Skip to main content

Structure and Bonding Patterns in Large Molecular Ligated Metal Clusters

  • Chapter
  • First Online:
The Chemical Bond I

Part of the book series: Structure and Bonding ((STRUCTURE,volume 169))

Abstract

Although there will always be an Edisonian component to a search for new cluster compounds, the greater the understanding of the underlying chemistry, the more focused and efficient the search. It is why the rapid expansion of the synthesis and characterization of ligated transition-metal clusters over the last decades has been accompanied by theories about their bonding and electronic properties with the aid of conceptual ideas and theoretical models such as the development of electron-counting rules which govern the relationship between the structure and the electron count. This review summarizes these theoretical models, their historical development, their limits, and using a selection of specific examples among the extensive panoply of large ligated metal clusters available in the literature, shows how they can help in understanding their structural and electronic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In some cases, nonbonding orbitals can be unoccupied because lying too high in energy for being accessible.

  2. 2.

    This process is nicely detailed for the octahedron example in Ref. [7].

  3. 3.

    Organometallic chemists often count electrons in adding to the skeletal electrons all the other electrons lying in the metal coordination sphere, but not participating significantly to the skeletal bonding. An ML3 fragment will thus contribute to this count with 12 additional electrons (6 nonbonding “t 2g ” d-type electrons and the 6 electrons coming from the ligands) (see Fig. 1). Within this electron-counting scheme, [Ru6(CO)18]2−, and [Ru4(CO)12Bi2] are 86 (14 + 6 x 12) and 62 (14 + 4 x 12) electron species, respectively.

  4. 4.

    This simple rule may not apply in the case of multicapped clusters, but symmetry considerations may be used to evaluate the number of additional bonding MOs present (see Ref [7]).

  5. 5.

    Variations of this model can be found in Refs. [89, 90].

  6. 6.

    The tetracapped tetrahedron can also accommodate 8 electrons (see ref. [117]).

Abbreviations

AO:

Atomic orbital

ccp:

Cubic close packed

Cp*:

Pentamethylcyclopentadienyl

CVE:

Cluster valence electron

DFT:

Density functional theory

EAN:

Effective atomic number

Et:

Ethyl

fcc:

Face-centered cubic

FO:

Frontier orbital

hcp:

Hexagonal close packed

HOMO:

Highest occupied molecular orbital

i-Pr:

Isopropyl

LUMO:

Lowest unoccupied molecular orbital

Me:

Methyl

MO:

Molecular orbital

n-Pr:

n-propyl

NR2 :

Organoamino

Ph:

Phenyl

PR3 :

Organophosphine

PSEPT:

Polyhedral skeletal electron pair theory

p-Tol:

4-Methylphenyl

SEP:

Skeletal electron pair

SMO:

Skeletal molecular orbital

SR:

Organothiolato

TSH:

Tensor surface harmonic

References

  1. Lewis GN (1916) J Am Chem Soc 38:762–785

    Article  CAS  Google Scholar 

  2. Langmuir I (1921) Science 54:59–67

    Article  CAS  Google Scholar 

  3. Sidgwick NV (1927) The Electronic Theory of Valency. Clarendon, Oxford

    Google Scholar 

  4. Heitler W, London F (1927) Z Phys 44:455–472

    Article  CAS  Google Scholar 

  5. Pauling L (1960) The nature of the chemical bond, 3rd edn. Cornell University Press, Ithaca/New York

    Google Scholar 

  6. Hoffmann R, Schleyer PVR, Schaefer HF III (2008) Angew Chem Int Ed 47:7164–7167

    Article  CAS  Google Scholar 

  7. Mingos DMP, Wales DJ (1990) Introduction to cluster chemistry. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  8. Albright TA, Burdett JK, Whangbo M-H (2013) Orbital Interactions in Chemistry, 2nd edn. Wiley, New York

