Skip to main content

Spatiotemporal Fluorescence Correlation Spectroscopy of Inert Tracers: A Journey Within Cells, One Molecule at a Time

  • Chapter
  • First Online:
Perspectives on Fluorescence

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 17))

Abstract

The fundamental unit of biology is unarguably the cell. Thus, as we move forward in our understanding of the processes occurring in the cell, it is crucial to reflect on how much of the cell biophysics remains unexplained or unknown. A ubiquitous observation in cell biology is that the translational motion of molecules within the intracellular environment is strongly suppressed as compared to that in dilute solutions. By contrast, molecular rotation is not affected by the same environment, indicating that the close proximity of the molecule must be aqueous. Theoretical models provide explanations for this apparent discrepancy pointing to the presence of macromolecular intracellular crowding, but with expectations that depend on the nanoscale organization assigned to crowding agents. A satisfactory experimental discrimination between possible scenarios has remained elusive due to the lack of techniques to explore molecular diffusion at the appropriate spatiotemporal scale in the 3D-intracellular environment. Here we discuss our recent experimental evidences for molecular diffusion in crowded biological media. By using monomeric GFP as a fluorescent tracer, and spatiotemporal fluorescence correlation spectroscopy (FCS) as main analytical tool, we reconstruct an imaginary journey, one molecule at a time, across intracellular compartments, such as cytoplasm and nucleoplasm, as well as within subcellular dynamic nanostructures, such as the nuclear pore complex. Results in cells are complemented by in vitro experiments where a variety of model systems mimic physiological crowding conditions. During this journey, Gregorio Weber intuitions on the nature of the cell protoplasm (see below) and on the intrinsic link between the spatial and temporal scales of diffusion processes both inspired our measurements and guided data interpretation. We do believe that the experimental observations on molecular diffusion collected in the interior of cells might influence the way biochemical reactions take place, with possible significant contributions to our understanding of crucial, still obscure phenomena, e.g., the biological benefit of anomalous transport, the regulation of protein folding/unfolding, intracellular signaling, target-search processes, and bimolecular reactions kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chalfie M (2009) GFP: lighting up life. Proc Natl Acad Sci U S A 106(25):10073–10080

    Article  CAS  Google Scholar 

  2. Fushimi K, Verkman AS (1991) Low viscosity in the aqueous domain of cell cytoplasm measured by picosecond polarization microfluorimetry. J Cell Biol 112(4):719–725

    Article  CAS  Google Scholar 

  3. Swaminathan R, Hoang CP, Verkman AS (1997) Photobleaching recovery and anisotropy decay of green fluorescent protein GFP-S65T in solution and cells: cytoplasmic viscosity probed by green fluorescent protein translational and rotational diffusion. Biophys J 72(4):1900–1907

    Article  CAS  Google Scholar 

  4. Hofling F, Franosch T (2013) Anomalous transport in the crowded world of biological cells. Rep Prog Phys 76(4):046602

    Article  Google Scholar 

  5. Luby-Phelps K, Taylor DL, Lanni F (1986) Probing the structure of cytoplasm. J Cell Biol 102(6):2015–2022

    Article  CAS  Google Scholar 

  6. Seksek O, Biwersi J, Verkman AS (1997) Translational diffusion of macromolecule-sized solutes in cytoplasm and nucleus. J Cell Biol 138(1):131–142

    Article  CAS  Google Scholar 

  7. Caspi A, Granek R, Elbaum M (2002) Diffusion and directed motion in cellular transport. Phys Rev E Stat Nonlin Soft Matter Phys 66(1 Pt 1):011916

    Article  Google Scholar 

  8. Schwille P et al (1999) Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation. Biophys J 77(4):2251–2265

    Article  CAS  Google Scholar 

  9. Wawrezinieck L et al (2005) Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization. Biophys J 89(6):4029–4042

    Article  CAS  Google Scholar 

  10. Lenne PF et al (2006) Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork. EMBO J 25(14):3245–3256

    Article  CAS  Google Scholar 

  11. Ruprecht V et al (2011) Spot variation fluorescence correlation spectroscopy allows for superresolution chronoscopy of confinement times in membranes. Biophys J 100(11):2839–2845

