Skip to main content

Mechanical and Transport Properties of Nafion: Effects of Temperature and Water Activity

  • Chapter
  • First Online:

Part of the book series: Structure and Bonding ((STRUCTURE,volume 141))

Abstract

Recent studies have shown that water absorption changes the mechanical and transport properties of Nafion by orders of magnitude. The unusually large changes in properties are indicative of microstructural changes induced by water absorption. The experimental findings of changes in proton conduction, water transport, elastic modulus, and stress relaxation are highlighted and explained by microphase segregation of hydrophilic domains resulting from water absorption. Water absorption is proposed to cause clustering of hydrophilic sulfonic acid groups and water within a hydrophobic polytetrafluoroethylene matrix. The hydrophilic domains form a network that facilitates transport and create physical cross-links that stiffen Nafion. At high temperature and low water activity, the entropy of de-mixing breaks the clusters apart, causing a large drop in elastic modulus of the polymer and a large decrease in the rates of water and proton transport.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mauritz KA, Moore RB (2004) State of understanding of Nafion. Chem Rev 104(10):4535–4585

    Article  CAS  Google Scholar 

  2. Yeo RS, Yeager HL (1985) Structural and transport properties of perfluorinated ion-exchange membrane. In: Conway BE, White RE, Bockris JOM (eds) Modern aspects of electrochemistry. Plenum, New York, pp 437–504

    Google Scholar 

  3. Kim J-S (2005) Ionomers. In: Kirk-Othmer encyclopedia of chemical technology. Wiley, New York, pp 1-32

    Google Scholar 

  4. Doyle M, Rajendaran G (2003) Perfluorinated membranes. In: Vielstich W, Gasteiger HA, Lamm A (eds) Fuel cell technology and applications. Wiley, New York

    Google Scholar 

  5. Berzins T (1978) Electrochemical relationships in chlor-alkali cells employing Nafion membranes. J Electrochem Soc 125(3):C163

    Google Scholar 

  6. Cise GE, Melnicki LS, Rudd EJ (1978) Evaluation and optimization of Nafion membranes in chlor-alkali cells. J Electrochem Soc 125(3):C162

    Google Scholar 

  7. Heitner-Wirguin C (1996) Recent advances in perfluorinated ionomer membranes: structure, properties and applications. J Memb Sci 120:1–33

    Article  CAS  Google Scholar 

  8. Srinivasan S et al (1993) Overview of fuel cell technology. In: Blomen LJMJ, Mugerwa MN (eds) Fuel cell systems. Plenum, New York, pp 37–72

    Google Scholar 

  9. Du XZ et al (2001) Performances of proton exchange membrane fuel cells with alternate membranes. Phys Chem Chem Phys 3(15):3175–3179

    Article  CAS  Google Scholar 

  10. Adjemian KT et al (2000) Novel Membranes for PEMFC Operation at 120 to 200 C. The Electrochemistry Society Meeting Abstracts, 2000. 2000-1: p Abstract 85

    Google Scholar 

  11. Costamagna P, Srinivasan S (2001) Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000 Part II. Engineering, technology development and application aspects. J Power Sources 102(1–2):253–269

    Article  CAS  Google Scholar 

  12. Yang C et al (2001) Approaches and technical challenges to high temperature operation of proton exchange membrane fuel cells. J Power Sources 103(1):1–9

    Article  CAS  Google Scholar 

  13. Sato K, Nakao M, Ishii T (1986) Operational technology with Flemion for chloralkali electrolysis. J Electrochem Soc 133(3):C122

    Article  Google Scholar 

  14. Yoshida N et al (1998) Characterization of Flemion (R) membranes for PEFC. Electrochim Acta 43(24):3749–3754

    Article  CAS  Google Scholar 

  15. Moxley JF, Tulyani S, Benziger JB (2003) Steady-state multiplicity in the autohumidification polymer electrolyte membrane fuel cell. Chem Eng Sci 58(20):4705–4708

    Article  CAS  Google Scholar 

  16. Benziger J et al (2004) The stirred tank reactor polymer electrolyte membrane fuel cell. AIChE J 50(8):1889–1900

    Article  CAS  Google Scholar 

  17. Rama P, Chen R, Andrews J (2008) A review of performance degradation and failure modes for hydrogen-fuelled polymer electrolyte fuel cells. Proc Inst Mech Eng Part A J Power Energy 222(A5):421–441

    Article  CAS  Google Scholar 

  18. Mittal VO, Kunz HR, Fenton JM (2007) Membrane degradation mechanisms in PEMFCs. J Electrochem Soc 154(7):B652–B656

    Article  CAS  Google Scholar 

  19. Gebel G, Diat O (2005) Neutron and x-ray scattering: suitable tools for studying ionomer membranes. Fuel Cells 5(2):261–276