    Book  Google Scholar 

  9. Elian M, Chen MM-L, Mingos DMP, Hoffmann R (1976) Inorg Chem 15:1148–1155

    Article  CAS  Google Scholar 

  10. Hoffmann R (1982) Angew Chem Int Ed 21:711–724

    Article  Google Scholar 

  11. Williams RE (1971) Inorg Chem 10:210–214

    Article  CAS  Google Scholar 

  12. Williams RE (1992) Chem Rev 92:177–207

    Article  CAS  Google Scholar 

  13. Rudolph RW (1976) Acc Chem Res 9:446–452

    Article  CAS  Google Scholar 

  14. Wade K (1971) J Chem Soc D Chem Commun 792–793

    Google Scholar 

  15. Wade K (1972) Inorg Nucl Chem Lett 8:559–562

    Article  CAS  Google Scholar 

  16. Wade K (1972) Inorg Nucl Chem Lett 8:563–566

    Article  CAS  Google Scholar 

  17. Wade K (1972) Inorg Nucl Chem Lett 8:823–827

    Article  CAS  Google Scholar 

  18. Wade K (1976) Adv Inorg Chem Radiochem 18:1–66

    CAS  Google Scholar 

  19. Wade K (1980) Some bonding considerations. In: Johnson BFG (ed) Transition metal clusters. Wiley, Chichester, pp 193–264, chapter 3

