Skip to main content

Phosphine-Coordinated Pure-Gold Clusters: Diverse Geometrical Structures and Unique Optical Properties/Responses

  • Chapter
  • First Online:
Gold Clusters, Colloids and Nanoparticles I

Part of the book series: Structure and Bonding ((STRUCTURE,volume 161))

Abstract

Synthetic techniques, geometrical structures, and electronic absorption spectra of phosphine-coordinated pure-gold molecular clusters (PGCs) accumulated over 40 years are comprehensively collected especially for those with unambiguous X-ray crystal structures available. Inspection of the electronic absorption spectra from geometrical aspects reveals that their optical properties are highly dependent on the cluster geometries rather than the nuclearity. Recent examples of unusual clusters that show unique color/photoluminescence properties and their utilization for stimuli-responsive modules are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ar:

Aryl

AZS:

Alizarinsulfonate

Bu:

Butyl

DCM:

Dichloromethane

dppb:

Bis(diphenylphosphino)butane

dppe:

Bis(diphenylphosphino)propane

dpph:

Bis(diphenylphosphino)hexane

dppm:

Bis(diphenylphosphino)methane

dppo:

Bis(diphenylphosphino)octane

dpppe:

Bis(diphenylphosphino)pentane

equiv:

Equivalent(s)

Et:

Ethyl

i-Pr:

Isopropyl

Mes:

Mesityl

PL:

Photoluminescence

py:

Pyridyl

t-Bu:

Tert-butyl

Tol:

Tolyl

References

  1. Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346

    Article  CAS  Google Scholar 

  2. Fernandez EJ, Monge M (2008) Gold nanomaterials. In: Laguna A (ed) Modern supra molecular gold chemistry: gold-metal interactions and applications. WILEY-VCH, Weinheim, pp 131–179. doi:10.1002/9783527623778.ch3

    Google Scholar 

  3. Sardar R, Funston A, Mulvaney P, Murray R (2009) Gold nanoparticles: past, present, and future. Langmuir 25(24):13840–13851

    Article  CAS  Google Scholar 

  4. Giljohann D, Seferos D, Daniel W, Massich M, Patel P, Mirkin C (2010) Gold nanoparticles for biology and medicine. Angew Chem Int Ed 49(19):3280–3294

    Article  CAS  Google Scholar 

  5. Takei T, Akita T, Nakamura I, Fujitani T, Okumura M, Okazaki K, Huang J, Ishida T, Haruta M (2012) Heterogeneous catalysis by gold. Adv Catal 55:1–126

    Article  CAS  Google Scholar 

  6. Hutchings GJ, Edwards JK (2012) Application of gold nanoparticles in catalysis. Metal nanoparticles and nanoalloys. In: Johnstone RL, Wilcoxon JP (eds) Frontiers of nanoscience, vol 3. Elsevier, Oxford, pp 249–293

    Google Scholar 

  7. Wilson R (2008) The use of gold nanoparticles in diagnostics and detection. Chem Soc Rev 37(9):2028–2045

    Article  CAS  Google Scholar 

  8. Bai C, Liu M (2013) From chemistry to nanoscience: not just a matter of size. Angew Chem Int Ed 52(10):2678–2683

    Article  CAS  Google Scholar 

  9. Lu Y, Chen W (2012) Sub-nanometre sized metal clusters: from synthetic challenges to the unique property discoveries. Chem Soc Rev 41(9):3594–3623

    Article  CAS  Google Scholar 

  10. Tsukuda T (2012) Toward an atomic-level understanding of size-specific properties of protected and stabilized gold clusters. Bull Chem Soc Jpn 85(2):151–168

    Article  CAS  Google Scholar 

  11. Jin R (2010) Quantum sized, thiolate-protected gold nanoclusters. Nanoscale 2(3):343–362

    Article  CAS  Google Scholar 

  12. Häkkinen H (2012) The gold-sulfur interface at the nanoscale. Nat Chem 4(6):443–455

    Article  Google Scholar 

  13. Zheng J, Nicovich P, Dickson R (2007) Highly fluorescent noble-metal quantum dots. Ann Rev Phys Chem 58:409–431

    Article  CAS  Google Scholar 

  14. Jadzinsky P, Calero G, Ackerson C, Bushnell D, Kornberg R (2007) Structure of a thiol monolayer-protected gold nanoparticle at 1.1 A resolution. Science 318(5849):430–433

