Skip to main content

Regulation of MAPK Signaling in Yeast

  • Chapter
  • First Online:

Part of the book series: Topics in Current Genetics ((TCG,volume 20))

Abstract

Mitogen activated protein kinase (MAPK) pathways orchestrate the response of cells to their changing extracellular environment. Budding yeast has proven to be a useful model system to elucidate the basic principles of these complex signal transduction processes. Yeast cells use six MAP-kinases, which respond to diverse conditions such as pheromone signals, osmolarity, cell wall stress and nutritional status. Depending on the external and internal conditions, multiple signals must be integrated leading to a defined output and different signaling kinetics. In this review, we will discuss the molecular architecture of the mating and high-osmolarity-glycerol (HOG) MAPK pathways, and compare their underlying signaling parameters. These two pathways use shared components and by contrasting their activation and regulation we try to deduce common and specific principles for MAPK signaling in yeast. Among those, we will summarize and discuss recent findings, which shed light on positive and negative feedback mechanisms. Finally, we will highlight the importance of quantitative measurements in single cells, which are necessary to unravel stochastic cell-to-cell variations and account for the dynamic signaling kinetics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bell M, Capone R, Pashtan I, Levitzki A, Engelberg D (2001) Isolation of hyperactive mutants of the MAPK p38/Hog1 that are independent of MAPK kinase activation. J Biol Chem 276:25351–25358

    Article  PubMed  CAS  Google Scholar 

  2. Bell M, Engelberg D (2003) Phosphorylation of Tyr-176 of the yeast MAPK Hog1/p38 is not vital for Hog1 biological activity. J Biol Chem 278:14603–14606

    Article  PubMed  CAS  Google Scholar 

  3. Bhattacharyya RP, Remenyi A, Good MC, Bashor CJ, Falick AM, Lim WA (2006) The Ste5 scaffold allosterically modulates signaling output of the yeast mating pathway. Science 311:822–826

    Article  PubMed  CAS  Google Scholar 

  4. Chasse SA, Flanary P, Parnell SC, Hao N, Cha JY, Siderovski DP, Dohlman HG (2006) Genome-scale analysis reveals Sst2 as the principal regulator of mating pheromone signaling in the yeast Saccharomyces cerevisiae. Eukaryot Cell 5:330–346

    Article  PubMed  CAS  Google Scholar 

  5. Choi KY, Satterberg B, Lyons DM, Elion EA (1994) Ste5 tethers multiple protein kinases in the MAP kinase cascade required for mating in S. cerevisiae. Cell 78:499–512

    Article  PubMed  CAS  Google Scholar 

  6. Colman-Lerner A, Gordon A, Serra E, Chin T, Resnekov O, Endy D, Pesce CG, Brent R (2005) Regulated cell-to-cell variation in a cell-fate decision system. Nature 437:699–706

    Article  PubMed  CAS  Google Scholar 

  7. Dohlman HG, Thorner JW (2001) Regulation of G protein-initiated signal transduction in yeast: paradigms and principles. Annu Rev Biochem 70:703–754

    Article  PubMed  CAS  Google Scholar 

  8. Doi K, Gartner A, Ammerer G, Errede B, Shinkawa H, Sugimoto K, Matsumoto K (1994) MSG5, a novel protein phosphatase promotes adaptation to pheromone response in S. cerevisiae. EMBO J 13:61–70

    PubMed  CAS  Google Scholar 

  9. Drogen F, O'Rourke SM, Stucke VM, Jaquenoud M, Neiman AM, Peter M (2000) Phosphorylation of the MEKK Ste11p by the PAK-like kinase Ste20p is required for MAP kinase signaling in vivo. Curr Biol 10:630–639

    Article  PubMed  CAS  Google Scholar 

  10. Elion EA (2001) The Ste5p scaffold. J Cell Sci 114:3967–3978

    PubMed  CAS  Google Scholar 

  11. Esch RK, Errede B (2002) Pheromone induction promotes Ste11 degradation through a MAPK feedback and ubiquitin-dependent mechanism. Proc Natl Acad Sci USA 99:9160–9165

    Article  PubMed  CAS  Google Scholar 

  12. Garrenton LS, Young SL, Thorner J (2006) Function of the MAPK scaffold protein, Ste5, requires a cryptic PH domain. Genes Dev 20:1946–1958