    Article  CAS  Google Scholar 

  20. Loveday D et al (1997) Investigation of the structure and properties of polyisobutylene-based telechelic ionomers of narrow molecular weight distribution.2. Mechanical. J Appl Polym Sci 63(4):507–519

    Article  CAS  Google Scholar 

  21. Pineri M (1986) Microstructure of organic ionic membranes. ACS Symp Ser 302:159–174

    Article  CAS  Google Scholar 

  22. Page KA et al (2006) SAXS analysis of the thermal relaxation of anisotropic morphologies in oriented Nafion membranes. Macromolecules 39(11):3939–3946

    Article  CAS  Google Scholar 

  23. Gierke TD, Munn GE, Wilson FC (1982) Morphology of perfluorosulfonated membrane products – wide-angle and small-angle X-ray studies. ACS Symp Ser 180:195–216

    Article  CAS  Google Scholar 

  24. Yeo RS, Chan SF, Lee J (1981) Swelling behavior of Nafion and radiation-grafted cation-exchange membranes. J Memb Sci 9(3):273–283

    Article  CAS  Google Scholar 

  25. Yeo SC, Eisenberg A (1977) Physical properties and supermolecular structure of perfluorinated ion-containing (Nafion) polymers. J Appl Polym Sci 21(4):875–898

    Article  CAS  Google Scholar 

  26. Miura Y, Yoshida H (1990) Effects of water and alcohols on molecular-motion of perfluorinated ionomer membranes. Thermochim Acta 163:161–168

    Article  CAS  Google Scholar 

  27. Page KA, Cable KM, Moore RB (2005) Molecular origins of the thermal transitions and dynamic mechanical relaxations in perfluorosulfonate ionomers. Macromolecules 38(15):6472–6484

    Article  CAS  Google Scholar 

  28. Kreuer KD (2001) On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. J Memb Sci 185(1):29–39

    Article  CAS  Google Scholar 

  29. Kreuer KD et al (2004) Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology. Chem Rev 104(10):4637–4678

    Article  CAS  Google Scholar 

  30. Weber AZ, Newman J (2003) Transport in polymer-electrolyte membranes - I. Physical model. J Electrochem Soc 150(7):A1008–A1015

    Article  CAS  Google Scholar 

  31. Weber AZ, Newman J (2004) Modeling transport in polymer-electrolyte fuel cells. Chem Rev 104:4679–4726

    Article  CAS  Google Scholar 

  32. Majsztrik PW et al (2007) Water sorption, desorption and transport in Nafion membranes. J Memb Sci 301:93–106

    Article  CAS  Google Scholar 

  33. Majsztrik PW, Bocarsly AB, Benziger J (2008) Water permeation through Nafion. J Phys Chem B 112(51):16280–16289

    Article  CAS  Google Scholar 

  34. Satterfield MB, Benziger JB (2008) Non-Fickian water sorption dynamics by Nafion membranes. J Phys Chem B 112(12):3693–3704

    Article  CAS  Google Scholar 

  35. Zawodzinski TA et al (1991) Determination of water diffusion-coefficients in perfluorosulfonate ionomeric membranes. J Phys Chem 95(15):6040–6044

    Article  CAS  Google Scholar 

  36. Zawodzinski TA et al (1993) Water-uptake by and transport through Nafion(R) 117 Membranes. J Electrochem Soc 140(4):1041–1047

    Article  CAS  Google Scholar 

  37. Hinatsu JT, Mizuhata M, Takenaka H (1994) Water uptake of perfluorosulfonic acid membranes from liquid water and water vapor. J Electrochem Soc 141(6):1493–1498

    Article  CAS  Google Scholar 

  38. Bass M, Freger V (2006) An experimental study of Schroeder's paradox in Nafion and Dowex polymer electrolytes. Desalination 199(1–3):277–279

    Article  CAS  Google Scholar 

  39. Choi PH, Datta R (2003) Sorption in proton-exchange membranes – an explanation of Schroeder's paradox. J Electrochem Soc 150(12):E601–E607

    Article  CAS  Google Scholar 

  40. Onishi LM, Prausnitz JM, Newman J (2007) Water-nafion equilibria. Absence of Schroeder's paradox. J Phys Chem B 111(34):10166–10173

    Article  CAS  Google Scholar 

  41. Cornet N, Gebel G, de Geyer A (1998) Existence of the Schroeder paradox with a Nafion membrane? Small-angle x-ray scattering analysis. Journal De Physique IV 8(P5):63–68

