Skip to main content

Functions of stress-activated MAP kinases in the immune response

  • Chapter
  • First Online:
Book cover Stress-Activated Protein Kinases

Part of the book series: Topics in Current Genetics ((TCG,volume 20))

  • 788 Accesses

Abstract

The stress-activated protein kinases (SAPK) represent one group of mitogen-activated protein kinases (MAPKs) that are activated by antigen receptors, Toll-like receptors, cytokine receptors, and physical-chemical changes in the environment. The SAPK are established to be important mediators of intracellular signaling during both adaptive and innate immune responses. Here, we summarize recent findings concerning the role of two sub-groups of SAPK – cJun NH2-terminal kinase (JNK) and p38 MAPK.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams RH, Porras A, Alonso G, Jones M, Vintersten K, Panelli S, Valladares A, Perez L, Klein R, Nebreda AR (2000) Essential role of p38alpha MAP kinase in placental but not embryonic cardiovascular development. Mol Cell 6:109–116

    Article  PubMed  CAS  Google Scholar 

  2. Allen M, Svensson L, Roach M, Hambor J, McNeish J, Gabel CA (2000) Deficiency of the stress kinase p38alpha results in embryonic lethality: characterization of the kinase dependence of stress responses of enzyme-deficient embryonic stem cells. J Exp Med 191:859–870

    Article  PubMed  CAS  Google Scholar 

  3. Anguita J, Barthold SW, Persinski R, Hedrick MN, Huy CA, Davis RJ, Flavell RA, Fikrig E (2002) Murine Lyme arthritis development mediated by p38 mitogen-activated protein kinase activity. J Immunol 168:6352–6357

    PubMed  CAS  Google Scholar 

  4. Arbour N, Naniche D, Homann D, Davis RJ, Flavell RA, Oldstone MB (2002) c-Jun NH(2)-terminal kinase (JNK)1 and JNK2 signaling pathways have divergent roles in CD8(+) T cell-mediated antiviral immunity. J Exp Med 195:801–810

    Article  PubMed  CAS  Google Scholar 

  5. Arrighi JF, Rebsamen M, Rousset F, Kindler V, Hauser C (2001) A critical role for p38 mitogen-activated protein kinase in the maturation of human blood-derived dendritic cells induced by lipopolysaccharide, TNF-alpha, and contact sensitizers. J Immunol 166:3837–3845

    PubMed  CAS  Google Scholar 

  6. Ashwell JD (2006) The many paths to p38 mitogen-activated protein kinase activation in the immune system. Nat Rev Immunol 6:532–540

    Article  PubMed  CAS  Google Scholar 

  7. Beardmore VA, Hinton HJ, Eftychi C, Apostolaki M, Armaka M, Darragh J, McIlrath J, Carr JM, Armit LJ, Clacher C, Malone L, Kollias G, Arthur JS (2005) Generation and characterization of p38beta (MAPK11) gene-targeted mice. Mol Cell Biol 25:10454–10464

    Article  PubMed  CAS  Google Scholar 

  8. Behrens A, Sabapathy K, Graef I, Cleary M, Crabtree GR, Wagner EF (2001) Jun N-terminal kinase 2 modulates thymocyte apoptosis and T cell activation through c-Jun and nuclear factor of activated T cell (NF-AT). Proc Natl Acad Sci USA 98:1769–1774

    Article  PubMed  CAS  Google Scholar 

  9. Bendelac A, Savage PB, Teyton L (2006) The biology of NKT cells. Annu Rev Immunol 25:297–336

    Article  CAS  Google Scholar 

  10. Berenson LS, Yang J, Sleckman BP, Murphy TL, Murphy KM (2006) Selective requirement of p38alpha MAPK in cytokine-dependent, but not antigen receptor-dependent, Th1 responses. J Immunol 176:4616–4621

    PubMed  CAS  Google Scholar 

  11. Blander JM, Medzhitov R (2004) Regulation of phagosome maturation by signals from toll-like receptors. Science 304:1014–1018

