Skip to main content

STED Fluorescence Nanoscopy

  • Chapter
  • First Online:

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 14))

Abstract

The turn of the twenty-first century has witnessed the advent of far-field (lens-based) fluorescence nanoscopy, a fluorescence microscopy featuring a spatial resolution down to molecular scales. Lens-based optical microscopy is a very popular technique for investigating the living cell, but the spatial resolution of its standard versions is limited to about 200 nm due to diffraction, impeding the imaging of molecular assemblies at smaller scales. Being the first of such nanoscopy techniques, STED microscopy was for a long time considered as a very complex technique, hard to apply in everyday biological research. However, recent years have seen major improvements of the STED nanoscopy approach, and STED microscopes are becoming increasingly widespread, nowadays providing turnkey sub-diffraction resolution imaging in open imaging facilities. Based on recent publications, we give a brief overview of some of the improvements that made these developments possible, a short insight into successful applications, as well as a brief comparison to other far-field fluorescence nanoscopy techniques.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Pawley JB (2006) Handbook of biological confocal microscopy, 2nd edn. Springer, New York

    Google Scholar 

  2. Abbe E (1873) Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch Mikrosk Anat 9:413–468

    Google Scholar 

  3. Hell SW (2009) Microscopy and its focal switch. Nat Methods 6(1):24–32

    CAS  Google Scholar 

  4. Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated-emission - stimulated-emission-depletion fluorescence microscopy. Opt Lett 19(11):780–782

    CAS  Google Scholar 

  5. Hell SW, Kroug M (1995) Ground-state depletion fluorescence microscopy, a concept for breaking the diffraction resolution limit. Appl Phys B 60:495–497

    Google Scholar 

  6. Hell SW, Jakobs S, Kastrup L (2003) Imaging and writing at the nanoscale with focused visible light through saturable optical transitions. Appl Phys A 77:859–860

    CAS  Google Scholar 

  7. Hell SW (2003) Toward fluorescence nanoscopy. Nat Biotechnol 21(11):1347–1355

    CAS  Google Scholar 

  8. Hell SW (2004) Strategy for far-field optical imaging and writing without diffraction limit. Phys Lett A 326(1–2):140–145

    CAS  Google Scholar 

  9. Hell SW, Dyba M, Jakobs S (2004) Concepts for nanoscale resolution in fluorescence microscopy. Curr Opin Neurobiol 14(5):599–609

    CAS  Google Scholar 

  10. Hofmann M, Eggeling C, Jakobs S, Hell SW (2005) Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc Natl Acad Sci U S A 102(49):17565–17569

    CAS  Google Scholar 

  11. Rust MJ, Bates M, Zhuang XW (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793–795

    CAS  Google Scholar 

  12. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645

    CAS  Google Scholar 

  13. Hess ST, Girirajan TPK, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91(11):4258–4272

    CAS  Google Scholar 

  14. Hell SW (2007) Far-field optical nanoscopy. Science 316(5828):1153–1158

    CAS  Google Scholar 

  15. Rice JH (2007) Beyond the diffraction limit: far-field fluorescence imaging with ultrahigh resolution. Mol Biosyst 3(11):781–793

    CAS  Google Scholar 

  16. Egner A, Geisler C, von Middendorff C, Bock H, Wenzel D, Medda R, Andresen M, Stiel A-C, Jakobs S, Eggeling C, Schoenle A, Hell SW (2007) Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters. Biophys J 93:3285–3290

    CAS  Google Scholar 

  17. Fölling J, Bossi M, Bock H, Medda R, Wurm CA, Hein B, Jakobs S, Eggeling C, Hell SW (2008) Fluorescence nanoscopy by ground-state depletion and single-molecule return. Nat Methods 5:943–945

    Google Scholar 

  18. Heilemann M, van de Linde S, Schuttpelz M, Kasper R, Seefeldt B, Mukherjee A, Tinnefeld P, Sauer M (2008) Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed Engl 47:6172–6176

    CAS  Google Scholar 

  19. Bates M, Huang B, Zhuang XW (2008) Super-resolution microscopy by nanoscale localization of photo-switchable fluorescent probes. Curr Opin Chem Biol 12(5):505–514

    CAS  Google Scholar 

  20. Fernandez-Suarez M, Ting AY (2008) Fluorescent probes for super-resolution imaging in living cells. Nat Rev Mol Cell Biol 9:929–943

    CAS  Google Scholar 

  21. Hell S (2009) Far-field optical nanoscopy. In: Gräslund A, Rigler R, Widengren J (eds) Single molecule spectroscopy in chemistry. Springer, Berlin, pp 365–398

    Google Scholar 

  22. Evanko D (2009) Primer: fluorescence imaging under the diffraction limit. Nat Methods 6(1):19–20

    CAS  Google Scholar 

  23. Huang B, Bates M, Zhuang X (2009) Super-resolution fluorescence microscopy. Annu Rev Biochem 78:993–1016

    CAS  Google Scholar 

  24. Heilemann M, Dedecker P, Hofkens J, Sauer M (2009) Photoswitches: key molecules for subdiffraction-resolution fluorescence imaging and molecular quantification. Laser Photon Rev 3(1–2):180–202

    CAS  Google Scholar 

  25. Chi KR (2009) Super-resolution microscopy: breaking the limits. Nat Methods 6(1):15–18

    CAS  Google Scholar 

  26. Dempsey GT, Vaughan JC, Chen KH, Bates M, Zhuang X (2011) Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nat Methods 8(12):1027–1036

    CAS  Google Scholar 

  27. Muller T, Schumann C, Kraegeloh A (2012) STED microscopy and its applications: new insights into cellular processes on the nanoscale. Chemphyschem 13(8):1986–2000. doi:10.1002/cphc.201100986

