Skip to main content

Quantum Chemical Investigations of Clusters of Heavy Metal Atoms

  • Chapter
  • First Online:

Part of the book series: Structure and Bonding ((STRUCTURE,volume 174))

Abstract

This contribution reports quantum chemical treatments of clusters of heavy metal atoms with contemporary methods and focuses on two aspects: the impact of spin–orbit coupling on electronic and geometric structure as well as the problem of finding global minimum structures in case of binary or ternary systems. At present, the only suited quantum chemical tools for metal clusters are methods of density functional theory. For the first aspect, the impact of spin–orbit coupling, so-called two-component methods are required; for the second aspect, it is advisable to extend usual global optimization procedures like genetic algorithms by tools for the aimed search of most favorable atom-type-to-atom-position assignments. Respective recent developments for these two purposes are discussed, and applications to midsized clusters of gold and heavy p-elements, mixtures of heavy p-elements, and mixtures of heavy p-elements encapsulating transition metal atoms are presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mingos DMP, Johnston RL (1987) Struct Bond 68:29–87

    Article  CAS  Google Scholar 

  2. De Heer W (1993) Rev Mod Phys 65:611–676

    Article  Google Scholar 

  3. Fernando A, Dimuthu KL, Weerawardene M, Karimova NV, Aikens CM (2015) Chem Rev 115:6112–6216

    Article  CAS  Google Scholar 

  4. Cramer CJ, Truhlar DG (2009) Phys Chem Chem Phys 11:10757–10816

    Article  CAS  Google Scholar 

  5. Weigend F, Ahlrichs R (2010) Philos Trans A 368:1245–1263

    Article  CAS  Google Scholar 

  6. Ferrando R, Jellinek J, Johnston R (2006) Chem Rev 108:846–904

    Google Scholar 

  7. Weigend F, Schrodt C, Ahlrichs R (2004) J Chem Phys 121:10380–10384

    Article  CAS  Google Scholar 

  8. Weigend F, Schrodt C (2005) Chem Eur J 11:3559–3564

    Article  CAS  Google Scholar 

  9. Weigend F (2014) J Chem Phys 141:134103

    Article  Google Scholar 

  10. Kirkpatrick S, Gelatt CD Jr, Vecchi MP (1983) Science 220:671–680

    Article  CAS  Google Scholar 

  11. Wales DJ, Doyle JPK (1997) J Phys Chem A 101:5111–5116

    Article  CAS  Google Scholar 

  12. Hartke B (1993) J Phys Chem 97:9973–9976

    Article  CAS  Google Scholar 

  13. Deaven D, Ho KM (1995) Phys Rev Lett 75:288–291

    Article  CAS  Google Scholar 

  14. Sierka M, Döbler J, Sauer J, Santambrogio G, Brümmer M et al (2007) Angew Chem Int Ed 46:3372–3375

    Article  CAS  Google Scholar 

  15. Pyykkö P (1988) Chem Rev 88:563–594

    Article  Google Scholar 

  16. Zintl E, Harder A (1931) Z Phys Chem Abt A 154:1–5

    CAS  Google Scholar 

  17. Edwards PA, Corbett JD (1977) Inorg Chem 16:903–907

    Article  CAS  Google Scholar 

  18. Pyykkö P (2012) Ann Rev Phys Chem 63:45–64

    Article  Google Scholar 

  19. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  20. Perdew JP (1986) Phys Rev B 33:8822–8824

    Article  CAS  Google Scholar 

  21. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  22. Tao J, Perdew JP, Staroverov VN, Scuseria G (2003) Phys Rev Lett 91:12129–12137