    Article  PubMed  CAS  Google Scholar 

  12. Brancho D, Tanaka N, Jaeschke A, Ventura JJ, Kelkar N, Tanaka Y, Kyuuma M, Takeshita T, Flavell RA, Davis RJ (2003) Mechanism of p38 MAP kinase activation in vivo. Genes Dev 17:1969–1978

    Article  PubMed  CAS  Google Scholar 

  13. Chi H, Barry SP, Roth RJ, Wu JJ, Jones EA, Bennett AM, Flavell RA (2006) Dynamic regulation of pro- and anti-inflammatory cytokines by MAPK phosphatase 1 (MKP-1) in innate immune responses. Proc Natl Acad Sci USA 103:2274–2279

    Article  PubMed  CAS  Google Scholar 

  14. Chi H, Lu B, Takekawa M, Davis RJ, Flavell RA (2004) GADD45beta/GADD45gamma and MEKK4 comprise a genetic pathway mediating STAT4-independent IFNgamma production in T cells. EMBO J 23:1576–1586

    Article  PubMed  CAS  Google Scholar 

  15. Chow C-H, Rincón M, Cavanagh J, Dickens M, Davis RJ (1997) Nuclear accumulation of NFAT4 opposed by the JNK signal transduction pathway. Science 278:1638–1641

    Article  PubMed  CAS  Google Scholar 

  16. Chow CW, Dong C, Flavell RA, Davis RJ (2000) c-Jun NH(2)-terminal kinase inhibits targeting of the protein phosphatase calcineurin to NFATc1. Mol Cell Biol 20:5227–5234

    Article  PubMed  CAS  Google Scholar 

  17. Collins LR, Minden A, Karin M, Brown JH (1996) Galpha12 stimulates c-Jun NH2-terminal kinase through the small G proteins Ras and Rac. J Biol Chem 271:17349–17353

    Article  PubMed  CAS  Google Scholar 

  18. Constant SL, Dong C, Yang DD, Wysk M, Davis RJ, Flavell RA (2000) JNK1 is required for T cell-mediated immunity against Leishmania major infection. J Immunol 165:2671–2676

    PubMed  CAS  Google Scholar 

  19. Conze D, Krahl T, Kennedy N, Weiss L, Lumsden J, Hess P, Flavell RA, Le Gros G, Davis RJ, Rincon M (2002) c-Jun NH(2)-terminal kinase (JNK)1 and JNK2 have distinct roles in CD8(+) T cell activation. J Exp Med 195:811–823

    Article  PubMed  CAS  Google Scholar 

  20. Conze D, Lumsden J, Enslen H, Davis RJ, Le Gros G, Rincon M (2000) Activation of p38 MAP kinase in T cells facilitates the immune response to the influenza virus. Mol Immunol 37:503–513

    Article  PubMed  CAS  Google Scholar 

  21. Diehl NL, Enslen H, Fortner KA, Merritt C, Stetson N, Charland C, Flavell RA, Davis RJ, Rincón M (2000) Activation of the p38 MAP kinase pathway arrests cell cycle progression and differentiation of immature thymocytes in vivo. J Exp Med 191:321–334

    Article  PubMed  CAS  Google Scholar 

  22. Dienz O, Eaton SM, Krahl T, Diehl S, Charland C, Dodge J, Sawain SL, Budd RC, Haynes L, Rincon M (2007) Accumulation of NFAT mediates IL-2 expression in memory, but not in naive CD4+ T cells. Proc Natl Acad Sci USA: in press

    Google Scholar 

  23. Diskin R, Lebendiker M, Engelberg D, Livnah O (2007) Structures of p38alpha active mutants reveal conformational changes in L16 loop that induce autophosphorylation and activation. J Mol Biol 365:66–76

    Article  PubMed  CAS  Google Scholar 

  24. Dodeller F, Schulze-Koops H (2006) The p38 mitogen-activated protein kinase signaling cascade in CD4 T cells. Arthritis Res Ther 8:205

    Article  PubMed  CAS  Google Scholar 

  25. Dong C, Yang DD, Tournier C, Whitmarsh AJ, Xu J, Davis RJ, Flavell RA (2000) JNK is required for effector T-cell function but not for T-cell activation. Nature 405:91–94