    Article  CAS  Google Scholar 

  15. Heaven MW, Dass A, White PS, Holt KM, Murray RW (2008) Crystal structure of the gold nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18]. J Am Chem Soc 130(12):3754–3755

    Article  CAS  Google Scholar 

  16. Zhu M, Eckenhoff WT, Pintauer T, Jin R (2008) Conversion of anionic [Au25(SCH2CH2Ph)18] Cluster to charge neutral cluster via air oxidation. J Phys Chem C 112(37):14221–14224

    Article  CAS  Google Scholar 

  17. Zhu M, Aikens C, Hollander F, Schatz G, Jin R (2008) Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. J Am Chem Soc 130(18):5883–5885

    Article  CAS  Google Scholar 

  18. Qian H, Eckenhoff W, Zhu Y, Pintauer T, Jin R (2010) Total structure determination of thiolate-protected Au38 nanoparticles. J Am Chem Soc 132(24):8280–8281

    Article  CAS  Google Scholar 

  19. Naldini L, Cariati F, Simonetta G, Malatesta L (1966) Gold? Tertiary phosphine derivatives with intermetallic bonds. Chem Commun 18:647

    Google Scholar 

  20. Vollenbroek FA, Bosman WP, Bour JJ, Noordik JH, Beurskens PT (1979) Reactions of gold?phosphine cluster compounds. Preparation and X-ray structure determination of octakis(triphenylphosphine)octa-gold bis(hexafluorophosphate). J Chem Soc Chem Commun (9):387–388

    Google Scholar 

  21. Vollenbroek FA, Bour JJ, van der Veden JWA (1980) Gold-phosphine cluster compounds: The reactions of [Au9L8]3+ (L=PPh3) with L, SCN− and Cl− to [Au8L8]2+ (Au11L8(SCN)2]+ and [Au11L8Cl2]+. Recl Trav Chim Pays Bas 99(4):137–141

    Article  CAS  Google Scholar 

  22. van der Velden JWA, Bour JJ, Bosman WP, Noordik JH (1981) Synthesis and X-ray crystal structure determination of the cationic gold cluster compound [Au8(PPh3)7](NO3)2. J Chem Soc Chem Commun 23:1218–1219

    Article  Google Scholar 

  23. van der Velden JWA, Vollenbroek FA, Bour JJ, Beurskens PT, Smits JMM, Bosnian WP (1981) Gold clusters containing bidentate phosphine ligands. Preparation and X-Ray structure investigation of [Au5(dppmH)3(dppm)](NO3)2 and [Au13(dppmH)6](NO3)n. Recl Trav Chim Pays Bas 100(4):148–152

    Article  Google Scholar 

  24. Vollenbroek FA, van der Velden JWA, Bour JJ, Trooster JM (1981) Mössbauer investigation of gold cluster compounds. Recl Trav Chim Pays-Bas 100(10):375–377

    Article  CAS  Google Scholar 

  25. Steggerda JJ, Bour JJ, Velden JWAvd (1982) Preparation and properties of gold cluster compounds. Recl Trav Chim Pays Bas 101:164–170

    Google Scholar 

  26. Van der Velden JWA, Bour JJ, Steggerda JJ, Beurskens PT, Roseboom M, Noordik JH (1982) Gold clusters. Tetrakis[1,3-bis(diphenylphosphino)propane]hexagold dinitrate: preparation, X-ray analysis, and gold-197 Moessbauer and phosphorus-31{proton} NMR spectra. Inorg Chem 21(12):4321–4324

    Article  Google Scholar 

  27. Smits JMM, Beurskens PT, Bour JJ, Vollenbroek FA (1983) X-ray analysis of octakis(tri-p-tolylphosphine) enneagoldtris(hexafluorophosphate), [Au9{P(p-MeC6H4)3}8](PF6)3: a redetermination. J Cryst Spect Res 13(5):365–372

    Article  CAS  Google Scholar 

  28. Smits JMM, Beurskens PT, Velden JWA, Bour JJ (1983) Partial X-ray analysis of triiodo-heptakis (triphenylphosphine)undecagold, Au11C126H105I3P7. J Cryst Spect Res 13(5):373–379