    Google Scholar 

  28. Eggeling C, Willig KI, Barrantes FJ (2013) STED microscopy of living cells - new frontiers in membrane and neurobiology. J Neurochem 126(2):203–212

    CAS  Google Scholar 

  29. Wurm CA, Kolmakov K, Göttfert F, Ta H, Bossi M, Schill H, Berning S, Jakobs S, Donnert G, Belov VN, Hell SW (2012) Novel red fluorophores with superior performance in STED microscopy. Opt Nanoscopy 1(7):1–7

    Google Scholar 

  30. Clausen MP, Galiani S, Bernardino de la Serna J, Fritzsche M, Chojnacki J, Gehmlich K, Lagerholm BC, Eggeling C (2013) Pathways to optical STED microscopy. NanoBioImag 1(1):1–12

    Google Scholar 

  31. Klar TA, Hell SW (1999) Subdiffraction resolution in far-field fluorescence microscopy. Opt Lett 24(14):954–956

    CAS  Google Scholar 

  32. Klar TA, Jakobs S, Dyba M, Egner A, Hell SW (2000) Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci U S A 97:8206–8210.

    CAS  Google Scholar 

  33. Göttfert F, Wurm CA, Mueller V, Berning S, Cordes VC, Honigmann A, Hell SW (2013) Coaligned dual-channel STED nanoscopy and molecular diffusion analysis at 20 nm resolution. Biophys J 105:L01–L03

    Google Scholar 

  34. Willig KI, Rizzoli SO, Westphal V, Jahn R, Hell SW (2006) STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440(7086):935–939

    CAS  Google Scholar 

  35. Donnert G, Keller J, Medda R, Andrei MA, Rizzoli SO, Lurmann R, Jahn R, Eggeling C, Hell SW (2006) Macromolecular-scale resolution in biological fluorescence microscopy. Proc Natl Acad Sci U S A 103(31):11440–11445

    CAS  Google Scholar 

  36. Eggeling C, Ringemann C, Medda R, Schwarzmann G, Sandhoff K, Polyakova S, Belov VN, Hein B, von Middendorff C, Schonle A, Hell SW (2009) Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457:1159-U1121

    Google Scholar 

  37. Pellett PA, Sun X, Gould TJ, Rothman JE, Xu M-Q, Correa IR Jr, Bewersdorf J (2011) Two-color STED microscopy in living cells. Biomed Opt Express 2(8):2364–2371

    Google Scholar 

  38. Blom H, Rönnlund D, Scott L, Spicarova Z, Widengren J, Bondar A, Aperia A, Brismar H (2011) Spatial distribution of Na + -K + -ATPase in dendritic spines dissected by nanoscale superresolution STED microscopy. BMC Neurosci 12:16

    CAS  Google Scholar 

  39. Friedemann K, Turshatov A, Landfester K, Crespy D (2011) Characterization via two-color STED microscopy of nanostructured materials synthesized by colloid electrospinning. Langmuir 27(11):7132–7139

    CAS  Google Scholar 

  40. Opazo F, Levy M, Byrom M, Schaefer C, Geisler C, Groemer TW, Ellington AD, Rizzoli SO (2012) Aptamers as potential tools for super-resolution microscopy. Nat Methods 9:938–939

    CAS  Google Scholar 

  41. Lau L, Lee YL, Sahl SJ, Stearns T, Moerner WE (2012) STED microscopy with optimized labeling density reveals 9-fold arrangement of a centriole protein. Biophys J 102:2926–2935

    CAS  Google Scholar 

  42. Takasaki KT, Ding JB, Sabatini BL (2013) Live-cell superresolution imaging by pulsed STED two-photon excitation microscopy. Biophys J 104:770–777

    CAS  Google Scholar 

  43. Osseforth C, Moffitt JR, Schermelleh L, Michaelis J (2013) Simultaneous dual-color 3D STED microscopy. Opt Express 22(6):7028–7039

    Google Scholar 

  44. Bethge P, Chereau R, Avignone E, Marsicano G, Nagerl UV (2013) Two-photon excitation STED microscopy in two colors in acute brain slices. Biophys J 104:778–785

    CAS  Google Scholar 

  45. Leutenegger M, Eggeling C, Hell SW (2010) Analytical description of STED microscopy performance. Opt Express 18(25):26417

    CAS  Google Scholar 

  46. Willig KI, Kellner RR, Medda R, Hein B, Jakobs S, Hell SW (2006) Nanoscale resolution in GFP-based microscopy. Nat Methods 3(9):721–723

    CAS  Google Scholar 

  47. Hein B, Willig KI, Hell SW (2008) Stimulated emission depletion (sted) nanoscopy of a fluorescent protein-labeled organelle inside a living cell. Proc Natl Acad Sci U S A 105(38):14271–14276

    CAS  Google Scholar 

  48. Dyba M, Hell SW (2003) Photostability of a fluorescent marker under pulsed excited-state depletion through stimulated emission. Appl Opt 42(25):5123–5129

    Google Scholar 

  49. Vicidomini G, Moneron G, Eggeling C, Rittweger E, Hell SW (2012) STED with wavelengths closer to the emission maximum. Opt Express 20(5):5225–5236

    CAS  Google Scholar 

  50. Schröder J, Benink H, Dyba M, Los GV (2008) In vivo labeling method using a genetic construct for nanoscale resolution microscopy. Biophys J 96(1):L1–L3

    Google Scholar 

  51. Fitzpatrick JA, Yan Q, Sieber JJ, Dyba M, Schwarz U, Szent-Gyorgyi C, Woolford CA, Berget PB, Waggoner AS, Bruchez MP (2009) STED nanoscopy in living cells using fluorogen activating proteins. Bioconjug Chem 20(10):1843–1847