    Article  PubMed  CAS  Google Scholar 

  26. Dong C, Yang DD, Wysk M, Whitmarsh AJ, Davis RJ, Flavell RA (1998) Defective T cell differentiation in the absence of Jnk1. Science 282:2092–2095

    Article  PubMed  CAS  Google Scholar 

  27. Farley N, Pedraza-Alva G, Serrano-Gomez D, Nagaleekar V, Aronshtam A, Krahl T, Thornton T, Rincon M (2006) p38 mitogen-activated protein kinase mediates the Fas-induced mitochondrial death pathway in CD8+ T cells. Mol Cell Biol 26:2118–2129

    Article  PubMed  CAS  Google Scholar 

  28. Fortner KA, Budd RC (2005) The death receptor Fas (CD95/APO-1) mediates the deletion of T lymphocytes undergoing homeostatic proliferation. J Immunol 175:4374–4382

    PubMed  CAS  Google Scholar 

  29. Gao M, Labuda T, Xia Y, Gallagher E, Fang D, Liu YC, Karin M (2004) Jun turnover is controlled through JNK-dependent phosphorylation of the E3 ligase Itch. Science 306:271–275

    Article  PubMed  CAS  Google Scholar 

  30. Gao Y, Tao J, Li MO, Zhang D, Chi H, Henegariu O, Kaech SM, Davis RJ, Flavell RA, Yin Z (2005) JNK1 is essential for CD8+ T cell-mediated tumor immune surveillance. J Immunol 175:5783–5789

    PubMed  CAS  Google Scholar 

  31. Gomez del Arco P, Martinez-Martinez S, Maldonado JL, Ortega-Perez I, Redondo JM (2000) A role for the p38 MAP kinase pathway in the nuclear shuttling of NFATp. J Biol Chem 275:13872–13878

    Article  PubMed  CAS  Google Scholar 

  32. Han Z, Boyle DL, Chang L, Bennett B, Karin M, Yang L, Manning AM, Firestein GS (2001) c-Jun N-terminal kinase is required for metalloproteinase expression and joint destruction in inflammatory arthritis. J Clin Invest 108:73–81

    Article  PubMed  CAS  Google Scholar 

  33. Handley ME, Thakker M, Pollara G, Chain BM, Katz DR (2005) JNK activation limits dendritic cell maturation in response to reactive oxygen species by the induction of apoptosis. Free Radic Biol Med 38:1637–1652

    Article  PubMed  CAS  Google Scholar 

  34. Hartenstein B, Teurich S, Hess J, Schenkel J, Schorpp-Kistner M, Angel P (2002) Th2 cell-specific cytokine expression and allergen-induced airway inflammation depend on JunB. EMBO J 21:6321–6329

    Article  PubMed  CAS  Google Scholar 

  35. Hess P, Pihan G, Sawyers CL, Flavell RA, Davis RJ (2002) Survival signaling mediated by c-Jun NH(2)-terminal kinase in transformed B lymphoblasts. Nat Genet 32:201–205

    Article  PubMed  CAS  Google Scholar 

  36. Himes SR, Sester DP, Ravasi T, Cronau SL, Sasmono T, Hume DA (2006) The JNK are important for development and survival of macrophages. J Immunol 176:2219–2228

    PubMed  CAS  Google Scholar 

  37. Hommes D, van den Blink B, Plasse T, Bartelsman J, Xu C, Macpherson B, Tytgat G, Peppelenbosch M, Van Deventer S (2002) Inhibition of stress-activated MAP kinases induces clinical improvement in moderate to severe Crohn's disease. Gastroenterology 122:7–14

    Article  PubMed  CAS  Google Scholar 

  38. Hu Y, Ivashkiv LB (2006) Costimulation of chemokine receptor signaling by matrix metalloproteinase-9 mediates enhanced migration of IFN-alpha dendritic cells. J Immunol 176:6022–6033

    PubMed  CAS  Google Scholar 

  39. Iijima N, Yanagawa Y, Clingan JM, Onoe K (2005) CCR7-mediated c-Jun N-terminal kinase activation regulates cell migration in mature dendritic cells. Int Immunol 17:1201–1212