    Article  CAS  Google Scholar 

  29. Smits JMM, Bour JJ, Vollenbroek FA, Beurskens PT (1983) Preparation and X-ray structure determination of [pentakis{1,3-bis(diphenylphosphino)propane}] undecagoldtris(thiocyanate), [Au11{PPh2C3H6PPh2}5](SCN)3. J Cryst Spect Res 13(5):355–363

    Article  CAS  Google Scholar 

  30. Van der Velden JWA, Bour JJ, Bosman WP, Noordik JH (1983) Reactions of cationic gold clusters with Lewis bases. Preparation and X-ray structure investigation of [Au8(PPh3)7](NO3)2.2CH2Cl2 and Au6(PPh3)4[Co(CO)4]2. Inorg Chem 22(13):1913–1918

    Article  Google Scholar 

  31. Van der Velden JWA, Beurskens PT, Bour JJ, Bosman WP, Noordik JH, Kolenbrander M, Buskes JAKM (1984) Intermediates in the formation of gold clusters. Preparation and X-ray analysis of [Au7(PPh3)7]+ and synthesis and characterization of [Au8(PPh3)6I]PF6. Inorg Chem 23(2):146–151

    Article  Google Scholar 

  32. van der Velden JWA, Bour JJ, Bosman WP, Noordik JH, Beurskens PT (1984) The electrochemical preparation of [Au9(PPh3)8]+. A comparative study of the structures and properties of [Au9(PPh3)8]+ and [Au9(PPh3)8]3+. Recl Trav Chim Pays Bas 103(1):13–16

    Article  Google Scholar 

  33. Bos W, Kanters RPF, Van Halen CJ, Bosman WP, Behm H, Smits JMM, Beurskens PT, Bour JJ, Pignolet LH (1986) Gold clusters: synthesis and characterization of [Au8(PPh3)7(CNR)]2+, [Au9(PPh3)6(CNR2]3+ and [Au11(PPH3)7(CNR)2I]2+ and their reactivity towards amines. The crystal structure of [Au11(PPh3)7(CN-i-Pr)2I](PF6)2. J Organomet Chem 307(3):385–398

    Article  CAS  Google Scholar 

  34. Hall KP, Mingos DMP (1984) Homo-and heteronuclear cluster compounds of gold. Prog Inorg Chem 32:237–325

    Article  CAS  Google Scholar 

  35. Mingos DMP (1984) Gold cluster compounds. Gold Bull 17(1):5–12

    Article  CAS  Google Scholar 

  36. Briant CE, Theobald BRC, White JW, Bell LK, Mingos DMP, Welch AJ (1981) Synthesis and X-ray structural characterization of the centred icosahedral gold cluster compound [Au13(PMe2Ph)10Cl2](PF6)3; the realization of a theoretical prediction. J Chem Soc Chem Commun 5:201

    Article  Google Scholar 

  37. Hall KP, Theoblad BRC, Gilmour DI, Mingos DMP, Welch AJ (1982) Synthesis and structural characterization of [Au9{P(p-C6H4OMe)3}8](BF4)3; a cluster with a centred crown of gold atoms. J Chem Soc Chem Commun 10:528–530

    Article  Google Scholar 

  38. Briant CE, Hall KP, Mingos DMP (1984) Structural characterisation of two crystalline modifications of [Au9{P(C6H4OMe-p)3}8](NO3)3: the first example of skeletal isomerism in metal cluster chemistry. J Chem Soc Chem Commun 5:290–292

    Article  Google Scholar 

  39. Briant CE, Hall KP, Wheeler AC, Mingos DMP (1984) Structural characterisation of [Au10Cl3(PCy2Ph)6](NO3)(Cy=cyclohexyl) and the development of a structural principle for high nuclearity gold clusters. J Chem Soc Chem Commun 4:248–250

    Article  Google Scholar 

  40. Briant CE, Hall KP, Mingos DMP, Wheeler AC (1986) Synthesis and structural characterisation of hexakis(triphenyl phosphine)hexagold(2+) nitrate, [Au6(PPh3)6][NO3]2, and related clusters with edgesharing bitetrahedral geometries. J Chem Soc Dalton Trans 3:687–692