    Google Scholar 

  20. Mingos DMP (1972) Nat Phys Sci 236:99–102

    Article  CAS  Google Scholar 

  21. Longuet-Higgins HC, de V Roberts M (1955) Proc R Soc A 230:110–119

    Article  CAS  Google Scholar 

  22. Longuet-Higgins HC (1957) Quart Rev Chem Soc 11:121–133

    Article  CAS  Google Scholar 

  23. Hoffmann R, Lipscomb WN (1962) J Chem Phys 36:2179–2189

    Article  CAS  Google Scholar 

  24. Hoffmann R, Lipscomb WN (1962) J Chem Phys 36:3489–2493

    Article  CAS  Google Scholar 

  25. Hoffmann R, Lipscomb WN (1962) J Chem Phys 37:2872–2883

    Article  CAS  Google Scholar 

  26. Lipscomb WN (1963) Boron Hydrides. Benjamin, New York

    Google Scholar 

  27. Klanberg F, Muetterties EL (1966) Inorg Chem 5:1955–1960

    Article  CAS  Google Scholar 

  28. Eatin DR, Guggenberger LJ, Muetterties EL (1967) Inorg Chem 6:1271–1281

    Article  Google Scholar 

  29. Guggenberger LJ (1968) Inorg Chem 7:2260–2264

    Article  CAS  Google Scholar 

  30. Guggenberger LJ (1969) Inorg Chem 8:2771–2774

    Article  CAS  Google Scholar 

  31. Mason R, Thomas KM, Mingos DMP (1973) J Am Chem Soc 95:3802–3804

    Article  CAS  Google Scholar 

  32. Mingos DMP, Johnston RL (1987) Struct Bond 68:29–87

    Article  CAS  Google Scholar 

  33. Mingos DMP (1991) Pure Appl Chem 63:807–812

    Article  CAS  Google Scholar 

  34. King RB, Rouvray DH (1977) J Am Chem Soc 99:7834–7840

    Article  CAS  Google Scholar 

  35. Teo BK, Zhang H (1995) Coord Chem Rev 143:611–636

    Article  CAS  Google Scholar 

  36. Stone AJ (1980) Mol Phys 41:1339–1354

    Article  CAS  Google Scholar 

  37. Stone AJ (1981) Inorg Chem 20:563–571

    Article  CAS  Google Scholar 

  38. Stone AJ, Alderton MJ (1982) Inorg Chem 21:2297–2302

    Article  CAS  Google Scholar 

  39. Stone AJ (1984) Polyhedron 3:2051–2068

    Article  Google Scholar 

  40. Wales DJ, Mingos DMP (1989) Inorg Chem 28:2148–2154

    Google Scholar 

  41. Wales DJ, Mingos DMP, Slee T, Lin Z (1989) Acc Chem Res 23:17–22

    Article  Google Scholar 

  42. Johnston RL (1997) Struct Bond 87:1–34

    Article  CAS  Google Scholar 

  43. Eberhardt WH, Crawford B, Lipscomb WN (1954) J Chem Phys 22:989–1001

    Article  CAS  Google Scholar 

  44. Hoffman DK, Ruedenberg K, Verkade JG (1977) Struct Bond 33:57–96

    Article  CAS  Google Scholar 

  45. Lakatos I (1976) Proofs and Refutations. Cambridge University Press, London

    Book  Google Scholar 

  46. Jackson PF, Johnson BFG, Lewis J, McPartlin M, Nelson WJH (1979) J Chem Soc Chem Commun 735–736

    Google Scholar 

  47. Hay CM, Johnson BFG, Lewis J, Raithby PR, Whitton AJ (1988) J Chem Soc Dalton Trans 2091–2097

    Google Scholar 

  48. Johnston RL, Mingos DMP (1985) Inorg Chem 25:1661–1671

    Article  Google Scholar 

  49. Fehlner TP, Halet J-F, Saillard J-Y (2007) Molecular clusters. A bridge to solid state chemistry. Cambridge University Press, Cambridge

    Book  Google Scholar 

  50. Halet J-F, Hoffmann R, Saillard J-Y (1985) Inorg Chem 24:1695–1700

    Article  CAS  Google Scholar 

  51. Halet J-F (1995) Coord Chem Rev 143:637–678

    Article  CAS  Google Scholar 

  52. Halet J-F, Saillard J-Y (1997) Struct Bond 87:81–109

    Article  CAS  Google Scholar 

  53. Gautier R, Halet J-F, Saillard J-Y (1999) Hexacapped cubic transition metal clusters and derivatives: a theoretical approach. In: Braunstein P, Oro L, Raithby PR (eds) Metal clusters in chemistry, vol 3. Wiley, Weinheim, pp 1643–1663

    Chapter  Google Scholar 

  54. Gautier R, Halet J-F, Saillard J-Y (2009) Computational methods: transition metals clusters. In: Solomon EI, Scott RA, King RB (eds) Computational inorganic and bioinorganic chemistry. Wiley, Chichester, pp 539–550

    Google Scholar 

  55. Halet J-F, Saillard J-Y (2013) Theoretical treatment of ligated clusters containing transition metals. In: Reedijk J, Poeppelmeier K (eds) Comprehensive inorganic chemistry II, vol 9, Theory and methods. Elsevier, Oxford, pp 869–885, Alvarez S volume ed

    Chapter  Google Scholar 

  56. Roy DK, Ghosh S, Halet J-F (2014) J Cluster Sci 25:225–237

    Article  CAS  Google Scholar 

  57. Mingos DMP, Forsyth MI (1977) J Chem Soc Dalton Trans 610–616

    Google Scholar 

  58. Mingos DMP (1983) J Chem Soc Chem Commun 706–708

    Google Scholar 

  59. Mingos DMP (1984) Acc Chem Res 17:311–319

    Article  CAS  Google Scholar 

  60. Jemmis ED, Balakrishnarajan MM, Pancharatna PD (2001) J Am Chem Soc 123:4313–4323

    Article  CAS  Google Scholar 

  61. Jemmis ED, Balakrishnarajan MM, Pancharatna PD (2002) Chem Rev 102:93–144

    Article  CAS  Google Scholar 

  62. Shameema O, Jemmis ED (2009) Computational studies: boranes. In: Solomon EI, Scott RA, King RB (eds) Computational inorganic and bioinorganic chemistry. Wiley, Chichester, pp 539–550