    Article  PubMed  CAS  Google Scholar 

  40. Inoue T, Boyle DL, Corr M, Hammaker D, Davis RJ, Flavell RA, Firestein GS (2006) Mitogen-activated protein kinase kinase 3 is a pivotal pathway regulating p38 activation in inflammatory arthritis. Proc Natl Acad Sci USA 103:5484–5489

    Article  PubMed  CAS  Google Scholar 

  41. Jaeschke A, Rincon M, Doran B, Reilly J, Neuberg D, Greiner DL, Shultz LD, Rossini AA, Flavell RA, Davis RJ (2005) Disruption of the Jnk2 (Mapk9) gene reduces destructive insulitis and diabetes in a mouse model of type I diabetes. Proc Natl Acad Sci USA 102:6931–6935

    Article  PubMed  CAS  Google Scholar 

  42. Kim JM, White JM, Shaw AS, Sleckman BP (2005) MAPK p38 alpha is dispensable for lymphocyte development and proliferation. J Immunol 174:1239–1244

    PubMed  CAS  Google Scholar 

  43. Koller M, Hayer S, Redlich K, Ricci R, David JP, Steiner G, Smolen JS, Wagner EF, Schett G (2005) JNK1 is not essential for TNF-mediated joint disease. Arthritis Res Ther 7:R166–R173

    Article  PubMed  CAS  Google Scholar 

  44. Kriehuber E, Bauer W, Charbonnier AS, Winter D, Amatschek S, Tamandl D, Schweifer N, Stingl G, Maurer D (2005) Balance between NF-kappaB and JNK/AP-1 activity controls dendritic cell life and death. Blood 106:175–183

    Article  PubMed  CAS  Google Scholar 

  45. Kumar S, Boehm J, Lee JC (2003) p38 MAP kinases: key signalling molecules as therapeutic targets for inflammatory diseases. Nat Rev Drug Discov 2:717–726

    Article  PubMed  CAS  Google Scholar 

  46. Lee JC, Badger AM, Griswold DE, Dunnington D, Trunech A, Votta B, White JR, Young PR, Bender PE (1993) Bicyclic imidazoles as a novel class of cytokine biosynthesis inhibitors. Ann NY Acad Sci 696:149–170

    Article  PubMed  CAS  Google Scholar 

  47. Li B, Tournier C, Davis RJ, Flavell RA (1999) Regulation of IL-4 expression by the transcription factor JunB during T helper cell differentiation. EMBO J 18:420–432

    Article  PubMed  Google Scholar 

  48. Lizundia R, Chaussepied M, Huerre M, Werling D, Di Santo JP, Langsley G (2006) c-Jun NH2-terminal kinase/c-Jun signaling promotes survival and metastasis of B lymphocytes transformed by Theileria. Cancer Res 66:6105–6110

    Article  PubMed  CAS  Google Scholar 

  49. Lu B, Yu H, Chow C, Li B, Zheng W, Davis RJ, Flavell RA (2001) GADD45gamma mediates the activation of the p38 and JNK MAP kinase pathways and cytokine production in effector TH1 cells. Immunity 14:583–590

    Article  PubMed  CAS  Google Scholar 

  50. Lu Z, Serghides L, Patel SN, Degousee N, Rubin BB, Krishnegowda G, Gowda DC, Karin M, Kain KC (2006) Disruption of JNK2 decreases the cytokine response to Plasmodium falciparum glycosylphosphatidylinositol in vitro and confers protection in a cerebral malaria model. J Immunol 177:6344–6352

    PubMed  CAS  Google Scholar 

  51. Mehrotra S, Chhabra A, Hegde U, Cakraborty NG, Mukherji B (2006) Inhibition of c-Jun N-terminal kinase (JNK) rescues influenza epitope-specific human cytolytic T lymphocytes (CTL) from activation-induced cell death (AICD). J Leukoc Biol 81:539–547

    Article  PubMed  CAS  Google Scholar 

  52. Merritt C, Enslen H, Diehl N, Conze D, Davis RJ, Rincón M (2000) Activation of p38 mitogen-activated protein kinase in vivo selectively induces apoptosis of CD8(+) but not CD4(+) T cells. Mol Cell Biol 20:936–946