    Article  Google Scholar 

  41. Cheetham GMT, Harding MM, Haggitt JL, Mingos DMP, Powell HR (1993) Synthesis and microcrystal structure determination of [Au10(PPh3)7{S2C2(CN)2}2] with monochromatic synchrotron radiation. J Chem Soc Chem Commun 12:1000–1001

    Article  Google Scholar 

  42. Copley RCB, Mingos DMP (1996) The novel structure of the [Au11(PMePh2)10]3+ cation: crystal structures of [Au11(PMePh2)10][C2B9H12]3·4thf and [Au11(PMePh2)10][C2B9H12]3(thf = tetrahydrofuran). J Chem Soc Dalton Trans 4:479–489

    Article  Google Scholar 

  43. Copley RCB, Mingos DMP (1996) Synthesis and characterization of the centred icosahedral cluster series [Au9MIB4Cl4(PMePh2)8][C2B9H12], where MIB=Au, Ag or Cu. J Chem Soc Dalton Trans 4:491

    Article  Google Scholar 

  44. Cariati F, Naldini L, Simonetta G, Malatesta L (1967) Clusters of gold compounds with 1,2Bis(diphenylphosphino)ethane. Inorg Chim Acta 1:315–318

    Article  CAS  Google Scholar 

  45. Albano VG, Bellon PL, Manasser M, Sansoni M (1970) Intermetallic pattern in metal-atom clusters – structural studies on Au11X3(PR3)7 Species. J Chem Soc D Chem Commun (18):1210–1211

    Google Scholar 

  46. Cariati F, Naldini L (1971) Trianionoeptakis(triarylphosphine)undecagold cluster compounds. Inorg Chim Acta 5:172–174

    Article  CAS  Google Scholar 

  47. Bellon P, Manassero M, Sansoni M (1972) Crystal and molecular structure of tri-iodoheptakis(tri-p-fluorophenylphosphine)undecagold. J Chem Soc Dalton Trans 14:1481–1487

    Article  Google Scholar 

  48. Bellon P, Manassero M, Sansoni M (1973) An octahedral gold cluster: crystal and molecular structure of hexakis[tris-(p-tolyl)phosphine]-octahedro-hexagold bis(tetraphenylborate). J Chem Soc Dalton Trans 22:2423–2427

    Article  Google Scholar 

  49. Manassero M, Naldini L, Sansoni M (1979) A new class of gold cluster compounds. Synthesis and X-ray structure of the octakis(triphenylphosphinegold) dializarinsulphonate, [Au8(PPh3)8](aliz)2. J Chem Soc Chem Commun (9):385–386

    Google Scholar 

  50. Mingos DMP (1983) Polyhedral skeletal electron pair approach. A generalised principle for condensed polyhedra. J Chem Soc Chem Commun (12):706

    Google Scholar 

  51. Mingos DMP, Slee T, Zhenyang L (1990) Bonding models for ligated and bare clusters. Chem Rev 90(2):383–402

    Article  CAS  Google Scholar 

  52. Wales DJ (2005) Electronic structure of clusters. Encyclopedia Inorg Chem. doi:10.1002/9781119951438.eibc0066

    Google Scholar 

  53. Schwerdtfeger P (2003) Gold goes nano–from small clusters to low-dimensional assemblies. Angew Chem Int Ed 42(17):1892–1895

    Article  CAS  Google Scholar 

  54. Schmid G (2008) Ionically cross-linked gold clusters and gold nanoparticles. Angew Chem Int Ed 47(19):3496–3498

    Article  CAS  Google Scholar 

  55. Schmid G (2008) The relevance of shape and size of Au55 clusters. Chem Soc Rev 37(9):1909–1930

    Article  CAS  Google Scholar 

  56. Yam V, Cheng E (2008) Highlights on the recent advances in gold chemistry–a photophysical perspective. Chem Soc Rev 37(9):1806–1813

    Article  CAS  Google Scholar 

  57. Koshevoy I, Chang Y-C, Karttunen A, Selivanov S, Jänis J, Haukka M, Pakkanen T, Tunik S, Chou P-T (2012) Intensely luminescent homoleptic alkynyl decanuclear gold(I) clusters and their cationic octanuclear phosphine derivatives. Inorg Chem 51(13):7392–7403

