Skip to main content

Sigma Bonds as Ligand Donor Groups in Transition Metal Complexes

  • Chapter
  • First Online:

Part of the book series: Structure and Bonding ((STRUCTURE,volume 171))

Abstract

Covalent X–H bonds, particularly where X is H, C, B, and Si, can act as Lewis base ligands in forming metal complexes of general type L n M(H–X), where the M–H–X angle is strongly bent so that the coordination can best be considered as side-on. The binding is greatly enhanced by back donation from the metal into the X–H σ* orbital. This elongates and eventually breaks the X–H bond, leading to characteristic structural, physicochemical characteristics and alteration of the reactivity of the ligand. The requirement for back donation means that the appropriate L n M fragment must usually have appreciable π donor character. Since the binding of the X–H bond to the metal center is relatively weak, and the binding of the deprotonated X group left behind is much stronger, the binding also facilitates proton loss from the X–H bond. This electron redistribution results in reactivity differences which may be exploited. The case of H2 is treated in most detail in this review, because of its central place in the field.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

2e,3c:

Two-electron three-center bonding

CD:

Chatt–Dewar (bonding model)

Cy:

Cyclohexyl

dppe:

Ph2PCH2CH2PPh2

dppp:

Ph2PCH2CH2CH2PPh2

MCP:

Metalacyclopropane (bonding model)

pz:

Pyrazolyl

T 1 :

Spin–lattice relaxation time (in NMR spectroscopy)