    CAS  Google Scholar 

  52. Morozova KS, Piatkevich KD, Gould TJ, Zhang J, Bewersdorf J, Verkhusha VV (2010) Far-red fluorescent protein excitable with red lasers for flow cytometry and superresolution STED nanoscopy. Biophys J 99:L13–L15

    CAS  Google Scholar 

  53. Westphal V, Blanca CM, Dyba M, Kastrup L, Hell SW (2003) Laser-diode-stimulated emission depletion microscopy. Appl Phys Lett 82(18):3125–3127

    CAS  Google Scholar 

  54. Schrof S, Staudt T, Rittweger E, Wittenmayer N, Dresbach T, Engelhardt J, Hell SW (2011) STED nanoscopy with mass-produced laser diodes. Opt Express 19(9):8066–8072

    Google Scholar 

  55. Rittweger E, Han KY, Irvine SE, Eggeling C, Hell SW (2009) Sted microscopy reveals crystal colour centres with nanometric resolution. Nat Photon 3:144–147

    CAS  Google Scholar 

  56. Auksorius E, Boruah BR, Dunsby C, Lanigan PMP, Kennedy G, Neil MAA, French PMW (2008) Stimulated emission depletion microscopy with a supercontinuum source and fluorescence lifetime imaging. Opt Lett 33(2):113–115

    Google Scholar 

  57. Wildanger D, Rittweger E, Kastrup L, Hell SW (2008) STED microscopy with a supercontinuum laser source. Opt Express 16(13):9614–9621

    Google Scholar 

  58. Wildanger D, Medda R, Kastrup L, Hell SW (2009) A compact STED microscope providing 3D nanoscale resolution. J Microsc 236:35–43

    CAS  Google Scholar 

  59. Wildanger D, Bückers J, Westphal V, Hell SW, Kastrup L (2009) A STED microscope aligned by design. Opt Express 17(18):16100–16110

    Google Scholar 

  60. Kastrup L, Wildanger D, Rankin B, Hell SW (2010) STED microscopy with compact light sources. In: Diaspro A (ed) Nanoscopy and multidimensional optical fluorescence microscopy. Chapman & Hall/CRC, Boca Raton, pp 1–13

    Google Scholar 

  61. Rankin BR, Kellner RR, Hell SW (2008) Stimulated-emission-depletion microscopy with a multicolor stimulated-Raman-scattering light source. Opt Lett 33(21):2491–2493

    Google Scholar 

  62. Rankin BR, Hell SW (2009) STED microscopy with a MHz pulsed stimulated-Raman-scattering source. Opt Express 17(18):15679–15684

    CAS  Google Scholar 

  63. Rankin BR, Moneron G, Wurm CA, Nelson JC, Walter A, Schwarzer D, Schroeder J, Colon-Ramos DA, Hell SW (2011) Nanoscopy in a living multicellular organism expressing GFP. Biophys J 100:L63–L65

    CAS  Google Scholar 

  64. Willig KI, Harke B, Medda R, Hell SW (2007) STED microscopy with continuous wave beams. Nat Methods 4(11):915–918

    CAS  Google Scholar 

  65. Harke B (2008) 3D STED microscopy with pulsed and continuous wave lasers. PhD-Thesis, Georg-August-University Goettingen, Goettingen

    Google Scholar 

  66. Ding JB, Takasaki KT, Sabatini BL (2009) Supraresolution imaging in brain slices using stimulated-emission depletion two-photon laser scanning microscopy. Neuron 63:429–437

    CAS  Google Scholar 

  67. Moneron G, Hell S (2009) Two-photon excitation STED microscopy. Opt Express 17(17):14567–14573

    CAS  Google Scholar 

  68. Moneron G, Medda R, Hein B, Giske A, Westphal V, Hell SW (2010) Fast STED microscopy with continuous wave fiber lasers. Opt Express 18(2):1302–1309

    CAS  Google Scholar 

  69. Bianchini P, Diaspro A (2012) Fast scanning STED and two-photon fluorescence excitation microscopy with continuous wave beam. J Microsc 245(3):225–228

    CAS  Google Scholar 

  70. Honigmann A, Eggeling C, Schulze M, Lepert A (2012) Super-resolution STED microscopy advances with yellow CW OPSL. Laser Focus World 48(1):75–79

    Google Scholar 

  71. Mueller V, Eggeling C, Karlsson H, von Gegerfelt D (2012) CW DPSS lasers make STED microscopy more practical. Biophotonics 19(5):30–32

    Google Scholar 

  72. Honigmann A, Mueller V, Fernando UP, Eggeling C, Sperling J (2013) Simplifying STED microscopy of photostable red-emitting labels. Laser+Photonics 5:40–42

    Google Scholar 

  73. Moffitt JR, Osseforth C, Michaelis J (2011) Time-gating improves the spatial resolution of STED microscopy. Opt Express 19(5):4242–4254

    Google Scholar 

  74. Vicidomini G, Moneron G, Han KY, Westphal V, Ta H, Reuss M, Engelhardt H, Eggeling C, Hell SW (2011) Sharper low-power STED nanoscopy by time gating. Nat Methods 8(7):571–573

    CAS  Google Scholar 

  75. Vicidomini G, Hernandez IC, d’Amora M, Zanacchi FC, Bianchini P, Diaspro A (2014) Gated CW-STED microscopy: a versatile tool for biological nanometer scale investigation. Methods 66:124–130