    Article  PubMed  CAS  Google Scholar 

  13. Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257

    PubMed  CAS  Google Scholar 

  14. Hao N, Behar M, Parnell SC, Torres MP, Borchers CH, Elston TC, Dohlman HG (2007) A systems-biology analysis of feedback inhibition in the Sho1 osmotic-stress-response pathway. Curr Biol 17:659–667

    Article  PubMed  CAS  Google Scholar 

  15. Hartwell LH (1980) Mutants of Saccharomyces cerevisiae unresponsive to cell division control by polypeptide mating hormone. J Cell Biol 85:811–822

    Article  PubMed  CAS  Google Scholar 

  16. Heinrich M, Köhler T, Mösch HU (2006) Role of the Cdc42-Cla4 interaction in the, pheromone response of Saccharomyces cerevisiae. Eukaryot Cell 6:317–327

    Article  PubMed  CAS  Google Scholar 

  17. Hicke L, Riezman H (1996) Ubiquitination of a yeast plasma membrane receptor signals its ligand-stimulated endocytosis. Cell 84:277–287

    Article  PubMed  CAS  Google Scholar 

  18. Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66:300–372

    Article  PubMed  CAS  Google Scholar 

  19. Huang CY, Ferrell JE Jr (1996) Ultrasensitivity in the mitogen-activated protein kinase cascade. Proc Natl Acad Sci USA 93:10078–10083

    Article  PubMed  CAS  Google Scholar 

  20. Inouye C, Dhillon N, Thorner J (1997) Ste5 RING-H2 domain: role in Ste4-promoted oligomerization for yeast pheromone signaling. Science 278:103–106

    Article  PubMed  CAS  Google Scholar 

  21. Jacoby T, Flanagan H, Faykin A, Seto AG, Mattison C, Ota I (1997) Two protein-tyrosine phosphatases inactivate the osmotic stress response pathway in yeast by targeting the mitogen-activated protein kinase, Hog1. J Biol Chem 272:17749–17755

    Article  PubMed  CAS  Google Scholar 

  22. Lamson RE, Takahashi S, Winters MJ, Pryciak PM (2006) Dual role for membrane localization in yeast MAP kinase cascade activation and its contribution to signaling fidelity. Curr Biol 16:618–623

    Article  PubMed  CAS  Google Scholar 

  23. O'Rourke SM, Herskowitz I (1998) The Hog1 MAPK prevents cross talk between the HOG and pheromone response MAPK pathways in Saccharomyces cerevisiae. Genes Dev 12:2874–2886

    Article  PubMed  Google Scholar 

  24. Oehlen LJ, Cross FR (1994) G1 cyclins CLN1 and CLN2 repress the mating factor response pathway at Start in the yeast cell cycle. Genes Dev 8:1058–1070

    Article  PubMed  CAS  Google Scholar 

  25. Oehlen LJ, Cross FR (1998) Potential regulation of Ste20 function by the Cln1-Cdc28 and Cln2-Cdc28 cyclin-dependent protein kinases. J Biol Chem 273:25089–25097

    Article  PubMed  CAS  Google Scholar 

  26. Park SH, Zarrinpar A, Lim WA (2003) Rewiring MAP kinase pathways using alternative scaffold assembly mechanisms. Science 299:1061–1064

    Article  PubMed  CAS  Google Scholar 

  27. Pokholok DK, Zeitlinger J, Hannett NM, Reynolds DB, Young RA (2006) Activated signal transduction kinases frequently occupy target genes. Science 313:533–536

    Article  PubMed  CAS  Google Scholar 

  28. Posas F, Saito H (1997) Osmotic activation of the HOG MAPK pathway via Ste11p MAPKKK: scaffold role of Pbs2p MAPKK. Science 276:1702–1705

    Article  PubMed  CAS  Google Scholar 

  29. Posas F, Wurgler-Murphy SM, Maeda T, Witten EA, Thai TC, Saito H (1996) Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 "two-component" osmosensor. Cell 86:865–875

    Article  PubMed  CAS  Google Scholar 

  30. Proft M, Mas G, de Nadal E, Vendrell A, Noriega N, Struhl K, Posas F (2006) The stress-activated Hog1 kinase is a selective transcriptional elongation factor for genes responding to osmotic stress. Mol Cell 23:241–250

    Article  PubMed  CAS  Google Scholar 

  31. Reiser V, Ruis H, Ammerer G (1999) Kinase activity-dependent nuclear export opposes stress-induced nuclear accumulation and retention of Hog1 mitogen-activated protein kinase in the budding yeast Saccharomyces cerevisiae. Mol Biol Cell 10:1147–1161