    Article  CAS  Google Scholar 

  12. Hell SW (2007) Far-field optical nanoscopy. Science 316(5828):1153–1158

    Article  CAS  Google Scholar 

  13. Eggeling C et al (2009) Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457(7233):1159–1162

    Article  CAS  Google Scholar 

  14. Hedde PN et al (2013) Stimulated emission depletion-based raster image correlation spectroscopy reveals biomolecular dynamics in live cells. Nat Commun 4:2093

    Article  Google Scholar 

  15. Shusterman R et al (2004) Monomer dynamics in double- and single-stranded DNA polymers. Phys Rev Lett 92(4):048303

    Article  Google Scholar 

  16. Dross N et al (2009) Mapping eGFP oligomer mobility in living cell nuclei. PLoS One 4(4), e5041

    Article  Google Scholar 

  17. Di Rienzo C et al (2014) Probing short-range protein Brownian motion in the cytoplasm of living cells. Nat Commun 5:5891

    Article  Google Scholar 

  18. Groner N et al (2010) Measuring and imaging diffusion with multiple scan speed image correlation spectroscopy. Opt Express 18(20):21225–21237

    Article  Google Scholar 

  19. Arrio-Dupont M et al (2000) Translational diffusion of globular proteins in the cytoplasm of cultured muscle cells. Biophys J 78(2):901–907

    Article  CAS  Google Scholar 

  20. Saxton MJ (1994) Anomalous diffusion due to obstacles: a Monte Carlo study. Biophys J 66(2 Pt 1):394–401

    Article  CAS  Google Scholar 

  21. Kusumi A et al (2005) Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. Annu Rev Biophys Biomol Struct 34:351–378

    Article  CAS  Google Scholar 

  22. Di Rienzo C et al (2013) Fast spatiotemporal correlation spectroscopy to determine protein lateral diffusion laws in live cell membranes. Proc Natl Acad Sci U S A 110(30):12307–12312

    Article  Google Scholar 

  23. Di Rienzo C et al (2014) From fast fluorescence imaging to molecular diffusion law on live cell membranes in a commercial microscope. J Vis Exp 92, e51994

    Google Scholar 

  24. Fujiwara T et al (2002) Phospholipids undergo hop diffusion in compartmentalized cell membrane. J Cell Biol 157(6):1071–1081

    Article  CAS  Google Scholar 

  25. Roosen-Runge F et al (2011) Protein self-diffusion in crowded solutions. Proc Natl Acad Sci U S A 108(29):11815–11820

    Article  CAS  Google Scholar 

  26. Novak IL, Kraikivski P, Slepchenko BM (2009) Diffusion in cytoplasm: effects of excluded volume due to internal membranes and cytoskeletal structures. Biophys J 97(3):758–767

    Article  CAS  Google Scholar 

  27. Kuhn T et al (2011) Protein diffusion in mammalian cell cytoplasm. PLoS One 6(8), e22962

    Article  CAS  Google Scholar 

  28. Cardarelli F et al (2007) In vivo study of HIV-1 Tat arginine-rich motif unveils its transport properties. Mol Ther 15(7):1313–1322

    Article  CAS  Google Scholar 

  29. Digman MA, Gratton E (2009) Imaging barriers to diffusion by pair correlation functions. Biophys J 97(2):665–673

    Article  CAS  Google Scholar 

  30. Hinde E, Cardarelli F (2011) Measuring the flow of molecules in cells. Biophys Rev 3(3):119–129

    Article  CAS  Google Scholar 

  31. Hinde E et al (2010) In vivo pair correlation analysis of EGFP intranuclear diffusion reveals DNA-dependent molecular flow. Proc Natl Acad Sci U S A 107(38):16560–16565

    Article  CAS  Google Scholar 

  32. Hinde E et al (2012) Changes in chromatin compaction during the cell cycle revealed by micrometer-scale measurement of molecular flow in the nucleus. Biophys J 102(3):691–697

    Article  CAS  Google Scholar 

  33. Hinde E et al (2011) The impact of mitotic versus interphase chromatin architecture on the molecular flow of EGFP by pair correlation analysis. Biophys J 100(7):1829–1836