    CAS  Google Scholar 

  76. Vicidomini G, Schoenle A, Ta H, Han KY, Moneron G, Eggeling C, Hell SW (2013) STED nanoscopy with time-gated detection: theoretical and experimental aspects. PLoS One 8(1):e54421

    CAS  Google Scholar 

  77. Hernandez IC, d’Amora M, Diaspro A, Vicidomini G (2014) Influence of laser intensity noise on gated CW-STED microscopy. Laser Phys Lett 11:095603

    Google Scholar 

  78. Hernandez IC, Peres C, Zanacchi FC, d’Amora M, Christodoulou S, Bianchini P, Diaspro A, Vicidomini G (2014) A new filtering technique for removing anti-stokes emission background in gated CW-STED microscopy. J Biophotonics 7(6):376–380

    Google Scholar 

  79. Reuss M, Engelhardt J, Hell S (2010) Birefringent device converts a standard scanning microscope into a STED microscope that also maps molecular orientation. Opt Express 18(2):1049–1058

    CAS  Google Scholar 

  80. Gould TJ, Burke D, Bewersdorf J, Booth MJ (2012) Adaptive optics enables 3D STED microscopy in aberrating specimens. Opt Express 20(19):20998

    Google Scholar 

  81. Gould TJ, Kromann EB, Burke D, Booth MJ, Bewersdorf J (2013) Auto-aligning stimulated emission depletion microscope using adaptive optics. Opt Lett 38(11):1860–1862

    CAS  Google Scholar 

  82. Eggeling C, Volkmer A, Seidel CAM (2005) Molecular photobleaching kinetics of rhodamine 6G by one- and two-photon induced confocal fluorescence microscopy. Chemphyschem 6:791–804

    CAS  Google Scholar 

  83. Eggeling C, Widengren J, Rigler R, Seidel CAM (1998) Photobleaching of fluorescent dyes under conditions used for single-molecule detection: evidence of two-step photolysis. Anal Chem 70:2651–2659

    CAS  Google Scholar 

  84. Ringemann C, Schonle A, Giske A, von Middendorff C, Hell SW, Eggeling C (2008) Enhancing fluorescence brightness: effect of reverse intersystem crossing studied by fluorescence fluctuation spectroscopy. Chemphyschem 9(9):612–624

    CAS  Google Scholar 

  85. Hotta J, Fron E, Dedecker P, Janssen KPF, Li C, Muellen K, Harke B, Bückers J, Hell SW, Hofkens J (2010) Spectroscopic rationale for efficient stimulated-emission depletion microscopy fluorophores. J Am Chem Soc 132(14):5021–5023

    CAS  Google Scholar 

  86. Donnert G, Eggeling C, Hell SW (2007) Major signal increase in fluorescence microscopy through dark-state relaxation. Nat Methods 4(1):81–86

    CAS  Google Scholar 

  87. Donnert G, Eggeling C, Hell SW (2009) Triplet-relaxation microscopy with bunched pulsed excitation. Photochem Photobiol 8:481–485

    CAS  Google Scholar 

  88. Denk W, Strickler JH, Webb WW (1990) 2-photon laser scanning fluorescence microscopy. Science 248:73–76

    CAS  Google Scholar 

  89. Denk W (1996) Two-photon excitation in functional biological imaging. J Biomed Opt 1:296–304

    CAS  Google Scholar 

  90. Dittrich PS, Schwille P (2001) Photobleaching and stabilization of fluorophores used for single-molecule analysis with one- and two-photon excitation. Appl Phys B 73:829–837

    CAS  Google Scholar 

  91. Nagerl UV, Willig KI, Hein B, Hell SW, Bonhoeffer T (2008) Live-cell imaging of dendritic spines by STED microscopy. Proc Natl Acad Sci U S A 105:18982–18987

    CAS  Google Scholar 

  92. Urban NT, Willig KI, Hell SW, Nagerl UV (2011) STED nanoscopy of actin dynamics in synapses deep inside living brain slices. Biophys J 101(5):1277–1284

    CAS  Google Scholar 

  93. Berning S, Willig KI, Steffens H, Dibaj P, Hell SW (2012) Nanoscopy in a living mouse brain. Science 335:551

    CAS  Google Scholar 

  94. Kolmakov K, Belov VN, Bierwagen J, Ringemann C, Mueller V, Eggeling C, Hell SW (2010) Red-emitting rhodamine dyes for fluorescence microscopy and nanoscopy. Chem Eur J 16(1):158–166

    CAS  Google Scholar 

  95. Kolmakov K, Belov VN, Wurm CA, Harke B, Leutenegger M, Eggeling C, Hell SW (2010) A versatile route to red-emitting carbopyronine dyes for optical microscopy and nanoscopy. Eur J Org Chem 2010(19):3593–3610

    Google Scholar 

  96. Mitronova GY, Belov VN, Bossi ML, Wurm CA, Meyer L, Medda R, Moneron G, Bretschneider S, Eggeling C, Jakobs S, Hell SW (2010) New fluorinated rhodamines for optical microscopy and nanoscopy. Chem A Eur J 16(15):4477–4488

    CAS  Google Scholar 

  97. Kasper R, Harke B, Forthmann C, Tinnefeld P, Hell SW, Sauer M (2010) Single-molecule STED microscopy with photostable organic fluorophores. Small 6(13):1379–1384

    CAS  Google Scholar 

  98. Beater S, Holzmeister P, Pibiri E, Lalkens B, Tinnefeld P (2014) Choosing dyes for cw-STED nanoscopy using self-assembled nanorulers. Phys Chem Chem Phys 16:6990–6996

    CAS  Google Scholar 

  99. Hein B, Willig KI, Wurm CA, Westphal V, Jakobs S, Hell SW (2010) Stimulated emission depletion nanoscopy of living cells using SNAP-tag fusion proteins. Biophys J 98:158–163