    Article  CAS  Google Scholar 

  58. Mingos DMP, Watson MJ (1992) Heteronuclear gold cluster compounds. Adv Inorg Chem 39:327–399

    Article  CAS  Google Scholar 

  59. Teo BK, Zhang H (1995) Polyicosahedricity: icosahedron to icosahedron of icosahedra growth pathway for bimetallic (Au–Ag) and trimetallic (Au–Ag–M; M=Pt, Pd, Ni) supraclusters; synthetic strategies, site preference, and stereochemical principles. Coord Chem Rev 143:611–636

    Article  CAS  Google Scholar 

  60. Schmidbaur H, Schier A (2012) Aurophilic interactions as a subject of current research: an up-date. Chem Soc Rev 41(1):370–412

    Article  CAS  Google Scholar 

  61. Schulz-Dobrick M, Jansen M (2006) Supramolecular intercluster compounds consisting of gold clusters and Keggin anions. Eur J Inorg Chem 2006(22):4498–4502

    Article  Google Scholar 

  62. Wen F, Englert U, Gutrath B, Simon U (2008) Crystal structure, electrochemical and optical properties of [Au9(PPh3)8](NO3)3. Eur J Inorg Chem 2008(1):106–111

    Article  Google Scholar 

  63. Cariati F, Naldini L, Simonetta G, Malatesta L (1967) Ethyldiphenylphosphine-gold derivatives with intermetallic bonds. Inorg Chim Acta 1:24–26

    Article  CAS  Google Scholar 

  64. Bartlett PA, Bauer B, Singer SJ (1978) Synthesis of water-soluble undecagold cluster compounds of potential importance in electron microscopic and other studies of biological systems. J Am Chem Soc 100(16):5085–5089

    Article  CAS  Google Scholar 

  65. Gutrath BS, Englert U, Wang Y, Simon U (2013) A missing link in undecagold cluster chemistry: single-crystal X-ray analysis of [Au11(PPh3)7Cl3]. Eur J Inorg Chem 2013(12):2002–2006

    Article  CAS  Google Scholar 

  66. Wan X-K, Lin Z-W, Wang Q-M (2012) Au20 nanocluster protected by hemilabile phosphines. J Am Chem Soc 134(36):14750–14752

    Article  CAS  Google Scholar 

  67. Schmid G, Pfeil R, Boese R, Bandermann F, Meyer S, Calis GHM, van der Velden JWA (1981) Au55[P(C6H5)3]12CI6 – ein Goldcluster ungewöhnlicher Größe. Chem Ber 114(11):3634–3642

    Article  CAS  Google Scholar 

  68. Bertino M, Sun Z-M, Zhang R, Wang L-S (2006) Facile syntheses of monodisperse ultrasmall Au clusters. J Phys Chem B 110(43):21416–21418

    Article  CAS  Google Scholar 

  69. Kamei Y, Shichibu Y, Konishi K. unpublished results

    Google Scholar 

  70. Golightly JS, Gao L, Castleman AW, Bergeron DE, Hudgens JW, Magyar RJ, Gonzalez CA (2007) Impact of swapping ethyl for phenyl groups on diphosphine-protected undecagold. J Phys Chem C 111

    Google Scholar 

  71. Yanagimoto Y, Negishi Y, Fujihara H, Tsukuda T (2006) Chiroptical activity of BINAP-stabilized undecagold clusters. J Phys Chem B 110(24):11611–11614

    Article  CAS  Google Scholar 

  72. Andreiadis E, Vitale M, Mézailles N, Le Goff X, Le Floch P, Toullec P, Michelet V (2010) Chiral undecagold clusters: synthesis, characterization and investigation in catalysis. Dalton Trans 39(44):10608–10616

    Article  CAS  Google Scholar 

  73. Chen J, Zhang QF, Bonaccorso TA, Williard PG, Wang LS (2014) Controlling gold nanoclusters by diphospine ligands. J Am Chem Soc 136(1):92–95

    Article  CAS  Google Scholar 

  74. Shichibu Y, Kamei Y, Konishi K (2012) Unique [core+two] structure and optical property of a dodeca-ligated undecagold cluster: critical contribution of the exo gold atoms to the electronic structure. Chem Commun 48(61):7559–7561

    Article  CAS  Google Scholar 

  75. Shichibu Y, Konishi K (2010) HCl-induced nuclearity convergence in diphosphine-protected ultrasmall gold clusters: a novel synthetic route to “magic-number” Au13 clusters. Small 6(11):1216–1220