    Google Scholar 

  63. Priyakumari CP, Jemmis ED (2014) Electron-counting rules in cluster bonding – polyhedral boranes, elemental boron, and boron-rich solids. In: Frenking G, Shaik S (eds) The chemical bonding, vol 2, Chemical bonding across the periodic table. Wiley, Weinheim, pp 113–147, chapter 5

    Google Scholar 

  64. Mingos DMP (1985) J Chem Soc Chem Commun 1352–1354

    Google Scholar 

  65. Mingos DMP (1986) Chem Soc Rev 15:31–61

    Article  CAS  Google Scholar 

  66. Mingos DMP, Lin Z (1988) J Organomet Chem 341:523–534

    Article  CAS  Google Scholar 

  67. Mingos DMP, Lin Z (1988) J Chem Soc Dalton Trans 1657–1664

    Google Scholar 

  68. Halet J-F (1992) Theoretical aspects of the bonding in transition metal carbonyl clusters with interstitial main group atoms. In: Gielen M (ed) Topics in physical organometallic chemistry, vol 4. Freund Publishing House, London, pp 221–288

    Google Scholar 

  69. Briant CE, Theobald BRC, White JW, Bell LK, Mingos DMP, Welch AJ (1981) J Chem Soc Chem Commun 201–202

    Google Scholar 

  70. Ceriotti A, Demartin F, Longoni G, Manassero M, Marchionna M, Piva G, Sansoni M (1985) Angew Chem Int Ed Engl 24:697–698

    Article  Google Scholar 

  71. Belyakova OA, Slovokhotov YL (2003) Russ Chem Bull Int Ed 52:229–2327

    Article  Google Scholar 

  72. Femoni C, Iapalucci MC, Kaswalder F, Longoni G, Zacchini S (2006) Coord Chem Rev 250:1580–1604

    Article  CAS  Google Scholar 

  73. Mednikov EG, Dahl LF (2010) Philos Trans R Soc A (London) 368:1301–1332

    Article  CAS  Google Scholar 

  74. Ciabatti I, Femoni C, Iapalucci MC, Longoni G, Zacchini S (2014) J Cluster Sci 25:115–146

    Article  CAS  Google Scholar 

  75. Tran NT, Kawano M, Powell DR, Dahl LF (1998) J Am Chem Soc 120:10986–10987

    Article  CAS  Google Scholar 

  76. Mednikov EG, Ivanov SA, Dahl LF (2003) Angew Chem Int Ed 42:323–327

    Article  CAS  Google Scholar 

  77. Mednikov EG, Kanteeva NI (1995) Russ Chem Bull 44:163–166

    Article  Google Scholar 

  78. Tran NT, Kawano M, Dahl LF (2001) Dalton Trans 19:2731–2748

    Article  Google Scholar 

  79. Mednikov EG, Dahl LF (2008) J Am Chem Soc 130:14813–14821

    Article  CAS  Google Scholar 

  80. Mednikov EG, Eremenko NK, Slovokhotov YL, Struchkov YT (1987) J Chem Soc Chem Commun 218–219

    Google Scholar 

  81. Mednikov EG, Ivanov SA, Slovokhotova I, Dahl LF (2005) Angew Chem Int Ed 44:6848–6854

    Article  CAS  Google Scholar 

  82. Tran NT, Dahl LF (2003) Angew Chem Int Ed 42:3533–3537

    Article  CAS  Google Scholar 

  83. Tran NT, Powell DR, Dahl LF (2000) Angew Chem Int Ed 39:4121–4125

    Article  CAS  Google Scholar 

  84. Mednikov EG, Jewell MC, Dahl LF (2005) J Am Chem Soc 129:11619–11630

    Article  CAS  Google Scholar 

  85. Marchal R, Manca G, Furet E, Kahlal S, Saillard J-Y, Halet J-F (2014) J Cluster Sci 26:41–51

    Article  CAS  Google Scholar 

  86. Teo BK, Zhang H (2002) In: Feldheim DL, Foss CA Jr (eds) Metal Nanoparticles: Synthesis, Characterization, and Applications. Marcel Dekker, New York, pp 55–88, chapter 3