    CAS  Google Scholar 

  100. Lukinavicius G, Umezawa K, Olivier N, Honigmann A, Yang G, Plass T, Mueller V, Reymond L, Correa IR, Luo Z-G, Schultz C, Lemke EA, Heppenstall P, Eggeling C, Johnsson K (2013) A near-infrared fluorophore for live-cell superresolution microscopy of cellular proteins. Nat Chem 5:132–139

    CAS  Google Scholar 

  101. Wurm CA, Neumann D, Schmidt R, Egner A, Jakobs S (2010) Sample preparation for STED microscopy. In: Papkovsky DB (ed) Live cell imaging, Methods in molecular biology. Springer, Heidelberg, pp 185–199

    Google Scholar 

  102. Tanaka KAK, Suzuki KGN, Shirai YM, Shibutani ST, Miyahara MSH, Tsuboi H, Yahara M, Yoshimura A, Mayor S, Fujiwara TK, Kusumi A (2010) Membrane molecules mobile even after chemical fixation. Nat Methods 7:865–866

    CAS  Google Scholar 

  103. Schmidt R, Wurm CA, Jakobs S, Engelhardt J, Egner A, Hell SW (2008) Spherical nanosized focal spot unravels the interior of cells. Nat Methods 5(6):539–544

    CAS  Google Scholar 

  104. Dean C, Liu H, Staudt T, Stahlberg MA, Vingill S, Buckers J, Kamin D, Engelhardt J, Jackson MB, Hell SW, Chapman ER (2012) Distinct subsets of Syt-IV/BDNF vesicles are sorted to axons versus dendrites and recruited to synapses by activity. J Neurosci 32(16):5398–5413

    CAS  Google Scholar 

  105. Donnert G, Keller J, Wurm CA, Rizzoli SO, Westphal V, Schoenle A, Jahn R, Jakobs S, Eggeling C, Hell SW (2007) Two-color far-field fluorescence nanoscopy. Biophys J 92(8):L67–L69

    CAS  Google Scholar 

  106. Meyer L, Wildanger D, Medda R, Punge A, Rizzoli SO, Donnert G, Hell SW (2008) Dual-color sted microscopy at 30-nm focal-plane resolution. Small 4(8):1095–1100

    CAS  Google Scholar 

  107. Neumann D, Bückers J, Kastrup L, Hell S, Jakobs S (2010) Two-color STED microscopy reveals different degrees of colocalization between hexokinase-I and the three human VDAC isoforms. PMC Biophysics 5(3):1–4

    Google Scholar 

  108. Opaz F, Punge A, Bückers J, Hoopmann P, Kastrup L, Hell SW, Rizzoli SO (2010) Limited intermixing of synaptic vesicle components upon vesicle recycling. Traffic 11(6):800–812

    Google Scholar 

  109. Reisinger E, Bresee C, Neef J, Nair R, Reuter K, Bulankina A, Nouvian R, Koch M, Bückers J, Kastrup L, Roux I, Petit C, Hell SW, Brose N, Rhee J, Kügler S, Brigande JV, Moser T (2011) Probing the functional equivalence of otoferlin and synaptotagmin 1 in exocytosis. J Neurosci 31(13):4886–4895

    CAS  Google Scholar 

  110. Blom H, Rönnlund D, Scott L, Spicarova Z, Rantanen V, Widengren J, Aperia A, Brismar H (2012) Nearest neighbor analysis of dopamine D1 receptors and Na1-K1-ATPases in dendritic spines dissected by STED microscopy. Microsc Res Tech 75:220–228

    CAS  Google Scholar 

  111. Bückers J, Wildanger D, Vicidomini G, Kastrup L, Hell SW (2011) Simultaneous multi-lifetime multi-color STED imaging for colocalization analyses. Opt Express 19(4):3130–3143

    Google Scholar 

  112. Willig KI, Stiel AC, Brakemann T, Jakobs S, Hell SW (2011) Dual-label STED nanoscopy of living cells using photochromism. Nano Lett 11(9):3970–3973

    CAS  Google Scholar 

  113. Westphal V, Lauterbach MA, Di Nicola A, Hell SW (2007) Dynamic far-field fluorescence nanoscopy. New J Phys 9:435

    Google Scholar 

  114. Westphal V, Rizzoli SO, Lauterbach MA, Kamin D, Jahn R, Hell SW (2008) Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science 320(5873):246–249

    CAS  Google Scholar 

  115. Bingen P, Reuss M, Engelhardt J, Hell SW (2011) Parrallelized STED fluorescence nanoscopy. Opt Express 19(24):23716–23726

    CAS  Google Scholar 

  116. Yang B, Przybilla F, Mestre M, Trebbia J-B, Lounis B (2013) Massive parallelization of STED nanoscopy using optical lattices. Optics Expr 22(5): 5581–5589

    Google Scholar 

  117. Grotjohann T, Testa I, Leutenegger M, Bock H, Urban NT, Lavoie-Cardinal F, Willig KI, Eggeling C, Jakobs S, Hell SW (2011) Diffraction-unlimited all-optical imaging and writing with a photochromic GFP. Nature 478:204–208

    CAS  Google Scholar 

  118. Brakemann T, Stiel AC, Weber G, Andresen M, Testa I, Grotjohann T, Leutenegger M, Plessmann U, Urlaub H, Eggeling C, Wahl M, Hell SW, Jakobs S (2011) A reversibly photoswitchable GFP-like protein with fluorescence excitation decoupled from switching. Nat Biotechnol 29:942–947