    Article  CAS  Google Scholar 

  34. Wachsmuth M, Waldeck W, Langowski J (2000) Anomalous diffusion of fluorescent probes inside living cell nuclei investigated by spatially-resolved fluorescence correlation spectroscopy. J Mol Biol 298(4):677–689

    Article  CAS  Google Scholar 

  35. Fahrenkrog B, Aebi U (2003) The nuclear pore complex: nucleocytoplasmic transport and beyond. Nat Rev Mol Cell Biol 4(10):757–766

    Article  CAS  Google Scholar 

  36. Weis K (2003) Regulating access to the genome: nucleocytoplasmic transport throughout the cell cycle. Cell 112(4):441–451

    Article  CAS  Google Scholar 

  37. Yang W, Gelles J, Musser SM (2004) Imaging of single-molecule translocation through nuclear pore complexes. Proc Natl Acad Sci U S A 101(35):12887–12892

    Article  CAS  Google Scholar 

  38. Yang W, Musser SM (2006) Nuclear import time and transport efficiency depend on importin beta concentration. J Cell Biol 174(7):951–961

    Article  CAS  Google Scholar 

  39. Cardarelli F, Gratton E (2010) In vivo imaging of single-molecule translocation through nuclear pore complexes by pair correlation functions. PLoS One 5(5), e10475

    Article  Google Scholar 

  40. Daigle N et al (2001) Nuclear pore complexes form immobile networks and have a very low turnover in live mammalian cells. J Cell Biol 154(1):71–84

    Article  CAS  Google Scholar 

  41. Levi V, Ruan Q, Gratton E (2005) 3-D particle tracking in a two-photon microscope: application to the study of molecular dynamics in cells. Biophys J 88(4):2919–2928

    Article  CAS  Google Scholar 

  42. Cardarelli F, Lanzano L, Gratton E (2012) Capturing directed molecular motion in the nuclear pore complex of live cells. Proc Natl Acad Sci U S A 109(25):9863–9868

    Article  CAS  Google Scholar 

  43. Cardarelli F, Lanzano L, Gratton E (2011) Fluorescence correlation spectroscopy of intact nuclear pore complexes. Biophys J 101(4):L27–L29

    Article  CAS  Google Scholar 

  44. Saxton MJ (2012) Wanted: a positive control for anomalous subdiffusion. Biophys J 103(12):2411–2422

    Article  CAS  Google Scholar 

  45. Cremer T et al (1993) Role of chromosome territories in the functional compartmentalization of the cell nucleus. Cold Spring Harb Symp Quant Biol 58:777–792

    Article  CAS  Google Scholar 

  46. Munkel C et al (1999) Compartmentalization of interphase chromosomes observed in simulation and experiment. J Mol Biol 285(3):1053–1065

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work ideally encompasses the research conducted across several years and, as such, reflects the invaluable contribution by other people. In particular, the authors are grateful to Dr. Elizabeth Hinde and Dr. Michelle Digman who conducted the research on chromatin, Dr. Luca Lanzano who contributed to the research on the nuclear pore, and Dr. Carmine Di Rienzo who conducted the research on protein diffusion in the cell. Also, the authors acknowledge the precious contribution to research of other colleagues, including Prof. Fabio Beltram, Dr. Vincenzo Piazza, Dr. Milka Stakic, Dr. Aaron Kershner, and Prof. Judith Kimble.

The research described in this work was supported by several grants, including: the Cell Migration Consortium Grant U54 GM064346, the National Institutes of Health Grants P41-RRO3155, P41-GM103540, RO1 DK066029, P50-GM076516, MIUR under FIRB-RBAP11X42L, and Fondazione Monte dei Paschi di Siena.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Cardarelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cardarelli, F., Gratton, E. (2016). Spatiotemporal Fluorescence Correlation Spectroscopy of Inert Tracers: A Journey Within Cells, One Molecule at a Time. In: Jameson, D. (eds) Perspectives on Fluorescence. Springer Series on Fluorescence, vol 17. Springer, Cham. https://doi.org/10.1007/4243_2016_6

Download citation

Publish with us

Policies and ethics