodes for physiological monitoring. In: Third international conference on intelligent sensors, sensor networks and information, 2007 (ISSNIP 2007), IEEE, Melbourne, pp 601–606

    Google Scholar 

  34. Searle A, Kirkup L (2000) A direct comparison of wet, dry and insulating bioelectric recording electrodes. Physiol Meas 21:271

    Article  CAS  Google Scholar 

  35. Rattfaelt L, Linden M, Hult P, Berglin L, Ask P (2007) Electrical characteristics of conductive yarns and textile electrodes for medical applications. Med Biol Eng Comput 45(12):1251–1257

    Article  Google Scholar 

  36. Riistama J, Lekkala J (2006) Electrode-electrolyte interface properties in implantation conditions. In: 28th annual international conference of the Engineering in Medicine and Biology Society, 2006 (EMBS’06), IEEE, New York, USA, pp 6021–6024

    Google Scholar 

  37. Sunaga T, Ikehira H, Furukawa S, Shinkai H, Kobayashi H, Matsumoto Y, Yoshitome E, Obata T, Tanada S, Murata H et al (2002) Measurement of the electrical properties of human skin and the variation among subjects with certain skin conditions. Phys Med Biol 47:N11

    Article  Google Scholar 

  38. Lanatà A, Valenza G, Scilingo E (2010) Electrodermal responses through textile electrodes. Res J Text Apparel 14(14):81–88

    Google Scholar 

  39. Priniotakis G, Westbroek P, Van Langenhove L, Kiekens P (2005) An experimental simulation of human body behaviour during sweat production measured at textile electrodes. Int J Clothing Sci Technol 17(3/4):232–241

    Article  Google Scholar 

  40. Beckmann L, Neuhaus C, Medrano G, Jungbecker N, Walter M, Gries T, Leonhardt S (2010) Characterization of textile electrodes and conductors using standardized measurement setups. Physiol Meas 31:233

    Article  CAS  Google Scholar 

  41. Carpi F, De Rossi D (2005) Electroactive polymer-based devices for e-textiles in biomedicine. Inform Technol Biomed IEEE Trans 9(3):295–318

    Article  Google Scholar 

  42. Lee J, Subramanian V (2003) Organic transistors on fiber: a first step towards electronic textiles. In: IEEE international electron devices meeting, 2003 (IEDM’03) technical digest, IEEE, pp 3–8

    Google Scholar 

  43. Locher I, Klemm M, Kirstein T, Troster G (2006) Design and characterization of purely textile patch antennas. Adv Packag IEEE Trans 29(4):777–788

    Article  Google Scholar 

  44. Klemm M, Troester G (2006) Textile UWB antennas for wireless body area networks. Antenn Propag IEEE Trans 54(11):3192–3197

    Article  Google Scholar 

  45. Tronquo A, Rogier H, Hertleer C, Van Langenhove L (2006) Robust planar textile antenna for wireless body lans operating in 2.45 GHz ism band. Electron Lett 42(3):142–143

    Article  Google Scholar 

  46. Sergio M, Manaresi N, Tartagni M, Guerrieri R, Canegallo R (2002) A textile based capacitive pressure sensor. In: Sensors, 2002. Proceedings of IEEE, vol 2, IEEE, Orlando, pp 1625–1630

    Google Scholar 

  47. Moseley P (1997) Solid state gas sensors. Meas Sci Technol 8:223

    Article  CAS  Google Scholar 

  48. Reynolds J, Kincal D, Kumar A, Child A (1998) Conductivity switching in polypyrrole-coated textile fabrics as gas sensors. Synth Met 92(1):53–56

    Article  Google Scholar 

  49. Gregory R, Kimbrell W, Kuhn H (1991) Electrically conductive non-metallic textile coatings. J Ind Text 20(3):167–175

    Article  CAS  Google Scholar 

  50. Mincica M, Pepe D, Tognetti A, Lanata A, De Rossi D, Zito D (2010) Enabling technology for heart health wireless assistance. In: 12th IEEE international conference on e-HealthNetworking applications and services, 2010 (Healthcom, 2010), IEEE, Lyon, pp 36–42

    Google Scholar 

  51. Paradiso R, Loriga G, Taccini N, Gemignani A, Ghelarducci B (2005) Wealthy, a wearable health-care system: new frontier on etextile. J Telecommun Inform Technol 4:105–113

    Google Scholar 

  52. Milenkovic A, Otto C, Jovanov E (2006) Wireless sensor networks for personal health monitoring: issues and an implementation. Comput Commun 29(13–14):2521–2533

    Article  Google Scholar 

  53. Gulrez T, Tognetti A, Rossi D (2010) Sensorized garment augmented 3d pervasive virtual reality system. Pervasive Comput 97–115

    Google Scholar 

  54. Ruiz J, Shimamoto S (2006) Novel communication services based on human body and environment interaction: applications inside trains and applications for handicapped people. In: Wireless communications and networking conference, 2006 (WCNC 2006), vol 4, IEEE, Las Vegas, NV, USA, pp 2240–2245

    Google Scholar 

  55. Pentland A (2004) Healthwear: medical technology becomes wearable. Computer 37(5):42–49

    Google Scholar 

  56. Chrisman L, Caruana R, Carriker W (1991) Intelligent agent design issues: internal agent state and incomplete perception. In: AAAI fall symposium series: sensory aspects of robotic intelligence, Citeseer, pp 18–25

    Google Scholar 

  57. Latrè B, Braem B, Moerman I, Blondia C, Demeester P (2011) A survey on wireless body area networks. Wirel Netw 17(1):1–18