    Google Scholar 

  87. Teo BK, Zhang H (1991) Proc Natl Acad Sci U S A 88:5067–5071

    Article  CAS  Google Scholar 

  88. Knight WD, Clemenger K, de Heer WA, Saunders W, Chou MY, Cohen ML (1984) Phys Rev Lett 52:2141–2143

    Article  CAS  Google Scholar 

  89. Ashcroft NW, Mermin ND (1976) Solid state physics. Holt/Rinehart and Winston, New York, pp 285–288

    Google Scholar 

  90. Louie SG, Froyen S, Cohen ML (1982) Phys Rev B 26:1738–1742

    Article  CAS  Google Scholar 

  91. de Heer WA (1983) Rev Mod Phys 65:611–678

    Article  Google Scholar 

  92. Lin Z, Slee T, Mingos DMP (1990) Chem Phys 142:321–334

    Article  CAS  Google Scholar 

  93. Mingos DMP, Slee T, Lin Z (1990) Chem Rev 90:385–402

    Article  Google Scholar 

  94. Clemenger K (1985) Phys Rev B 32:1359–1362

    Article  CAS  Google Scholar 

  95. Mingos DMP (2014) Struct Bond 162:1–65

    Article  CAS  Google Scholar 

  96. Mingos DMP (2015) Dalton Trans 44:6680–6695

    Article  CAS  Google Scholar 

  97. Teo BK (2014) J Cluster Sci 25:5–28

    Article  CAS  Google Scholar 

  98. Desireddy A, Conn BC, Guo J, Yoon B, Barnett RN, Monahan BN, Kirschbaum K, Griffith WP, Whetten RL, Landman U, Bigioni TP (2013) Nature 501:399–402

    Article  CAS  Google Scholar 

  99. Yang H, Wang Y, Huang H, Gell L, Lehtovaara L, Malola S, Häkkinen H, Zheng N (2013) Nature Commun 4:2422

    Google Scholar 

  100. Dhayal R-S, Liao J-H, Liu Y-C, Chiang M-H, Kahlal S, Saillard J-Y, Liu C-W (2015) Angew Chem Int Ed Engl 54:3702–3706

    Article  CAS  Google Scholar 

  101. Nguyen T-AD, Jones ZR, Goldsmith BR, Buratto WR, Wu G, Scott SL, Hayton TW (2015) J Am Chem Soc 137:13319–13324

    Article  CAS  Google Scholar 

  102. Yang H, Wang Y, Yan J, Chen X, Zhang X, Häkkinen H, Zheng N (2014) J Am Chem Soc 136:7197–7200

    Article  CAS  Google Scholar 

  103. Walter M, Akola J, Lopez-Acevedo O, Jadzinsky PD, Calero G, Ackerson CJ, Whetten RL, Grönbeck H, Häkkinen H (2008) Proc Natl Acad Sci U S A 105:9157–9162

    Article  CAS  Google Scholar 

  104. Castleman AW Jr, Khanna SN (2009) J Phys Chem C 113:2664–2675

    Article  CAS  Google Scholar 

  105. Häkkinen H (2015) Electronic structure: shell structure and the superatom concept. In: Tsukuda T, Häkkinen H (eds) Protected metal clusters: from fundamentals to applications, vol 9. Elsevier, Amsterdam, pp 189–222

    Chapter  Google Scholar 

  106. Häkkinen H (2008) Chem Soc Rev 37:1847–1859

    Article  CAS  Google Scholar 

  107. Häkkinen H (2012) Theoretical studies of gold nanoclusters in various chemical environments: when the size matters. In: Louis C, Pluchery O (eds) From gold nanoparticles for physics, chemistry and biology, vol 9. Imperial College Press, London, pp 233–272, chapter 9

