Skip to main content

Dioxygen Activation by Biomimetic Iron Complexes of α-Keto Acids and α-Hydroxy Acids

  • Chapter
  • First Online:
Book cover Molecular Design in Inorganic Biochemistry

Part of the book series: Structure and Bonding ((STRUCTURE,volume 160))

Abstract

A subset of the large family of nonheme iron oxygenases carries out the oxidative decarboxylation of α-ketocarboxylate and α-hydroxycarboxylate substrates in the presence of O2. Iron complexes of α-ketocarboxylates and α-hydroxycarboxylates supported by tridentate and tetradentate ligands have been synthesized to act as functional models for these enzymes, and several have been structurally characterized. From studies of these model complexes and their reactivity toward various probe substrates, insights into the reaction mechanisms have been obtained, where iron(III)-superoxo and iron(IV)-oxo species have been implicated as key oxidants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hausinger RP (2004) Crit Rev Biochem Mol Biol 39:21–68

    Article  CAS  Google Scholar 

  2. Koehntop KD, Emerson JP, Que L Jr (2005) J Biol Inorg Chem 10:87–93

    Article  CAS  Google Scholar 

  3. Costas M, Mehn MP, Jensen MP, Que L Jr (2004) Chem Rev 104:939–986

    Article  CAS  Google Scholar 

  4. Elkins JM, Ryle MJ, Clifton IJ, Hotopp JCD, Lloyd JS, Burzlaff NI, Baldwin JE, Hausinger RP, Roach PL (2002) Biochemistry 41:5185–5192

    Article  CAS  Google Scholar 

  5. Price JC, Barr EW, Hoffart LM, Krebs C, Bollinger JM Jr (2005) Biochemistry 44:8138–8147

    Article  CAS  Google Scholar 

  6. Sinnecker S, Svensen N, Barr EW, Ye S, Bollinger JM Jr, Neese F, Krebs C (2007) J Am Chem Soc 129:6168–6179

    Article  CAS  Google Scholar 

  7. Price JC, Barr EW, Tirupati B, Bollinger JM Jr, Krebs C (2003) Biochemistry 42:7497–7508

    Article  CAS  Google Scholar 

  8. Hoffart LM, Barr EW, Guyer RB, Bollinger JM Jr, Krebs C (2006) Proc Natl Acad Sci USA 103:14738–14743

    Article  CAS  Google Scholar 

  9. Galonić DP, Barr EW, Walsh CT, Bollinger JM Jr, Krebs C (2007) Nat Chem Biol 3:113–116

    Article  Google Scholar 

  10. Matthews ML, Krest CM, Barr EW, Vaillancourt FH, Walsh CT, Green MT, Krebs C, Bollinger JM Jr (2009) Biochemistry 48:4331–4343

    Article  CAS  Google Scholar 

  11. Krebs C, Fujimori DG, Walsh CT, Bollinger JM Jr (2007) Acc Chem Res 40:484–492

    Article  CAS  Google Scholar 

  12. Riggs-Gelasco PJ, Price JC, Guyer RB, Brehm JH, Barr EW, Bollinger JM Jr, Krebs C (2004) J Am Chem Soc 126:8108–8109

    Article  CAS  Google Scholar 

  13. Galonić Fujimori DB, Barr EW, Matthews ML, Koch GM, Yonce JR, Walsh CT, Bollinger JM Jr, Krebs C, Riggs-Gelasco PJ (2007) J Am Chem Soc 129:13408–13409

    Article  Google Scholar 

  14. Price JC, Barr EW, Glass TE, Krebs C, Bollinger JM Jr (2003) J Am Chem Soc 125:13008–13009

    Article  CAS  Google Scholar 

  15. Pojer F, Kahlich R, Kammerer B, Li S-M, Heide L (2003) J Biol Chem 278:30661–30668

    Article  CAS  Google Scholar 

  16. van der Donk W, Krebs C, Bollinger JM Jr (2010) Curr Opin Struct Biol 20:673–683

