Skip to main content

The Phase Rule: Beyond Myopia to Understanding

  • Chapter
  • First Online:
Book cover Molecular Electronic Structures of Transition Metal Complexes II

Part of the book series: Structure and Bonding ((STRUCTURE,volume 143))

Abstract

The Gibbs phase rule relating the number of degrees of freedom f of a system to the number of components c and the number of coexisting phases p is a central, universally used relation, expressed by what is probably the simplest formula in the natural sciences, f = c − p + 2. Research into the behavior of small systems, notably atomic clusters, has shown in recent years that the phase rule is not as all-encompassing as is often assumed. Small systems can show coexistence of two or more phases in thermodynamic equilibrium over bands of temperature and pressure (with no other forces acting on them). The basis of this apparent violation of the phase rule, seeming almost like violation of a scientific law, is in reality entirely understandable, consistent with the laws of thermodynamics, and even allows one to estimate the upper size limit of any particular system for which such apparent violation could be observed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gibbs JW (1876) Trans Conn Acad 3:108; (1878) Trans Conn Acad 3:343

    Google Scholar 

  2. Roozeboom HW (1887) Rec Trav Pays-Bas Belg 6:262

    Article  Google Scholar 

  3. Servos JW (1990) Physical chemistry from Ostwald to Pauling, Chapter 3. Princeton University Press, Princeton, p 100

    Google Scholar 

  4. Daub EE (1976) J Chem Ed 53:747

    Article  CAS  Google Scholar 

  5. Cotterill RMJ, Damgaard-Kristensen W, Martin JW, Peterson LB, Jensen EJ (1973) Comput Phys Comm 5:28

    Article  CAS  Google Scholar 

  6. Cotterill RMJ (1975) Phil Mag 32:1283

    Article  CAS  Google Scholar 

  7. Lee JK, Barker JA, Abraham FF (1973) J Chem Phys 58:3166

    Article  CAS  Google Scholar 

  8. McGinty DJ (1973) J Chem Phys 58:4733

    Article  CAS  Google Scholar 

  9. Damgaard-Kristensen W, Jensen EJ, Cotterill RMJ (1974) J Chem Phys 6:4161

    Article  Google Scholar 

  10. Briant CL, Burton JJ (1975) J Chem Phys 63:2045

    Article  CAS  Google Scholar 

  11. Etters RD, Kaelberer JB (1975) Phys Rev A 11:1068

    Article  CAS  Google Scholar 

  12. Etters RD, Kaelberer JB (1977) J Chem Phys 66:5112

    Article  CAS  Google Scholar 

  13. Kaelberer JB, Etters RD (1977) J Chem Phys 66:3233

    Article  CAS  Google Scholar 

  14. Amini M, Fincham D, Hockney RW (1979) J Phys C 12:4707

    Article  CAS  Google Scholar 

  15. Nauchitel VV, Pertsin AJ (1980) Mol Phys 40:1341

    Article  CAS  Google Scholar 

  16. Garzon IL, Jellinek J (1991) Z Phys D 20:235

    Article  CAS  Google Scholar 

  17. Jellinek J, Garzon IL (1991) Z Phys D 20:239

    Article  CAS  Google Scholar 

  18. Farges J, de Feraudy MF, Raoult B, Torchet G (1983) J Chem Phys 84:3491

    Article  Google Scholar 

  19. Bartell LS (1985) Chem Rev 86:492

    Google Scholar 

  20. Bartell LS, Harsanyi L, Valente EJ (1989) J Phys Chem 93:6201

    Article  CAS  Google Scholar 

  21. Bartell LS, Dibble TS (1991) J Phys Chem 95:1159

    Article  CAS  Google Scholar 

  22. Hill TL (1963) The thermodynamics of small systems, Part 1; (1964) Part II. Benjamin, New York

    Google Scholar 

  23. Berry RS, Jellinek J, Natanson G (1984) Phys Rev A 30:919

    Article  CAS  Google Scholar 

  24. Cheng H-P, Berry RS (1992) Phys Rev A 45:7969

    Article  CAS  Google Scholar 

  25. Kunz RE, Berry RS (1994) Phys Rev E 49:1895

    Article  CAS  Google Scholar 

  26. Berry RS, Smirnov BM (2009) Int J Mass Spectrom 280:204

    Article  CAS  Google Scholar 

  27. Berry RS (2010) In: Sattler K (ed) Handbook of nanophysics, V.1, Chapter 20. CRC Press, Taylor and Francis, Boca Raton, FL

    Google Scholar 

  28. Schmidt M, Kusche R, Kronmüller W, von Issendorf B, Haberland H (1997) Phys Rev Lett 79:99

    Article  CAS  Google Scholar 

  29. Schmidt M, Donges J, Hippler T, Haberland H (2003) Phys Rev Lett 90:103401

    Article  CAS  Google Scholar 

Download references

Acknowledgments

R.S.B. wishes to acknowledge the hospitality of the Aspen Center for Physics, which enabled the writing of this chapter. He also wishes to recognize with deep appreciation and very dear memories the companionship and stimulation of Carl Johan Ballhausen, from the time they were first together in the research group of William Moffitt at Harvard, in the 1950s until his passing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Stephen Berry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Berry, R.S., Smirnov, B.M. (2011). The Phase Rule: Beyond Myopia to Understanding. In: Mingos, D., Day, P., Dahl, J. (eds) Molecular Electronic Structures of Transition Metal Complexes II. Structure and Bonding, vol 143. Springer, Berlin, Heidelberg. https://doi.org/10.1007/430_2011_56

Download citation

Publish with us

Policies and ethics