    Chapter  Google Scholar 

  108. Häkkinen H, Walter M, Grönbeck H (2006) J Phys Chem B 110:9927–9931

    Article  CAS  Google Scholar 

  109. Sculfort S, Braunstein P (2011) Chem Soc Rev 40:2741–2760

    Article  CAS  Google Scholar 

  110. Schmidbaur H, Schier A (2012) Chem Soc Rev 41:370–412

    Article  CAS  Google Scholar 

  111. Schmidbaur H, Schier A (2015) Angew Chem Int Ed 54:746–784

    Article  CAS  Google Scholar 

  112. Schmidbaur H, Schier A (2015) Organometallics 34:2048–2066

    Article  CAS  Google Scholar 

  113. Akola J, Walter M, Whetten RL, Häkkinen H, Grönbeck H (2008) J Am Chem Soc 130:3756–3757

    Article  CAS  Google Scholar 

  114. Jadzinsky PD, Calero G, Ackerson CJ, Bushnell DA, Kornberg RD (2007) Science 318:430–433

    Article  CAS  Google Scholar 

  115. Pei Y, Zeng XC (2012) Nanoscale 4:4054–4072

    Article  CAS  Google Scholar 

  116. Jiang DE (2013) Nanoscale 5:7149–7160

    Article  CAS  Google Scholar 

  117. Freitag K, Banh H, Gemel C, Seidel RW, Kahlal S, Saillard J-Y, Fischer RA (2014) Chem Commun 50:8681–8684

    Article  CAS  Google Scholar 

  118. Mingos DMP (1976) J Chem Soc Dalton Trans 1163–1169

    Google Scholar 

  119. Latouche C, Liu CW, Saillard J-Y (2014) J Cluster Sci 25:147–171

    Article  CAS  Google Scholar 

  120. Dayal RS, Liu C-W (2015) Acc Chem Res. doi:10.1021/acs.accounts.5b00375

    Google Scholar 

  121. Edwards AJ, Dhayal RS, Liao P-K, Liao J-H, Chiang M-H, Piltz RO, Kahlal S, Saillard J-Y, Liu CW (2014) Angew Chem Int Ed 53:7214–7218

    Article  CAS  Google Scholar 

  122. Teo BK, Yang S-Y (2015) J Cluster Sci 26:1923–1941

    Article  CAS  Google Scholar 

  123. Dhayal RS, Liao J-H, Lin Y-R, Liao P-K, Kahlal S, Saillard J-Y, Liu CW (2013) J Am Chem Soc 135:4704–4707

    Article  CAS  Google Scholar 

  124. Moses MJ, Fettinger JC, Eichhorn BW (2003) Science 300:778–780

    Article  CAS  Google Scholar 

  125. King RB, Zhao J (2006) Chem Commun 4204–4205

    Google Scholar 

  126. Sheong FK, Chen W-J, Lin Z (2015) Dalton Trans 44:7251–7257

    Article  CAS  Google Scholar 

  127. Rauhalahtib M, Muñoz-Castro A (2015) RSC Adv 5:18782–18787

    Article  CAS  Google Scholar 

  128. Schnöckel H (2005) Dalton Trans 3131–3136

    Google Scholar 

  129. Schnöckel H (2008) Dalton Trans 4344–4362

    Google Scholar 

  130. Burgert R, Schnöckel H (2008) Chem Commun 2075–2089

    Google Scholar 

  131. Schnöckel H (2010) Chem Rev 110:4125–4163

    Article  CAS  Google Scholar 

  132. Schnöckel H, Schnepf A (2011) Aluminium and gallium clusters: metalloid clusters and their relationship to the bulk phases, to naked clusters and to nanoscaled materials. In: Aldridge A, Downs AJ (eds) The group 13 metals aluminium, gallium, indium and thallium: chemical patterns and peculiarities. Wiley, Chichester, pp 402–487, Chapter 6