    PubMed  CAS  Google Scholar 

  32. Reiser V, Salah SM, Ammerer G (2000) Polarized localization of yeast Pbs2 depends on osmostress, the membrane protein Sho1 and Cdc42. Nat Cell Biol 2:620–627

    Article  PubMed  CAS  Google Scholar 

  33. Remenyi A, Good MC, Lim WA (2006) Docking interactions in protein kinase and phosphatase networks. Curr Opin Struct Biol 16:676–685

    Article  PubMed  CAS  Google Scholar 

  34. Roberts CJ, Nelson B, Marton MJ, Stoughton R, Meyer MR, Bennett HA, He YD, Dai H, Walker WL, Hughes TR, Tyers M, Boone C, Friend SH (2000) Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles. Science 287:873–880

    Article  PubMed  CAS  Google Scholar 

  35. Serber Z, Ferrell JE Jr (2007) Tuning bulk electrostatics to regulate protein function. Cell 128:441–444

    Article  PubMed  CAS  Google Scholar 

  36. Sette C, Inouye CJ, Stroschein SL, Iaquinta PJ, Thorner J (2000) Mutational analysis suggests that activation of the yeast pheromone response mitogen-activated protein kinase pathway involves conformational changes in the Ste5 scaffold protein. Mol Biol Cell 11:4033–4049

    PubMed  CAS  Google Scholar 

  37. Strickfaden SC, Winters MJ, Ben-Ari G, Lamson RE, Tyers M, Pryciak PM (2007) A mechanism for cell-cycle regulation of MAP kinase signaling in a yeast differentiation pathway. Cell 128:519–531

    Article  PubMed  CAS  Google Scholar 

  38. Tatebayashi K, Yamamoto K, Tanaka K, Tomida T, Maruoka T, Kasukawa E, Saito H (2006) Adaptor functions of Cdc42, Ste50, and Sho1 in the yeast osmoregulatory HOG MAPK pathway. EMBO J 25:3033–3044

    Article  PubMed  CAS  Google Scholar 

  39. van Drogen F, Stucke VM, Jorritsma G, Peter M (2001) MAP kinase dynamics in response to pheromones in budding yeast. Nat Cell Biol 3:1051–1059

    Article  PubMed  CAS  Google Scholar 

  40. Wang Y, Ge Q, Houston D, Thorner J, Errede B, Dohlman HG (2003) Regulation of Ste7 ubiquitination by Ste11 phosphorylation and the Skp1-Cullin-F-box complex. J Biol Chem 278:22284–22289

    Article  PubMed  CAS  Google Scholar 

  41. Wassmann K, Ammerer G (1997) Overexpression of the G1-cyclin gene CLN2 represses the mating pathway in Saccharomyces cerevisiae at the level of the MEKK Ste11. J Biol Chem 272:13180–13188

    Article  PubMed  CAS  Google Scholar 

  42. Westfall PJ, Thorner J (2006) Analysis of mitogen-activated protein kinase signaling specificity in response to hyperosmotic stress: use of an analog-sensitive HOG1 allele. Eukaryot Cell 5:1215–1228

    Article  PubMed  CAS  Google Scholar 

  43. Winters MJ, Lamson RE, Nakanishi H, Neiman AM, Pryciak PM (2005) A membrane binding domain in the ste5 scaffold synergizes with gbetagamma binding to control localization and signaling in pheromone response. Mol Cell 20:21–32

    Article  PubMed  CAS  Google Scholar 

  44. Wurgler-Murphy SM, Maeda T, Witten EA, Saito H (1997) Regulation of the Saccharomyces cerevisiae HOG1 mitogen-activated protein kinase by the PTP2 and PTP3 protein tyrosine phosphatases. Mol Cell Biol 17:1289–1297

    PubMed  CAS  Google Scholar 

  45. Zarrinpar A, Bhattacharyya RP, Nittler MP, Lim WA (2004) Sho1 and Pbs2 act as coscaffolds linking components in the yeast high osmolarity MAP kinase pathway. Mol Cell 14:825–832

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Peter .

Editor information

Francesc Posas Angel R. Nebreda

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rudolf, F., Pelet, S., Peter, M. (2007). Regulation of MAPK Signaling in Yeast. In: Posas, F., Nebreda, A.R. (eds) Stress-Activated Protein Kinases. Topics in Current Genetics, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4735_2007_0250

Download citation

Publish with us

Policies and ethics