    CAS  Google Scholar 

  119. Testa I, Urban NT, Jakobs S, Eggeling C, Willig KI, Hell SW (2012) Nanoscopy of living brain slices with low light levels. Neuron 75:992–1000

    CAS  Google Scholar 

  120. Chmyrov A, Keller J, Grotjohann T, Ratz M, d’Este E, Jakobs S, Eggeling C, Hell SW (2013) Nanoscopy with more than 100,000 ‘doughnuts’. Nat Methods 10:737–740

    CAS  Google Scholar 

  121. Bretschneider S, Eggeling C, Hell SW (2007) Breaking the diffraction barrier in fluorescence microscopy by optical shelving. Phys Rev Lett 98(21):218103

    Google Scholar 

  122. Schwentker MA (2007) Parallelized ground state depletion. University of Heidelberg, Heidelberg

    Google Scholar 

  123. Gould TJ, Myers JR, Bewersdorf J (2011) Total internal reflection STED microscopy. Opt Express 19(14):13351–13357

    CAS  Google Scholar 

  124. Leutenegger M, Ringemann C, Lasser T, Hell SW, Eggeling C (2012) Fluorescence correlation spectroscopy with a total internal reflection fluorescence STED microscope (TIRF-STED-FCS). Opt Express 20(5):5243–5263

    CAS  Google Scholar 

  125. Li Q, Wu SSH, Chou KC (2009) Subdiffraction-limit two-photon fluorescence microscopy for GFP-tagged cell imaging. Biophys J 97(12):3224–3228. doi:10.1016/j.bpj.2009.09.038

    CAS  Google Scholar 

  126. Klar TA, Jakobs S, Dyba M, Egner A, Hell SW (2000) Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci U S A 97:8206–8210

    CAS  Google Scholar 

  127. Harke B, Keller J, Ullal CK, Westphal V, Schoenle A, Hell SW (2008) Resolution scaling in STED microscopy. Opt Express 16(6):4154–4162

    Google Scholar 

  128. Harke B, Ullal CK, Keller J, Hell SW (2008) Three-dimensional nanoscopy of colloidal crystals. Nano Lett 8(5):1309–1313

    CAS  Google Scholar 

  129. Dyba M, Hell SW (2002) Focal spots of size lambda/23 open up far-field florescence microscopy at 33 nm axial resolution. Phys Rev Lett 88(16):163901

    Google Scholar 

  130. Dyba M, Jakobs S, Hell SW (2003) Immunofluorescence stimulated emission depletion microscopy. Nat Biotechnol 21(11):1303–1304

    CAS  Google Scholar 

  131. Hell SW, Schmidt R, Egner A (2009) Diffraction-unlimited three-dimensional optical nanoscopy with opposing lenses. Nat Photon 3:381–387

    CAS  Google Scholar 

  132. Schmidt R, Wurm CA, Punge A, Egner A, Jakobs S, Hell SW (2009) Mitochondrial cristae revealed with focused light. Nano Lett 9(6):2508–2510

    CAS  Google Scholar 

  133. Friedrich M, Gan Q, Ermolayev V, Harms GS (2011) STED-SPIM: stimulated emission depletion improves sheet illumination microscopy resolution. Biophys J 100:L43–L45

    CAS  Google Scholar 

  134. Kastrup L, Blom H, Eggeling C, Hell SW (2005) Fluorescence fluctuation spectroscopy in subdiffraction focal volumes. Phys Rev Lett 94:178104

    Google Scholar 

  135. Blom H, Kastrup L, Eggeling C (2006) Fluorescence fluctuation spectroscopy in reduced detection volumes. Curr Pharm Biotechnol 7(1):51–66

    CAS  Google Scholar 

  136. Eggeling C (2012) STED-FCS nanoscopy of membrane dynamics. In: Mely Y, Duportail G (eds) Fluorescent methods to study biological membranes, vol 13, Springer series on fluorescence. Springer, Berlin, pp 291–309

    Google Scholar 

  137. Mueller V, Honigmann A, Ringemann C, Medda R, Schwarzmann G, Eggeling C (2013) FCS in STED microscopy: studying the nanoscale of lipid membrane dynamics. In: Tetin SY (ed) Methods in enzymology, vol 591. Academic/Elsevier, Burlington, pp 1–38

    Google Scholar 

  138. Eggeling C, Honigmann A (2014) Molecular plasma membrane dynamics dissected by STED nanoscopy and fluorescence correlation spectroscopy (STED-FCS). In: Lidke DS, Cambi A (eds) Cell membrane nanodomains: from biochemistry to nanoscopy. CRC Press, Boca Raton

    Google Scholar 

  139. Ringemann C, Harke B, Middendorff CV, Medda R, Honigmann A, Wagner R, Leutenegger M, Schoenle A, Hell S, Eggeling C (2009) Exploring single-molecule dynamics with fluorescence nanoscopy. New J Phys 11:103054

    Google Scholar 

  140. Mueller V, Ringemann C, Honigmann A, Schwarzmann G, Medda R, Leutenegger M, Polyakova S, Belov VN, Hell SW, Eggeling C (2011) STED nanoscopy reveals molecular details of cholesterol- and cytoskeleton-modulated lipid interactions in living cells. Biophys J 101:1651–1660

    CAS  Google Scholar 

  141. Solanko ML, Honigmann A, Midtiby HS, Lund FW, Brewer J, Dekaris V, Bittman R, Eggeling C, Wüstner D (2013) Membrane orientation and lateral diffusion of BODIPY-cholesterol as a function of probe structure. Biophys J 105:2082–2092

    CAS  Google Scholar 

  142. Honigmann A, Mueller V, Hell SW, Eggeling C (2013) STED microscopy detects and quantifies liquid phase separation in lipid membranes using a new far-red emitting fluorescent phosphoglycerolipid analogue. Faraday Discuss 161:77–89