    Article  CAS  Google Scholar 

  76. Shichibu Y, Suzuki K, Konishi K (2012) Facile synthesis and optical properties of magic-number Au13 clusters. Nanoscale 4(14):4125–4129

    Article  CAS  Google Scholar 

  77. Ito H, Saito T, Miyahara T, Zhong C, Sawamura M (2009) Gold(I) hydride intermediate in catalysis: dehydrogenative alcohol silylation catalyzed by gold(I) complex. Organometallics 28(16):4829–4840

    Article  CAS  Google Scholar 

  78. Teo BK, Shi X, Zhang H (1992) Pure gold cluster of 1:9:9:1:9:9:1 layered structure: a novel 39-metal-atom cluster [(Ph3P)14Au39Cl6]Cl2 with an interstitial gold atom in a hexagonal antiprismatic cage. J Am Chem Soc 114(7):2743–2745

    Article  CAS  Google Scholar 

  79. Das A, Li T, Nobusada K, Zeng Q, Rosi N, Jin R (2012) Total structure and optical properties of a phosphine/thiolate-protected Au24 nanocluster. J Am Chem Soc 134(50):20286–20289

    Article  CAS  Google Scholar 

  80. Strähle J (1995) Synthesis of cluster compounds by photolysis of azido complexes. J Organomet Chem 488(1–2):15–24

    Article  Google Scholar 

  81. Kamei Y, Shichibu Y, Konishi K (2011) Generation of small gold clusters with unique geometries through cluster-to-cluster transformations: octanuclear clusters with edge-sharing gold tetrahedron motifs. Angew Chem Int Ed Engl 50(32):7442–7445

    Article  CAS  Google Scholar 

  82. Laguna A, Laguna M, Gimeno MC, Jones PG (1992) Synthesis and X-ray characterization of the neutral organometallic gold cluster [Au10(C6F5)4(PPh3)5]. Organometallics 11(8):2759–2760

    Article  CAS  Google Scholar 

  83. Vollenbroek FA, Bour JJ, Trooster JM, van der Velden JWA (1978) Reactions of gold? Phosphine cluster compounds. J Chem Soc Chem Commun 21:907

    Article  Google Scholar 

  84. Nunokawa K, Onaka S, Ito M, Horibe M, Yonezawa T, Nishihara H, Ozeki T, Chiba H, Watase S, Nakamoto M (2006) Synthesis, single crystal X-ray analysis, and TEM for a single-sized Au11 cluster stabilized by SR ligands: the interface between molecules and particles. J Organomet Chem 691(4):638–642

    Article  CAS  Google Scholar 

  85. Shichibu Y, Negishi Y, Watanabe T, Chaki NK, Kawaguchi H, Tsukuda T (2007) Biicosahedral Gold Clusters [Au25(PPh3)10(SCnH2n+1)5Cl2]2+ (n = 2–18): a Stepping stone to cluster-assembled materials. J Phys Chem C 111(22):7845–7847

    Article  CAS  Google Scholar 

  86. Yang Y, Sharp PR (1994) New gold clusters [Au8L6](BF4)2 and [(AuL)4](BF4)2 (L=P(mesityl)3). J Am Chem Soc 116(15):6983–6984

    Article  CAS  Google Scholar 

  87. Ramamoorthy V, Wu Z, Yi Y, Sharp PR (1992) Preparation and decomposition of gold(I) hydrazido complexes: gold cluster formation. J Am Chem Soc 114(4):1526–1527

    Article  CAS  Google Scholar 

  88. Schulz-Dobrick M, Jansen M (2007) Characterization of gold clusters by crystallization with polyoxometalates: the intercluster compounds [Au9(dpph)4][Mo8O26], [Au9(dpph)4][PW12O40] and [Au11(PPh3)8Cl2]2[W6O19]. Z Anorg Allg Chem 633(13–14):2326–2331

    Article  CAS  Google Scholar 

  89. Schulz-Dobrick M, Jansen M (2008) Intercluster compounds consisting of gold clusters and fullerides: [Au7(PPh3)7]C60 × THF and [Au8(PPh3)8](C60)2. Angew Chem Int Ed Engl 47(12):2256–2259