    Google Scholar 

  42. Satterfield MB, Benziger JB (2009) Viscoelastic properties of Nafion at elevated temperature and humidity. J Polym Sci B Polym Phys 47(1):11–24

    Article  CAS  Google Scholar 

  43. Satterfield MB et al (2006) Mechanical properties of Nafion and Titania/Nafion composite membranes for PEM fuel cells. Journal of Polymer Science B 44:2327–2345

    Article  CAS  Google Scholar 

  44. Satterfield MB (2007) Mechanical and water sorption properties of Nafion and Nafion/Titanium dioxide membranes for polymer electrolyte membrane fuel cells. In: Chemical Engineering. Princeton University, Princeton, NJ, p 208

    Google Scholar 

  45. Majsztrik PW (2008) Mechanical and transport properties of Nafion for PEM fuel cells; temperature and hydration effects. In: Chemistry. Princeton University, Princeton, NJ, p 235

    Google Scholar 

  46. Majsztrik PW, Bocarsly AB, Benzigerv JB (2007) An instrument for environmental control of vapor pressure and temperature for tensile creep and other mechanical property measurements. Rev Sci Instrum 78(10):103904

    Article  CAS  Google Scholar 

  47. Majsztrik PW, Bocarsly AB, Benziger JB (2008) Viscoelastic response of Nafion. Effects of temperature and hydration on tensile creep. Macromolecules 41(24):9849–9862

    Article  CAS  Google Scholar 

  48. Yang C et al (2004) A comparison of physical properties and fuel cell performance of Nafion and zirconium phosphate/Nafion composite membranes. J Memb Sci 237(1–2):145–161

    Article  CAS  Google Scholar 

  49. Zhao Q, Majsztrik P, Benziger J (2011) Diffusion and interfacial transport of water in Nafion. J Phys Chem B. dx.doi.org/10.1021/jp112125

    Google Scholar 

  50. Cheah MJ, Kevrekidis IG, Benziger J (2011) Effect of applied potential, water activity and temperature on proton and water transport in Nafion. J Phys Chem B (submitted)

    Google Scholar 

  51. Bass M et al (2010) Surface structure of Nafion in vapor and liquid. J Phys Chem B 114(11):3784–3790

    Article  CAS  Google Scholar 

  52. Kyu T, Eisenberg A (1982) Mechanical relaxations in perfluorosulfonate-ionomer membranes. ACS Symp Ser 180:79–110

    Article  CAS  Google Scholar 

  53. Hodge IM, Eisenberg A (1978) Dielectric and mechanical relaxations in a Nafion precursor. Macromolecules 11(2):289–293

    Article  CAS  Google Scholar 

  54. Choi P et al (2006) Consideration of thermodynamic, transport, and mechanical properties in the design of polymer electrolyte membranes for higher temperature fuel cell operation. J Polym Sci B Polym Phys 44(16):2183–2200

    Article  CAS  Google Scholar 

  55. Escoubes M, Pineri M, Robens E (1984) Application Of coupled thermal-analysis techniques to thermodynamic studies of water interactions with a compressible ionic polymer matrix. Thermochim Acta 82(1):149–160

    Article  CAS  Google Scholar 

  56. Jalani NH, Dunn K, Datta R (2005) Synthesis and characterization of Nafion(R)-MO2 (M = Zr, Si, Ti) nanocomposite membranes for higher temperature PEM fuel cells. Electrochim Acta 51(3):553–560

    Article  CAS  Google Scholar 

  57. Kawano Y et al (2002) Stress-strain curves of Nafion membranes in acid and salt forms. Polimeros: Ciencia e Technologia 12(2):96–101

    CAS  Google Scholar 

  58. Khare VP, Greenberg AR, Krantz WB (2004) Investigation of the viscoelastic and transport properties of interfacially polymerized barrier layers using pendant drop mechanical analysis. J Appl Polym Sci 94(2):558–568

    Article  CAS  Google Scholar 

  59. Laporta M, Pegoraro M, Zanderighi L (1999) Perfluorosulfonated membrane (Nafion): FT-IR study of the state of water with increasing humidity. Phys Chem Chem Phys 1(19):4619–4628

    Article  CAS  Google Scholar 

  60. Taylor EP et al (2006) Counterion dependent crystallization kinetics in blends of a perfluorosulfonate ionomer with poly(vinylidene fluoride). Polymer 47(21):7425–7435

    Article  CAS  Google Scholar 

  61. Osborn SJ et al (2007) Glass transition temperature of perfluorosulfonic acid ionomers. Macromolecules 40(10):3886–3890