    CAS  Google Scholar 

  143. Sezgin E, Levental I, Grzybek M, Schwarzmann G, Mueller V, Honigmann A, Belov VN, Eggeling C, Coskun Ü, Simons K, Schwille P (2012) Partitioning, diffusion, and ligand binding of raft lipid analogs in model and cellular plasma membranes. Biochim Biophys Acta 1818:1777–1784

    CAS  Google Scholar 

  144. Honigmann A, Mueller V, Ta H, Schoenle A, Sezgin E, Hell SW, Eggeling C (2014) Scanning STED-FCS reveals spatio-temporal heterogeneity of lipid interaction in the plasma membrane of living cells. Nature Communications 5:5412. doi: 5410.10381/ncomms6412

    Google Scholar 

  145. Mueller V (2012) Nanoscale studies of membrane dynamics via STED - fluorescence correlation spectroscopy. University of Heidelberg, Heidelberg

    Google Scholar 

  146. Guzman C, Solman M, Ligabue A, Blazevits O, Andrade DM, Reymond L, Eggeling C, Abankwa D (2014) The efficacy of Raf kinase recruitment to the GTPase H-ras depends on H-ras membrane conformer specific nanoclustering. J Biol Chem 289(14):9519–9533

    CAS  Google Scholar 

  147. Saka SK, Honigmann A, Eggeling C, Hell SW, Lang T, Rizzoli SO (2014) Multi-protein assemblies underlie the mesoscale organization of the plasma membrane. Nat Commun 5:4509

    Google Scholar 

  148. King JT, Yu C, Wilson WL, Granick S (2014) Super-resolution study of polymer mobility fluctuations near c*. ACS Nano. doi:10.1021/nn502856t

    Google Scholar 

  149. Vicidomini G, Ta H, Han KY, Moneron G, Honigmann A, Hell SW, Eggeling C (2014) Spatio-temporal heterogeneity of lipid membrane dynamics revealed by gated STED-FCS, in preparation

    Google Scholar 

  150. Hedde PN, Dorlich RM, Blomley R, Gradl D, Oppong E, Cato ACB, Nienhaus GU (2013) Stimulated emission depletion-based raster image correlation spectroscopy reveals biomolecular dynamics in live cells. Nat Commun 4:2093

    Google Scholar 

  151. Bianchini P, Cardarelli F, Luca D, Diaspro A, Bizzarri R (2014) Nanoscale protein diffusion by STED-based pair correlation analysis. PLoS One 9(6):e99619

    Google Scholar 

  152. Schwille P, MeyerAlmes FJ, Rigler R (1997) Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution. Biophys J 72(4):1878–1886

    CAS  Google Scholar 

  153. Biteen JS, Thompson MA, Tselentis NK, Bowman GR, Shapiro L, Moerner WE (2008) Super-resolution imaging in live caulobacter crescentus cells using photoswitchable EYFP. Nat Methods 5:947–949

    CAS  Google Scholar 

  154. Gordon MP, Ha T, Selvin PR (2004) Single-molecule high-resolution imaging with photobleaching. Proc Natl Acad Sci U S A 101:6462–6465

    CAS  Google Scholar 

  155. Qu XH, Wu D, Mets L, Scherer NF (2004) Nanometer-localized multiple single-molecule fluorescence microscopy. Proc Natl Acad Sci U S A 101(31):11298–11303

    CAS  Google Scholar 

  156. Lidke KA, Rieger B, Jovin TM, Heintzmann R (2005) Superresolution by localization of quantum dots using blinking statistics. Opt Express 13(18):7052–7062

    Google Scholar 

  157. Kusumi A, Nakada C, Ritchie K, Murase K, Suzuki K, Murakoshi H, Kasai RS, Kondo J, Fujiwara T (2005) Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. Annu Rev Biophys 34:351–378

    CAS  Google Scholar 

  158. Shroff H, Galbraith CG, Galbraith JA, Betzig E (2008) Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat Methods 5(5):417–423

    CAS  Google Scholar 

  159. Small AR (2009) Theoretical limits on errors and acquisition rates in localizing switchable fluorophores. Biophys J 96(2):L16–L18

    CAS  Google Scholar 

  160. Enderlein J, Toprak E, Selvin PR (2006) Polarization effect on position accuracy of fluorophore localization. Opt Express 14(18):8111–8120

    CAS  Google Scholar 

  161. Engelhardt J, Keller J, Hoyer P, Reuss M, Staudt T, Hell SW (2011) Molecular orientation affects localization accuracy in superresolution far-field fluorescence microscopy. Nano Lett 11:209–213. doi:10.1021/nl103472b

    CAS  Google Scholar 

  162. Dertinger T, Colyer R, Iyer G, Weiss S, Enderlein J (2009) Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proc Natl Acad Sci U S A 106(52):22287–22292

    CAS  Google Scholar 

  163. Cronin B, de Wet B, Wallace MI (2009) Lucky imaging: improved localization accuracy for single molecule imaging. Biophys J 96(7):2912–2917

    CAS  Google Scholar 

  164. Hedde PN, Fuchs J, Oswald F, Wiedenmann J, Nienhaus GU (2009) Online image analysis software for photoactivation localization microscopy. Nat Methods 6(10):689–690

    CAS  Google Scholar 

  165. Smith CS, Joseph N, Rieger B, Lidke KA (2010) Fast, single-molecule localization that achieves theoretically minimum uncertainty. Nat Methods 7(5):373–375