    Chapter  Google Scholar 

  133. Vollet J, Hartig JR, Schnöckel H (2004) Angew Chem Int Ed 44:3186–3189

    Article  CAS  Google Scholar 

  134. Clayborne RA, Lopez-Acevedo O, Whetten RL, Grönbeck H, Häkkinen H (2011) Eur J Inorg Chem 2649–2652

    Google Scholar 

  135. Lopez-Acevedo O, Clayborne PA, Häkkinen H (2011) Phys Rev B 84:035434/1–035434/6

    Article  CAS  Google Scholar 

  136. Hartig J, Stosser A, Hauser P, Schnöckel H (2007) Angew Chem Int Ed 46:1658–1662

    Article  CAS  Google Scholar 

  137. Taylor KJ, Pettiette CL, Craycraft MJ, Chesnovsky O, Smalley RE (1988) Chem Phys Lett 152:347–351

    Article  CAS  Google Scholar 

  138. Cheng HP, Berry RS, Whetten RL (1991) Phys Rev B 43:10647–10653

    Article  CAS  Google Scholar 

  139. Bergeron DE, Roach PJ, Castelman AW Jr, Jones NO, Khanna SN (2005) Science 307:231–235

    Article  CAS  Google Scholar 

  140. Varns R, Strange P (2012) Phys Status Solidi B 249:2179–2189

    Article  CAS  Google Scholar 

  141. King RB, Silaghi-Dumitrescu I (2008) Dalton Trans 6083–6088

    Google Scholar 

  142. Dohmeier C, Robl C, Tacke M, Schnöckel H (1991) Angew Chem Int Ed 30:564–565

    Article  Google Scholar 

  143. Clayborne PA, Olga Lopez-Acevedo O, Robert L, Whetten RL, Grönbeck H, Häkkinen H (2011) J Chem Phys 135:094701/1–094701/5

    CAS  Google Scholar 

  144. Purath A, Dohmeier C, Ecker A, Schnöckel H (1998) Organometallics 17:1894–1896

    Article  CAS  Google Scholar 

  145. Burdett JK (1995) Chemical bonding in solids. Oxford University Press, Oxford

    Google Scholar 

  146. Malola S, Häkkinen H (2015) Europhys News 46:23–26

    Article  Google Scholar 

  147. Negishi Y, Nakazaki T, Malola S, Takano S, Niihori Y, Kurashige W, Yamazoe S, Tsukuda T, Häkkinen H (2015) J Am Chem Soc 137:1206–1212

    Article  CAS  Google Scholar 

  148. Tlahuice-Flores A (2015) Phys Chem Chem Phys 17:5551–5555

    Article  CAS  Google Scholar 

  149. Bencharif M, Cador O, Cattey H, Ebner A, Halet J-F, Kahlal, S, Meier W, Mugnier Y, Saillard J-Y, Schwarz P, Trodi FZ, Wachter J, Zabel M (2008) Eur J Inorg Chem 1959–1968

    Google Scholar 

  150. Weigend F, Ahlrichs R (2010) Philos Trans R Soc A (London) 368:1245–1263

    Article  CAS  Google Scholar 

  151. Oganov AR (ed) (2010) Modern methods of crystal structure prediction. Wiley-VCH, Berlin

    Google Scholar 

  152. Marchal R, Carbonnière P, Pouchan C (2009) J Chem Phys 131:114105–114113

    Article  CAS  Google Scholar 

  153. Marchal R, Manca G, Kahlal S, Carbonnière P, Pouchan C, Halet J-F, Saillard J-Y (2012) Eur J Inorg Chem 4856–4866

    Google Scholar 

Download references

Acknowledgments

We would like to thank Dr Samia Kahlal (Rennes) for providing helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jean-Yves Saillard or Jean-François Halet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Saillard, JY., Halet, JF. (2016). Structure and Bonding Patterns in Large Molecular Ligated Metal Clusters. In: Mingos, D. (eds) The Chemical Bond I. Structure and Bonding, vol 169. Springer, Cham. https://doi.org/10.1007/430_2015_210

Download citation

Publish with us

Policies and ethics