References

  1. Crabtree RH (2013) The organometallic chemistry of the transition metals. Wiley-VCH, Hoboken

    Google Scholar 

  2. Kubas GJ (2007) Chem Rev 107:4152

    Article  CAS  Google Scholar 

  3. Kubas GJ (2001) Metal dihydrogen and σ-bond complexes. Kluwer/Plenum, New York

    Google Scholar 

  4. Kubas GJ (1988) Acc Chem Res 21:120

    Article  Google Scholar 

  5. Heinekey DM, Oldham WJ (1993) Chem Rev 93:913

    Article  CAS  Google Scholar 

  6. Jessop PG, Morris RH (1992) Coord Chem Rev 121:155

    Article  CAS  Google Scholar 

  7. Maseras F, Lledos A, Clot E, Eisenstein O (2000) Chem Rev 100:601

    Article  CAS  Google Scholar 

  8. Crabtree RH (1990) Acc Chem Res 23:95

    Article  CAS  Google Scholar 

  9. Hall C, Perutz RN (1996) Chem Rev 96:3125

    Article  CAS  Google Scholar 

  10. Crabtree RH (1993) Angew Chem Int Ed 32:789

    Article  Google Scholar 

  11. McGrady GS, Guilera G (2003) Chem Soc Rev 32:383

    Article  CAS  Google Scholar 

  12. Bauer SH (1937) J Am Chem Soc 59:1096

    Article  CAS  Google Scholar 

  13. Nöth R, Hartwimmer R (1960) Chem Ber 93:2238

    Article  Google Scholar 

  14. Kaesz HD, Fellman W, Wilkes GR, Dahl LF (1965) J Am Chem Soc 87:2753

    Article  CAS  Google Scholar 

  15. Trofimenko S (1968) J Am Chem Soc 90:4754

    Article  CAS  Google Scholar 

  16. Graham MA, Turner JJ, Poliakoff M, Perutz RN (1972) J Organomet Chem 34:C34

    Article  CAS  Google Scholar 

  17. Poliakoff M, Turner JJ (1974) Dalton Trans 1974:2276

    Article  Google Scholar 

  18. Perutz RN, Turner JJ (1975) J Am Chem Soc 97:4791

    Article  CAS  Google Scholar 

  19. Brookhart M, Green MLH (1983) J Organomet Chem 250:395

    Article  CAS  Google Scholar 

  20. Brookhart M, Green MLH, Wang LL (1988) Prog Inorg Chem 36:1

    Article  CAS  Google Scholar 

  21. Brookhart M, Green MLH, Parkin G (2007) Proc Natl Acad Sci U S A 2007:6908

    Article  Google Scholar 

  22. Kubas GJ, Ryan RR, Swanson BI, Vergamini PJ, Wasserman HJ (1984) J Am Chem Soc 106:451

    Article  CAS  Google Scholar 

  23. Kubas GJ (2014) J Organomet Chem 751:33

    Article  CAS  Google Scholar 

  24. Crabtree RH, Hamilton DG (1986) J Am Chem Soc 108:3124

    Article  CAS  Google Scholar 

  25. Yao W, Eisenstein O, Crabtree RH (1997) Inorg Chim Acta 254:105

    Article  CAS  Google Scholar 

  26. Scherer W, Wolstenholme DJ, Herz V, Eickerling G, Brück A, Benndorf P, Roesky PW (2010) Angew Chem Int Ed 49:2242

    Article  CAS  Google Scholar 

  27. Dobereiner GE, Nova A, Schley ND, Hazari N, Miller SJ, Eisenstein O, Crabtree RH (2011) J Am Chem Soc 133:7547

    Article  CAS  Google Scholar 

  28. Bakhmutov VI (2004) Magn Reson Chem 42:66

    Article  CAS  Google Scholar 

  29. Albinati A, Klooster WT, Koetzle TF, Fortin JB, Ricci JS, Eckert J, Fong TP, Lough AJ, Morris RH, Golombek AP (1997) Inorg Chim Acta 259:351

    Article  CAS  Google Scholar 

  30. Esteruelas MA, Oro LA (1998) Chem Rev 98:577

    Article  CAS  Google Scholar 

  31. Greco C, Zampella G, Bertini L, Bruschi M, Fantucci P, De Gioia L (2007) Inorg Chem 46:108

    Article  CAS  Google Scholar 

  32. Manas MG, Sharninghausen LS, Lin EB, Crabtree RH (2015) J Organomet Chem doi:10.1016/j.jorganchem.2015.04.015

  33. Crabtree RH (2008) Energy Environ Sci 1:134

    Article  CAS  Google Scholar 

  34. Crabtree RH (2004) J Organomet Chem 689:4083

    Article  CAS  Google Scholar 

  35. Hartwig JF (1996) J Am Chem Soc 118:7010

    Article  CAS  Google Scholar 

  36. Grubbs RH, Coates GW (1996) Acc Chem Res 29:85

    Article  CAS  Google Scholar 

  37. Piers WE, Bercaw JE (1990) J Am Chem Soc 112:9406

    Article  CAS  Google Scholar 

  38. Ephritikhine M (1997) Chem Rev 97:2193

    Article  CAS  Google Scholar 

  39. Smith MR (1999) Prog Inorg Chem 48:505

    Article  CAS  Google Scholar 

  40. Pandey KK (2012) Dalton Trans 41:3278

    Article  CAS  Google Scholar 

  41. Lin ZY (2002) Chem Soc Rev 31:239

    Article  CAS  Google Scholar 

  42. Nikonov GI (2001) J Organomet Chem 635:24

    Article  CAS  Google Scholar 

  43. Luo XL, Crabtree RH (1989) J Am Chem Soc 111:2527

    Article  CAS  Google Scholar 

  44. Etienne M, Weller AS (2014) Chem Soc Rev 43:242

    Article  CAS  Google Scholar 

  45. Brayshaw SK, Green JC, Kociok-Köhn G, Sceats EL, Weller AS (2006) Angew Chem Int Ed 45:452

    Article  CAS  Google Scholar 

  46. Brayshaw SK, Sceats EL, Green JC, Weller AS (2007) Proc Natl Acad Sci U S A 104:6921

    Article  CAS  Google Scholar 

  47. Chaplin AB, Weller AS (2013) J Organomet Chem 730:90

    Article  CAS  Google Scholar 

  48. Vigalok A, Rybtchinski B, Shimon LJW, Ben-David Y, Milstein D (1999) Organometallics 18:895

    Article  CAS  Google Scholar 

  49. van der Boom ME, Milstein D (2003) Chem Rev 103:1759

    Article  Google Scholar 

  50. Maseras F, Crabtree RH (2004) Inorg Chim Acta 357:345

    Article  CAS  Google Scholar 

  51. Goldshleger NF, Shteinman AA, Shilov AE, Eskova VV (1972) Zh Fiz Khim 46:1353

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert H. Crabtree .

Editor information

Editors and Affiliations

Additional information

Dedicated to Greg Kubas in recognition of his foundational contributions to the field

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Crabtree, R.H. (2015). Sigma Bonds as Ligand Donor Groups in Transition Metal Complexes. In: Mingos, D. (eds) The Chemical Bond III. Structure and Bonding, vol 171. Springer, Cham. https://doi.org/10.1007/430_2015_175

Download citation

Publish with us

Policies and ethics