    Article  PubMed  CAS  Google Scholar 

  53. Muthumani K, Choo AY, Hwang DS, Premkumar A, Dayes NS, Harris C, Green DR, Wadsworth SA, Siekierka JJ, Weiner DB (2005) HIV-1 Nef-induced FasL induction and bystander killing requires p38 MAPK activation. Blood 106:2059–2068

    Article  PubMed  CAS  Google Scholar 

  54. Nakagawa S, Ohtani T, Mizuashi M, Mollah ZU, Ito Y, Tagami H, Aiba S (2004) p38 Mitogen-Activated protein kinase mediates dual role of ultraviolet B radiation in induction of maturation and apoptosis of monocyte-derived dendritic cells. J Invest Dermatol 123:361–370

    Article  PubMed  CAS  Google Scholar 

  55. Nakahara T, Uchi H, Urabe K, Chen Q, Furue M, Moroi Y (2004) Role of c-Jun N-terminal kinase on lipopolysaccharide induced maturation of human monocyte-derived dendritic cells. Int Immunol 16:1701–1709

    Article  PubMed  CAS  Google Scholar 

  56. Pargellis C, Regan J (2003) Inhibitors of p38 mitogen-activated protein kinase for the treatment of rheumatoid arthritis. Curr Opin Investig Drugs 4:566–571

    PubMed  CAS  Google Scholar 

  57. Pedraza-Alva G, Koulnis M, Charland C, Thornton T, Clements JL, Schlissel MS, Rincon M (2006) Activation of p38 MAP kinase by DNA double-strand breaks in V(D)J recombination induces a G2/M cell cycle checkpoint. EMBO J 25:763–773

    Article  PubMed  CAS  Google Scholar 

  58. Puig-Kroger A, Relloso M, Fernandez-Capetillo O, Zubiaga A, Silva A, Bernabeu C, Corbi AL (2001) Extracellular signal-regulated protein kinase signaling pathway negatively regulates the phenotypic and functional maturation of monocyte-derived human dendritic cells. Blood 98:2175–2182

    Article  PubMed  CAS  Google Scholar 

  59. Ricci R, Sumara G, Sumara I, Rozenberg I, Kurrer M, Akhmedov A, Hersberger M, Eriksson U, Eberli FR, Becher B, Borén J, Chen M, Cybulsky MI, Moore KJ, Freeman MW, Wagner EF, Matter CM, Lüscher TF (2004) Requirement of JNK2 for scavenger receptor A-mediated foam cell formation in atherogenesis. Science 306:1558–1561

    Article  PubMed  CAS  Google Scholar 

  60. Rincon M, Flavell RA (1999) Reprogramming transcription during the differentiation of precursor CD4+ T cells into effector Th1 and Th2 cells. Microbes Infect 1:43–50

    Article  PubMed  CAS  Google Scholar 

  61. Rincon M, Pedraza-Alva G (2003) JNK and p38 MAP kinases in CD4+ and CD8+ T cells. Immunol Rev 192:131–142

    Article  PubMed  CAS  Google Scholar 

  62. Rincón M, Whitmarsh A, Yang DD, Weiss L, Dérijard B, Jayaraj P, Davis RJ, Flavell RA (1998) The JNK pathway regulates the in vivo deletion of immature CD4+CD8+ thymocytes. J Exp Med 188:1817–1830

    Article  PubMed  Google Scholar 

  63. Round JL, Humphries LA, Tomassian T, Mittelstadt P, Zhang M, Miceli MC (2007) Scaffold protein Dlgh1 coordinates alternative p38 kinase activation, directing T cell receptor signals toward NFAT but not NF-kappaB transcription factors. Nat Immunol 8:154–161

    Article  PubMed  CAS  Google Scholar 

  64. Sabapathy K, Hu Y, Kallunki T, Schreiber M, David J-P, Jochum W, Wagner EF, Karin M (1999) JNK2 is required for efficient T-cell activation and apoptosis but not for normal lymphocyte development. Curr Biol 9:116–125