    Article  Google Scholar 

  58. Girouard A, Solovey E, Mandryk R, Tan D, Nacke L, Jacob R (2010) Brain, body and bytes: psychophysiological user interaction. In: Proceedings of the 28th of the international conference extended abstracts on human factors in computing systems, ACM, pp 4433–4436

    Google Scholar 

  59. Yu E (2011) Modelling strategic relationships for process reengineering. Soc Model Requir Eng 11

    Google Scholar 

  60. Van Lamsweerde A (2001) Goal-oriented requirements engineering: a guided tour. Fifth IEEE International Symposium on Requirements Engineering (Toronto, Canada), IEEE, pp 249–262

    Google Scholar 

  61. Ekman P (1973) Cross-cultural studies of facial expression. In: Darwin and facial expression: a century of research in review, Academic Press, pp 169–222

    Google Scholar 

  62. Russell J (1980) A circumplex model of affect. J Pers Soc Psychol 39(6):1161–1178

    Article  Google Scholar 

  63. Valenza G, Lanata A, Scilingo E (2011) The role of nonlinear dynamics in affective valence and arousal recognition. In: IEEE transactions on affective computing, no. 99, pp 237–249

    Google Scholar 

  64. Egges A, Kshirsagar S, Magnenat-Thalmann N (2003) A model for personality and emotion simulation. In: Knowledge-based intelligent information and engineering systems. Springer, pp 453–461

    Google Scholar 

  65. Posner J, Russell J, Peterson B (2005) The circumplex model of affect: an integrative approach to affective neuroscience, cognitive development, and psychopathology. Dev Psychopathol 17(03):715–734

    Article  Google Scholar 

  66. Van Ommeren M, Saxena S, Saraceno B (2005) Mental and social health during and after acute emergencies: emerging consensus? Bull World Health Organ 83(1):71–75

    Google Scholar 

  67. Strachan M, Deary I, Ewing F, Ferguson S, Young M, Frier B (2001) Acute hypoglycemia impairs the functioning of the central but not peripheral nervous system. Physiol Behav 72(1–2):83–92

    Article  CAS  Google Scholar 

  68. Vardy J, Wong K, Yi Q, Park A, Maruff P, Wagner L, Tannock I (2006) Assessing cognitive function in cancer patients. Support Care Cancer 14(11):1111–1118

    Article  Google Scholar 

  69. Ivorra A, Daniels C, Rubinsky B (2008) Minimally obtrusive wearable device for continuous interactive cognitive and neurological assessment. Physiol Meas 29:543

    Article  Google Scholar 

  70. Arnrich B, Mayora O, Bardram J, Tröster G (2010) Pervasive healthcare: paving the way for a pervasive, user-centered and preventive healthcare model. Methods Inform Med 49(1):67

    CAS  Google Scholar 

  71. Mahlberg R, Walther S (2007) Actigraphy in agitated patients with dementia. Z Gerontol Geriatr 40(3):178–184

    Article  CAS  Google Scholar 

  72. Hayes T, Pavel M, Adami A, Larimer N, Tsay I, Nutt J (2007) Distributed healthcare: simultaneous assessment of multiple individuals. IEEE Pervasive Comput 36–43

    Google Scholar 

  73. Have G, Kolbeinsson H, Pétursson H (1991) Dementia and depression in old age: psychophysiological aspects. Acta Psychiatr Scand 83(5):329–333

    Article  CAS  Google Scholar 

  74. Devos D, Kroumova M, Bordet R, Vodougnon H, Guieu J, Libersa C, Destee A (2003) Heart rate variability and parkinsons disease severity. J Neural Transm 110(9):997–1011

    Article  CAS  Google Scholar 

  75. Stollery B (1996) The automated cognitive test (act) system. Neurotoxicol Teratol 18(4):493–497

    Article  CAS  Google Scholar 

  76. Dwolatzky T, Whitehead V, Doniger G, Simon E, Schweiger A, Jaffe D, Chertkow H (2003) Validity of a novel computerized cognitive battery for mild cognitive impairment. BMC Geriatr 3(1):4

    Article  Google Scholar 

  77. Elwood R (2001) Microcog: assessment of cognitive functioning. Neuropsychol Rev 11(2):89–100

    Article  CAS  Google Scholar 

  78. Bassett J, Dabbs J (2005) A portable version of the go/no-go association task (gnat). Behav Res Methods 37(3):506–512

    Article  Google Scholar 

  79. Thorne D, Johnson D, Redmond D, Sing H, Belenky G, Shapiro J (2005) The Walter reed palm-held psychomotor vigilance test. Behav Res Methods 37(1):111–118

    Article  Google Scholar 

  80. Morris M, Intille S, Beaudin J (2005) Embedded assessment: overcoming barriers to early detection with pervasive computing. Pervasive Comput 333–346

    Google Scholar 

  81. Lieberman H, Kramer F, Montain S, Niro P (2007) Field assessment and enhancement of cognitive performance: development of an ambulatory vigilance monitor. Aviat Space Environ Med 78(Suppl 1):B268–B275

    Google Scholar 

  82. Kurs A, Karalis A, Moffatt R, Joannopoulos J, Fisher P, Soljačić M (2007) Wireless power transfer via strongly coupled magnetic resonances. Science 317(5834):83

    Article  CAS  Google Scholar 

  83. Hardell L, Sage C (2008) Biological effects from electromagnetic field exposure and public exposure standards. Biomed Pharmacother 62(2):104–109

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Lanatà .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lanatà, A., Scilingo, E.P. (2012). Smart Textiles: Technology and Wireless System Network Applications. In: Filippini, D. (eds) Autonomous Sensor Networks. Springer Series on Chemical Sensors and Biosensors, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/5346_2012_29

Download citation

Publish with us

Policies and ethics