    Article  CAS  Google Scholar 

  62. Bauer F, Denneler S, Willert-Porada M (2005) Influence of temperature and humidity on the mechanical properties of Nafion (R) 117 polymer electrolyte membrane. J Polym Sci B Polym Phys 43(7):786–795

    Article  CAS  Google Scholar 

  63. Eisenberg A (1970) Macromolecules 3:147

    Article  CAS  Google Scholar 

  64. Moore RB et al (2005) Alteration of membrane properties of perfluorosulfonate ionomers using solution and melt processing procedures. Abstracts of Papers of the American Chemical Society. 230: p 756-POLY

    Google Scholar 

  65. Page KA, Jarrett W, Moore RB (2007) Variable temperature F-19 solid-state NMR study of the effect of electrostatic interactions on thermally-stimulated molecular motions in perfluorosulfonate lonomers. J Polym Sci B Polym Phys 45(16):2177–2186

    Article  CAS  Google Scholar 

  66. Park JK, Moore RB (2009) Influence of ordered morphology on the anisotropic actuation in uniaxially oriented electroactive polymer systems. ACS Appl Mater Interfaces 1(3):697–702

    Article  CAS  Google Scholar 

  67. Phillips AK, Moore RB (2006) Mechanical and transport property modifications of perfluorosulfonate ionomer membranes prepared with mixed organic and inorganic counterions. J Polym Sci B Polym Phys 44(16):2267–2277

    Article  CAS  Google Scholar 

  68. Gierke TD, Hsu WY (1982) The cluster-network model of ion clustering in perfluorosulfonated membranes. ACS Symp Ser 180:283–307

    Article  CAS  Google Scholar 

  69. Escoubes M et al (1984) Ion clustering in styrene-based ionomers – calorimetric and gravimetric hydration studies and effect of ion concentration and thermal history. J Appl Polym Sci 29(4):1249–1266

    Article  CAS  Google Scholar 

  70. Hsu WY, Gierke TD (1982) Ion clustering and transport in Nafion perfluorinated membranes. J Electrochem Soc 129(3):C121

    Google Scholar 

  71. Hsu WY, Gierke TD (1982) Elastic theory for ionic clustering in perfluorinated ionomers. Macromolecules 15(1):101–105

    Article  CAS  Google Scholar 

  72. Hsu WY, Gierke TD (1983) Ion-transport and clustering in Nafion perfluorinated membranes. J Memb Sci 13(3):307–326

    Article  CAS  Google Scholar 

  73. Yoshida H, Miura Y (1992) Behavior of water in perfluorinated ionomer membranes containing various monovalent cations. J Memb Sci 68(1–2):1–10

    Article  CAS  Google Scholar 

  74. Schmidt-Rohr K, Chen Q (2008) Parallel cylindrical water nanochannels in Nafion fuel-cell membranes. Nat Mater 7(1):75–83

    Article  CAS  Google Scholar 

  75. Choi P, Jalani NH, Datta R (2005) Thermodynamics and proton transport in Nafion - II. Proton diffusion mechanisms and conductivity. J Electrochem Soc 152(3):E123–E130

    Article  CAS  Google Scholar 

  76. Hsu WY, Gierke TD, Molnar CJ (1983) Morphological effects on the physical-properties of polymer composites. Macromolecules 16(12):1945–1947

    Article  CAS  Google Scholar 

  77. Gierke TD, Munn GE, Wilson FC (1981) The morphology in Nafion perfluorinated membrane products, as determined by wide-angle and small-angle X-ray studies. J Polym Sci B Polym Phys 19(11):1687–1704

    CAS  Google Scholar 

  78. Ranney C (2008) Effects of temperature and solvent activity on the viscoelastic response of Nafion for PEM fuel cells. In: Chemical Engineering. Princeton University, Princeton, p 62

    Google Scholar 

  79. Casciola M et al (2006) On the decay of Nafion proton conductivity at high temperature and relative humidity. J Power Sources 162:141–145

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank the National Science Foundation (CBET–0754715 and DMR-0213707 through the Materials Research and Science Engineering Center at Princeton) for support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay Benziger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Benziger, J., Bocarsly, A., Cheah, M.J., Majsztrik, P., Satterfield, B., Zhao, Q. (2011). Mechanical and Transport Properties of Nafion: Effects of Temperature and Water Activity. In: Bocarsly, A., Mingos, D. (eds) Fuel Cells and Hydrogen Storage. Structure and Bonding, vol 141. Springer, Berlin, Heidelberg. https://doi.org/10.1007/430_2011_41

Download citation

Publish with us

Policies and ethics