    Article  PubMed  CAS  Google Scholar 

  65. Sabapathy K, Kallunki T, David JP, Graef I, Karin M, Wagner EF (2001) c-Jun NH2-terminal kinase (JNK)1 and JNK2 have similar and stage- dependent roles in regulating T cell apoptosis and proliferation. J Exp Med 193:317–328

    Article  PubMed  CAS  Google Scholar 

  66. Sabio G, Arthur JS, Kuma Y, Peggie M, Carr J, Murray-Tait V, Centeno F, Goedert M, Morrice NA, Cuenda A (2005) p38gamma regulates the localisation of SAP97 in the cytoskeleton by modulating its interaction with GKAP. EMBO J 24:1134–1145

    Article  PubMed  CAS  Google Scholar 

  67. Salvador JM, Mittelstadt PR, Guszczynski T, Copeland TD, Yamaguchi H, Appella E, Fornace AJ Jr, Ashwell JD (2005) Alternative p38 activation pathway mediated by T cell receptor-proximal tyrosine kinases. Nat Immunol 6:390–395

    Article  PubMed  CAS  Google Scholar 

  68. Sasaki T, Wada T, Kishimoto H, Irie-Sasaki J, Matsumoto G, Goto T, Yao Z, Wakeham A, Mak TW, Suzuki A, Cho SK, Zuniga-Pflucker JC, Oliveira-dos-Santos AJ, Katada T, Nishina H, Penninger JM (2001) The stress kinase mitogen-activated protein kinase kinase (MKK)7 is a negative regulator of antigen receptor and growth factor receptor-induced proliferation in hematopoietic cells. J Exp Med 194:757–768

    Article  PubMed  CAS  Google Scholar 

  69. Sen J, Kapeller R, Fragoso R, Sen R, Zon LI, Burakoff SJ (1996) Intrathymic signals in thymocytes are mediated by p38 mitogen-activated protein kinase. J Immunol 156:4535–4538

    PubMed  CAS  Google Scholar 

  70. Singh RA, Zhang JZ (2004) Differential activation of ERK, p38, and JNK required for Th1 and Th2 deviation in myelin-reactive T cells induced by altered peptide ligand. J Immunol 173:7299–7307

    PubMed  CAS  Google Scholar 

  71. Sugawara T, Moriguchi T, Nishida E, Takahama Y (1998) Differential roles of ERK and p38 MAP kinase pathways in positive and negative selection of T lymphocytes. Immunity 9:565–574

    Article  PubMed  CAS  Google Scholar 

  72. Swantek JL, Cobb MH, Geppert TD (1997) Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) is required for lipopolysaccharide stimulation of tumor necrosis factor alpha (TNF-alpha) translation: glucocorticoids inhibit TNF-alpha translation by blocking JNK/SAPK. Mol Cell Biol 17:6274–6282

    PubMed  CAS  Google Scholar 

  73. Swat W, Fujikawa K, Ganiatsas S, Yang DD, Xavier RJ, Harris NL, Davidson L, Ferrini R, Davis RJ, Labow MA, Flavell RA, Zon LI, Alt FW (1998) SEK1/MKK4 is required for maintenance of a normal peripheral lymphoid compartment but not for T lymphocyte development. Immunity 8:625–634

    Article  PubMed  CAS  Google Scholar 

  74. Tamura K, Sudo T, Senftleben U, Dadak AM, Johnson R, Karin M (2000) Requirement for p38alpha in erythropoietin expression: a role for stress kinases in erythropoiesis. Cell 102:221–231

    Article  PubMed  CAS  Google Scholar 

  75. Tanaka N, Kamanaka M, Enslen H, Dong C, Wysk M, Davis RJ, Flavell RA (2002) Differential involvement of p38 mitogen-activated protein kinase kinases MKK3 and MKK6 in T-cell apoptosis. EMBO Rep 3:785–791

    Article  PubMed  CAS  Google Scholar 

  76. Teague TK, Hildeman D, Kedl RM, Mitchell T, Rees W, Schaefer BC, Bender J, Kappler J, Marrack P (1999) Activation changes the spectrum but not the diversity of genes expressed by T cells. Proc Natl Acad Sci USA 96:12691–12696