    Article  Google Scholar 

  17. Chiou Y-M, Que L Jr (1992) J Am Chem Soc 114:7567–7568

    Article  CAS  Google Scholar 

  18. Chiou Y-M, Que L Jr (1995) J Am Chem Soc 117:3999–4013

    Article  CAS  Google Scholar 

  19. Ho RYN, Mehn MP, Hegg EL, Liu A, Ryle MJ, Hausinger RP, Que L Jr (2001) J Am Chem Soc 123:5022–5029

    Article  CAS  Google Scholar 

  20. Pavel EG, Kitajima N, Solomon EI (1998) J Am Chem Soc 120:3949–3962

    Article  CAS  Google Scholar 

  21. Hegg EL, Ho RYN, Que L Jr (1999) J Am Chem Soc 121:1972–1973

    Article  CAS  Google Scholar 

  22. Hegg EL, Whiting AK, Saari RE, McCracken J, Hausinger RP, Que L Jr (1999) Biochemistry 38:16714–16726

    Article  CAS  Google Scholar 

  23. Ryle MJ, Padmakumar R, Hausinger RP (1999) Biochemistry 38:15278–15286

    Article  CAS  Google Scholar 

  24. Paine TK, England J, Que L Jr (2007) Chem Eur J 13:6073–6081

    Article  CAS  Google Scholar 

  25. Friese SJ, Kucera BE, Young VG Jr, Que L Jr, Tolman WB (2008) Inorg Chem 47:1324–1331

    Article  CAS  Google Scholar 

  26. Sheet D, Halder P, Paine TK (2013) Angew Chem Int Ed 52:13314–13318

    Article  CAS  Google Scholar 

  27. Paine TK, Zheng H, Que L Jr (2005) Inorg Chem 44:474–476

    Article  CAS  Google Scholar 

  28. Di Giuro CML, Buongiorno D, Leitner E, Straganz GD (2011) J Inorg Biochem 105:1204–1211

    Article  Google Scholar 

  29. Allpress CJ, Berreau LM (2013) Coord Chem Rev 257:3005–3029

    Article  CAS  Google Scholar 

  30. Burzlaff N (2009) Angew Chem Int Ed 48:5580–5582

    Article  CAS  Google Scholar 

  31. Ha EH, Ho RYN, Kisiel JF, Valentine JS (1995) Inorg Chem 34:2265–2266

    Article  CAS  Google Scholar 

  32. Hikichi S, Ogihara T, Fujisawa K, Kitajima N, Akita M, Moro-oka Y (1997) Inorg Chem 36:4539–4547

    Article  CAS  Google Scholar 

  33. Mehn MP, Fujisawa K, Hegg EL, Que L Jr (2003) J Am Chem Soc 125:7828–7842

    Article  CAS  Google Scholar 

  34. Mukherjee A, Cranswick MA, Chakrabarti M, Paine TK, Fujisawa K, Münck E, Que L Jr (2010) Inorg Chem 49:3618–3628

    Article  CAS  Google Scholar 

  35. Kitajima N, Osawa M, Tanaka M, Moro-oka Y (1991) J Am Chem Soc 113:8952–8953

    Article  CAS  Google Scholar 

  36. Reinaud OM, Theopold KH (1994) J Am Chem Soc 116:6979–6980

    Article  Google Scholar 

  37. Kitajima N, Tamura N, Amagai H, Fukui H, Moro-oka Y, Mizutani Y, Kitagawa T, Mathur R, Heerwegh K, Reed CA, Randall CR, Que L Jr, Tatsumi K (1994) J Am Chem Soc 116:9071–9085

    Article  CAS  Google Scholar 

  38. Mukherjee A, Martinho M, Bominaar EL, Münck E, Que L Jr (2009) Angew Chem Int Ed 48:1780–1783

    Article  CAS  Google Scholar 

  39. Usharani D, Janardanan D, Shaik S (2011) J Am Chem Soc 133:176–179

    Article  CAS  Google Scholar 

  40. McDonald AR, Que L Jr (2013) Coord Chem Rev 257:414–428

    Article  CAS  Google Scholar 

  41. Paine TK, Paria S, Que L Jr (2010) Chem Commun 46:1830–1832

    Article  CAS  Google Scholar 

  42. Paria S, Que L Jr, Paine TK (2011) Angew Chem Int Ed 50:11129–11132

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are supported respectively by the DST, Govt. of India (Project: SR/S1/IC-51/2010), and the US National Science Foundation (Grant CHE-1058248). We thank Dr. Caleb Allpress for a careful reading of the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence Que Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Paine, T.K., Que, L. (2014). Dioxygen Activation by Biomimetic Iron Complexes of α-Keto Acids and α-Hydroxy Acids. In: Rabinovich, D. (eds) Molecular Design in Inorganic Biochemistry. Structure and Bonding, vol 160. Springer, Berlin, Heidelberg. https://doi.org/10.1007/430_2014_144

Download citation

Publish with us

Policies and ethics