    CAS  Google Scholar 

  166. Larson DR (2010) The economy of photons. Nat Methods 7(5):357–359

    CAS  Google Scholar 

  167. Laurence TA, Chromy BA (2010) Efficient maximum likelihood estimator fitting of histograms. Nat Methods 5(7):338–339

    Google Scholar 

  168. Henriques R, Lelek M, Fornasiero EF, Valtorta F, Zimmer C, Mhlanga MM (2010) QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ. Nat Methods 7(5):339–340

    CAS  Google Scholar 

  169. Mortensen KI, Churchman SL, Spudich JA, Flyvbjerg H (2010) Optimized localization analysis for single-molecule tracking and super-resolution microscopy. Nat Methods 7(5):377–381

    CAS  Google Scholar 

  170. Pertsinidis A, Zhang Y, Chu S (2010) Subnanometre single-molecule localization, registration and distance measurements. Nature 466(7306):647–651

    CAS  Google Scholar 

  171. Wolter S, Schuttpelz M, Tscherepanow M, van de Linde S, Heilemann M, Sauer M (2010) Real-time computation of subdiffraction-resolution fluorescence images. J Microsc 237(1):12–22

    CAS  Google Scholar 

  172. Endesfelder U, van de Linde S, Wolter S, Sauer M, Heilemann M (2010) Subdiffraction-resolution fluorescence microscopy of myosin–actin motility. Chemphyschem 11(4):836–840

    CAS  Google Scholar 

  173. Holden SJ, Uphoff S, Kapanidis AN (2011) DAOSTORM: an algorithm for high density super-resolution microscopy. Nat Methods 8(4):279–280

    CAS  Google Scholar 

  174. Huang F, Schwartz SL, Byars JM, Lidke KA (2011) Simultaneous multiple-emitter fitting for single molecule super-resolution imaging. Biomed Opt Express 2(5):1377–1393

    Google Scholar 

  175. Jones SA, Shim S-H, He J, Zhuang X (2011) Fast, three-dimensional super-resolution imaging of live cells. Nat Methods 8(6):499–505

    CAS  Google Scholar 

  176. Cox S, Rosten E, Monypenny J, Jovanovic-Talisman T, Burnette DT, Lippincott-Schwartz J, Jones GE, Heintzmann R (2012) Bayesian localization microscopy reveals nanoscale podosome dynamics. Nat Methods 9(2):195–200

    CAS  Google Scholar 

  177. Bock H, Geisler C, Wurm CA, Von Middendorff C, Jakobs S, Schonle A, Egner A, Hell SW, Eggeling C (2007) Two-color far-field fluorescence nanoscopy based on photoswitchable emitters. Appl Phys B 88(8):161–165

    CAS  Google Scholar 

  178. Bates M, Huang B, Dempsey GT, Zhuang XW (2007) Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317:1749–1753

    CAS  Google Scholar 

  179. Huang B, Wang WQ, Bates M, Zhuang XW (2008) Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319:810–813

    CAS  Google Scholar 

  180. Juette MF, Gould TJ, Lessard MD, Mlodzianoski MJ, Nagpure BS, Bennett BT, Hess ST, Bewersdorf J (2008) Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples. Nat Methods 5(6):527–529

    CAS  Google Scholar 

  181. Shtengel G, Galbraith JA, Galbraith CG, Lippincott-Schwartz J, Gillette JM, Manley S, Sougrat R, Waterman CM, Kanchanawong P, Davidson MW, Fetter RD, Hess HF (2009) Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proc Natl Acad Sci U S A 106(9):3125–3130

    CAS  Google Scholar 

  182. Pavani SRP, Thompson MA, Biteen JS, Lord SJ, Liu N, Twieg RJ, Piestun R, Moerner WE (2009) Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proc Natl Acad Sci U S A 106(9):2995–2999

    CAS  Google Scholar 

  183. Hell SW (1992) Double-scanning confocal microscope. European Patent 0491289

    Google Scholar 

  184. Gustafsson MGL, Agard DA, Sedat JW (1995) Sevenfold improvement of axial resolution in 3D widefield microscopy using two objective lenses. Proc Soc Photo Opt Instrum Eng 2412:147–156

    Google Scholar 

  185. Gustafsson MGL (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 198(2):82–87

    CAS  Google Scholar 

  186. Schermelleh L, Carlton PM, Haase S, Shao L, Winoto L, Kner P, Burke B, Cardoso MC, Agard DA, Gustafsson MGL, Leonhardt H, Sedat JW (2008) Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science 320(5881):1332–1336

    CAS  Google Scholar 

  187. Heintzmann R, Jovin TM, Cremer C (2002) Saturated patterned excitation microscopy - a concept for optical resolution improvement. J Opt Soc Am A Opt Image Sci Vis 19(8):1599–1609

    Google Scholar 

  188. Gustafsson MGL (2005) Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc Natl Acad Sci U S A 102(37):13081–13086

    CAS  Google Scholar 

  189. Schwentker MA, Bock H, Hofmann M, Jakobs S, Bewersdorf J, Eggeling C, Hell SW (2007) Wide-field subdiffraction RESOLFT microscopy using fluorescent protein photoswitching. Microsc Res Tech 70(3):269–280

    CAS  Google Scholar 

  190. Rego EH, Shao L, Macklin JJ, Winoto L, Johansson GA, Kamps-Hughes N, Davidson MW, Gustafsson MGL (2012) Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution. Proc Natl Acad Sci U S A 109(3):E135–E143

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Eggeling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eggeling, C., Hell, S.W. (2014). STED Fluorescence Nanoscopy. In: Tinnefeld, P., Eggeling, C., Hell, S. (eds) Far-Field Optical Nanoscopy. Springer Series on Fluorescence, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4243_2014_75

Download citation

Publish with us

Policies and ethics