    Article  PubMed  CAS  Google Scholar 

  77. Tham EL, Mescher MF (2001) Signaling alterations in activation-induced nonresponsive CD8 T cells. J Immunol 167:2040–2048

    PubMed  CAS  Google Scholar 

  78. Tran EH, Azuma YT, Chen M, Weston C, Davis RJ, Flavell RA (2006) Inactivation of JNK1 enhances innate IL-10 production and dampens autoimmune inflammation in the brain. Proc Natl Acad Sci USA 103:13451–13456

    Article  PubMed  CAS  Google Scholar 

  79. Ventura JJ, Kennedy NJ, Flavell RA, Davis RJ (2004) JNK regulates autocrine expression of TGF-beta1. Mol Cell 15:269–278

    Article  PubMed  CAS  Google Scholar 

  80. Weiss L, Whitmarsh AJ, Yang DD, Rincon M, Davis RJ, Flavell RA (2000) Regulation of c-Jun NH(2)-terminal kinase (Jnk) gene expression during T cell activation. J Exp Med 191:139–146

    Article  PubMed  CAS  Google Scholar 

  81. West MA, Wallin RP, Matthews SP, Svensson HG, Zaru R, Ljunggren HG, Prescott AR, Watts C (2004) Enhanced dendritic cell antigen capture via toll-like receptor-induced actin remodeling. Science 305:1153–1157

    Article  PubMed  CAS  Google Scholar 

  82. Xavier R, Rabizadeh S, Ishiguro K, Andre N, Ortiz JB, Wachtel H, Morris DG, Lopez-Ilasaca M, Shaw AC, Swat W, Seed B (2004) Discs large (Dlg1) complexes in lymphocyte activation. J Cell Biol 166:173–178

    Article  PubMed  CAS  Google Scholar 

  83. Xie J, Qian J, Wang S, Freeman ME 3rd, Epstein J, Yi Q (2003) Novel and detrimental effects of lipopolysaccharide on in vitro generation of immature dendritic cells: involvement of mitogen-activated protein kinase p38. J Immunol 171:4792–4800

    PubMed  CAS  Google Scholar 

  84. Yang DD, Conze D, Whitmarsh AJ, Barret T, Davis RJ, Rincón M, Flavell RA (1998) Differentiation of CD4+ T cells to Th1 cells requires MAP kinase JNK2. Immunity 9:575–585

    Article  PubMed  CAS  Google Scholar 

  85. Yao Y, Xu Q, Kwon MJ, Matta R, Liu Y, Hong SC, Chang CH (2006) ERK and p38 MAPK signaling pathways negatively regulate CIITA gene expression in dendritic cells and macrophages. J Immunol 177:70–76

    PubMed  CAS  Google Scholar 

  86. Yates RM, Russell DG (2005) Phagosome maturation proceeds independently of stimulation of toll-like receptors 2 and 4. Immunity 23:409–417

    Article  PubMed  CAS  Google Scholar 

  87. Zhang Y, Blattman JN, Kennedy NJ, Duong J, Nguyen T, Wang Y, Davis RJ, Greenberg PD, Flavell RA, Dong C (2004) Regulation of innate and adaptive immune responses by MAP kinase phosphatase 5. Nature 430:793–797

    Article  PubMed  CAS  Google Scholar 

  88. Zhao Q, Wang X, Nelin LD, Yao Y, Matta R, Manson ME, Baliga RS, Meng X, Smith CV, Bauer JA, Chang CH, Liu Y (2006) MAP kinase phosphatase 1 controls innate immune responses and suppresses endotoxic shock. J Exp Med 203:131–140

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mercedes Rincón .

Editor information

Francesc Posas Angel R. Nebreda

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rincón, M., Davis, R.J. (2007). Functions of stress-activated MAP kinases in the immune response. In: Posas, F., Nebreda, A.R. (eds) Stress-Activated Protein Kinases. Topics in Current Genetics, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4735_2007_0253

Download citation

Publish with us

Policies and ethics