    Article  CAS  Google Scholar 

  90. Gutrath B, Oppel I, Presly O, Beljakov I, Meded V, Wenzel W, Simon U (2013) [Au14(PPh3)8(NO3)4]: an example of a new class of Au(NO3)-ligated superatom complexes. Angew Chem Int Ed 52(12):3529–3532

    Article  CAS  Google Scholar 

  91. Kobayashi N, Kamei Y, Shichibu Y, Konishi K (2013) Protonation-induced chromism of pyridylethynyl-appended [core+exo]-type Au clusters. Resonance-coupled electronic perturbation through pi-conjugated group. J Am Chem Soc 135(43):16078–16081

    Article  CAS  Google Scholar 

  92. Van der Linden JGM, Paulissen MLH, Schmitz JEJ (1983) Electrochemical reduction of the gold cluster Au9(PPh3)8 3+. Evidence for an ErErCr mechanism. Formation of the paramagnetic gold cluster Au9(PPh3)8 2+. J Am Chem Soc 105(7):1903–1907

    Article  Google Scholar 

  93. Smirnova ES, Echavarren AM (2013) A hexanuclear gold cluster supported by three-center-two-electron bonds and aurophilic interactions. Angew Chem Int Ed Engl 52(34):9023–9026

    Article  CAS  Google Scholar 

  94. Marsh RE (1984) Crystal structure of Au7(PPh3)7+: corrigendum. Inorg Chem 23(22):3682–3682

    Article  CAS  Google Scholar 

  95. Schulz-Dobrick M, Jansen M (2008) Synthesis and characterization of intercluster compounds consisting of various gold clusters and differently charged keggin anions. Z Anorg Allg Chem 634(15):2880–2884

    Article  CAS  Google Scholar 

  96. Bhargava S, Kitadai K, Masashi T, Drumm DW, Russo SP, Yam VW, Lee TK, Wagler J, Mirzadeh N (2012) Synthesis and structures of cyclic gold complexes containing diphosphine ligands and luminescent properties of the high nuclearity species. Dalton Trans 41(16):4789–4798

    Article  CAS  Google Scholar 

  97. Pethe J, Strahle J (1999) Synthese und Kristallstruktur von [Au(AuNCO)(AuPPh3)8] Cl. Z Naturforsh B 54(3):381–384

    CAS  Google Scholar 

  98. Pethe J, Maichle-Mössmer C, Strähle J (1998) Synthese und Struktur von K[Au(AuCl)(AuPPh3)8)](PF6)2. Z Anorg Allg Chem 624(7):1207–1210

    Article  CAS  Google Scholar 

  99. Nunokawa K, Onaka S, Yamaguchi T, Ito T, Watase S, Nakamoto M (2003) Synthesis and characterization of the Au11 cluster with sterically demanding phosphine ligands by single crystal X-ray diffraction and XPS spectroscopy. Bull Chem Soc Jpn 76(8):1601–1602

    Article  CAS  Google Scholar 

  100. Scherbaum F, Grohmann A, Huber B, Krüger C, Schmidbaur H (1988) “Aurophilicity” as a consequence of relativistic effects: the hexakis(triphenylphosphaneaurio)methane dication[(Ph3PAu)6C]2⊕. Angew Chem Int Ed Engl 27(11):1544–1546

    Article  Google Scholar 

  101. Shichibu Y, Konishi K (2013) Electronic properties of [core+exo]-type gold clusters: factors affecting the unique optical transitions. Inorg Chem 52(11):6570–6575

    Article  CAS  Google Scholar 

  102. Jaw HRC, Mason WR (1991) Magnetic circular dichroism spectra for the octakis(triphenylphosphino)nonagold(3+) ion. Inorg Chem 30(2):275–278

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author is grateful to Professor Michael Mingos for reading the drafts of this chapter and providing useful comments, and to Dr. Yutaro Kamei for his help in preparing graphics and also checking the structural and spectral data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsuaki Konishi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Konishi, K. (2014). Phosphine-Coordinated Pure-Gold Clusters: Diverse Geometrical Structures and Unique Optical Properties/Responses. In: Mingos, D. (eds) Gold Clusters, Colloids and Nanoparticles I. Structure and Bonding, vol 161. Springer, Cham. https://doi.org/10.1007/430_2014_143

Download citation

Publish with us

Policies and ethics