    Article  Google Scholar 

  23. Drebov N, Weigend F, Ahlrichs R (2011) J Chem Phys 135:044314

    Article  Google Scholar 

  24. Cao XY, Dolg M (2012) Chem Rev 112:403–480

    Article  Google Scholar 

  25. Figgen D, Rauhut G, Dolg M, Stoll H (2005) Chem Phys 311:227–244

    Article  CAS  Google Scholar 

  26. Metz B, Stoll H, Dolg M (2000) J Chem Phys 113:2563–2569

    Article  CAS  Google Scholar 

  27. Armbruster MK, Weigend F, van Wüllen C, Klopper W (2008) Phys Chem Chem Phys 10:1748–1756

    Article  CAS  Google Scholar 

  28. Kühn M, Weigend F (2013) J Chem Theory Comput 9:5341–5348

    Article  Google Scholar 

  29. Peng D, Middendorf N, Weigend F, Reiher M (2013) J Chem Phys 138:184105

    Article  Google Scholar 

  30. Weigend F, Baldes A (2010) J Chem Phys 133:174102

    Article  Google Scholar 

  31. Armbruster K, Klopper W, Weigend F (2006) Phys Chem Chem Phys 8:4862–4865

    Article  CAS  Google Scholar 

  32. Klamt A, Schüürmann G (1993) J Chem Soc Perkin Trans 2:799–805

    Article  Google Scholar 

  33. Warren RW, Dunlap BI (1996) Chem Phys Lett 262:384–392

    Article  CAS  Google Scholar 

  34. Ababei R, Massa W, Weinert B, Pollak P, Xie X et al (2015) Chem Eur J 21:386–394

    Article  CAS  Google Scholar 

  35. Lips F, Holynska M, Clerac R, Linne U, Schellenberg I (2012) J Am Chem Soc 134:1181–1191

    Article  CAS  Google Scholar 

  36. Heaven MW, Dass A, White PS, Holt KM, Murray RW (2008) J Am Chem Soc 130:3754–3755

    Article  CAS  Google Scholar 

  37. Walter M, Akola J, Lopez-Acevedo O, Jadzinsky PD, Calero G et al (2008) Proc Natl Acad Sci U S A 105:9157–9162

    Article  CAS  Google Scholar 

  38. Zhu M, Aikens CM, Hollander FJ, Schatz GC, Jin R (2008) J Am Chem Soc 130:5883–5885

    Article  CAS  Google Scholar 

  39. Jiang D, Kühn M, Tang Q, Weigend F (2014) J Phys Chem Lett 5:3286–3289

    Article  CAS  Google Scholar 

  40. Baldes A, Gulde R, Weigend F (2011) J Clust Sci 22:355–363

    Article  CAS  Google Scholar 

  41. Wedig U, Saltykow V, Nuss J, Jansen M (2010) J Am Chem Soc 132:12458–12463

    Article  CAS  Google Scholar 

  42. Baldes A, Weigend F (2013) Mol Phys 111:2617–2624

    Article  CAS  Google Scholar 

  43. Li J, Li X, Zhai HJ, Wang LS (2003) Science 299:864–867

    Article  CAS  Google Scholar 

  44. Furche F, Ahlrichs R, Weis P, Jacob C, Gilb S et al (2002) J Chem Phys 117:6982–6990

    Article  CAS  Google Scholar 

  45. Oger E, Crawfdord NRM, Kelting R, Weis P, Kappes MM et al (2007) Angew Chem Int Ed 46:8503–8506

    Article  CAS  Google Scholar 

  46. Oger E, Kelting R, Weis P, Lechtken A, Schooss D et al (2009) J Chem Phys 130:124305

    Article  Google Scholar 

  47. Weis P, Gilb S, Gerhardt P, Kappes MM (2002) Int J Mass Spectrom 216:59–73

    Article  CAS  Google Scholar 

  48. Schooss D, Blom M, Parks JH, v Issendorf B, Haberland H et al (2005) Nano Lett 5:1972–1977

    Article  CAS  Google Scholar 

  49. Kelting R, Otterstätter R, Weis P, Drebov N, Ahlrichs R et al (2011) J Chem Phys 136:211103

    Google Scholar 

  50. Kelting R, Baldes A, Schwarz U, Rapps T, Schooss D et al (2012) J Chem Phys 136:154309

    Article  Google Scholar 

  51. Küchle W, Dolg M, Stoll H, Preuss H (1991) Mol Phys 74:1245–1263

    Article  Google Scholar 

  52. Eichkorn K, Weigend F, Treutler O, Ahlrichs R (1997) Theor Chem Acc 97:119–124

    Article  CAS  Google Scholar 

  53. Yuan HK, Chen H, Shi DN, Wang BL (2008) Eur Phys J D 47:359–366

    Article  Google Scholar 

  54. Longo L, Seifried C, Weigend F, unpublished results

    Google Scholar 

  55. Kutzelnigg W (2002) Einführung in die Theoretische Chemie, vol 2. Wiley, Weinheim, p 117f

    Google Scholar 

  56. Mitzinger S, Broeckaert L, Massa W, Weigend F, Dehnen S (2015) Chem Commun 51:3866–3869

    Article  CAS  Google Scholar 

  57. Espinoza-Quintero G, Duckworth JCA, Myers WK, McGrady JE, Goicoechea JM (2014) J Am Chem Soc 136:1210–1213

    Article  CAS  Google Scholar 

  58. Foster JM, Boys SF (1960) Rev Mod Phys 32:300–302

    Article  CAS  Google Scholar 

  59. Mulliken RS (1955) J Chem Phys 23:1833–1840

    Article  CAS  Google Scholar 

  60. Plessow P (2013) J Chem Theory Comput 9:2305–2310

    Article  Google Scholar 

  61. Mitzinger S, Broeckaert L, Massa W, Weigend F, Dehnen S (2016) Nat Commun 7:10480. doi:10.1038/natcomms10480)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Weigend .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Weigend, F. (2016). Quantum Chemical Investigations of Clusters of Heavy Metal Atoms. In: Dehnen, S. (eds) Clusters – Contemporary Insight in Structure and Bonding. Structure and Bonding, vol 174. Springer, Cham. https://doi.org/10.1007/430_2016_1

Download citation

Publish with us

Policies and ethics