Skip to main content

The Importance of Photon Arrival Times in STED Microscopy

  • Chapter
  • First Online:

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 15))

Abstract

Lens-based or far-field fluorescence microscopy is a very popular technique for investigating the living cell. However, the spatial resolution of its standard versions is limited to about 200 nm due to diffraction, impeding the imaging of molecular assemblies at smaller scales. The turn of the twenty-first century has witnessed the advent of far-field fluorescence super-resolution microscopy or nanoscopy, a fluorescence microscopy featuring a spatial resolution down to molecular scales. STED microscopy was the first of such nanoscopy techniques, but was for a long time considered as a very complex technique, hard to apply in everyday biological research. Based on developments in label and laser technology, recent years have however seen major improvements of the STED nanoscopy approach, one of which is gated continuous-wave STED (gCW-STED) microscopy. gCW-STED microscopy reduces complexity by combining STED laser operating in CW with pulsed excitation and time-gated photon detection. Here, we describe the physical principles of gCW-STED, formulate the theoretical framework which characterizes its main benefits and limitations, as well as show experimental data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Masters BR (2010) The development of fluorescence microscopy. Wiley, Chichester

    Book  Google Scholar 

  2. Cella Zanacchi F, Bianchini P, Vicidomini G (2014) Fluorescence microscopy in the spotlight. Microsc Res Tech 77(7):479–482

    Article  Google Scholar 

  3. Abbe E (1873) Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung. Archiv für Mikroskopische Anatomie 9:413–468

    Article  Google Scholar 

  4. Rost FWD (1995) Fluorescence microscopy, vol 2. Cambridge University Press, Cambridge

    Google Scholar 

  5. Pohl DW, Denk W, Lanz M (1984) Optical stethoscopy: image recording with resolution lambda/20. Appl Phys Lett 44:651–653

    Article  Google Scholar 

  6. Mivelle M, Van Zanten TS, Manzo C, Garcia-Parajo MF (2014) Nanophotonic approaches for nanoscale imaging and single-molecule detection at ultrahigh concentrations. Microsc Res Tech 77(7):537–545

    Article  CAS  Google Scholar 

  7. Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19(11):780–782

    Article  CAS  Google Scholar 

  8. Hell SW, Kroug M (1995) Ground-state depletion fluorescence microscopy, a concept for breaking the diffraction resolution limit. Appl Phys B 60:495–497

    Article  Google Scholar 

  9. Hell SW (2009) Microscopy and its focal switch. Nat Methods 6(1):24–32

    Article  CAS  Google Scholar 

  10. Diaspro A (ed) (2009) Nanoscopy and multidimensional optical fluorescence microscopy. Chapman & Hall, New York

    Google Scholar 

  11. Huang B, Babcock H, Zhuang X (2010) Breaking the diffraction barrier: super-resolution imaging of cells. Cell 143(7):1047–1058

    Article  CAS  Google Scholar 

  12. Hell SW, Jakobs S, Kastrup L (2003) Imaging and writing at the nanoscale with focused visible light through saturable optical transitions. Appl Phys A Mater Sci Process 77(7):859–860

    Article  CAS  Google Scholar 

  13. Hell SW (2007) Far-field optical nanoscopy. Science 316(5828):1153–1158

    Article  CAS  Google Scholar 

  14. Eggeling C, Heilemann M (2014) Editorial overview: molecular imaging. Curr Opin Chem Biol 20:v–vii

    Google Scholar 

  15. Eggeling C, Willig KI, Barrantes FJ (2013) STED microscopy of living cells: new frontiers in membrane and neurobiology. J Neurochem 126(2):203–212

    Article  CAS  Google Scholar 

  16. Blom H, Widengren J (2014) STED microscopy: towards broadened use and scope of applications. Curr Opin Chem Biol 20:127–133

    Article  CAS  Google Scholar 

  17. Klar TA, Hell SW (1999) Subdiffraction resolution in far-field fluorescence microscopy. Opt Lett 24(14):954–956

    Article  CAS  Google Scholar 

  18. Klar TA, Jakobs S, Dyba M, Egner A, Hell SW (2000) Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci U S A 97(15):8206–8210

    Article  CAS  Google Scholar 

  19. Clausen MP, Galiani S, Bernardino de la Serna J, Fritzsche M, Chojnacki J, Gehmlich K, Lagerholm BC, Eggeling C (2013) Pathways to optical STED microscopy. NanoBioImaging 1(1):1–12

    Google Scholar 

  20. Dyba M, Hell SW (2003) Photostability of a fluorescent marker under pulsed excited-state depletion through stimulated emission. Appl Optics 42(25):5123–5129

    Article  Google Scholar 

  21. J-i H, Fron E, Dedecker P, Janssen KPF, Li C, Müllen K, Harke B, Bückers J, Hell SW, Hofkens J (2010) Spectroscopic rationale for efficient stimulated-emission depletion microscopy fluorophores. J Am Chem Soc 132(14):5021–5023

    Article  Google Scholar 

  22. Leutenegger M, Eggeling C, Hell SW (2010) Analytical description of STED microscopy performance. Opt Express 18(25):26417–26429

    Article  CAS  Google Scholar 

  23. Vicidomini G, Moneron G, Eggeling C, Rittweger E, Hell SW (2012) STED with wavelengths closer to the emission maximum. Opt Express 20(5):5225–5236

    Article  CAS  Google Scholar 

  24. Willig KI, Rizzoli SO, Westphal V, Jahn R, Hell SW (2006) STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440(7086):935–939

    Article  CAS  Google Scholar 

  25. Wildanger D, Rittweger E, Kastrup L, Hell SW (2008) STED microscopy with a supercontinuum laser source. Opt Express 16(13):9614–9621

    Article  Google Scholar 

  26. Bückers J, Wildanger D, Vicidomini G, Kastrup L, Hell SW (2011) Simultaneous multi-lifetime multi-color STED imaging for colocalization analyses. Opt Express 19(4):3130–3143

    Article  Google Scholar 

  27. Galiani S, Harke B, Vicidomini G, Lignani G, Benfenati F, Diaspro A, Bianchini P (2012) Strategies to maximize the performance of a STED microscope. Opt Express 20(7):7362–7374

    Article  Google Scholar 

  28. Rankin BR, Hell SW (2009) STED microscopy with a MHz pulsed stimulated-Raman-scattering source. Opt Express 17(18):15679–15684

    Article  CAS  Google Scholar 

  29. Rittweger E, Han KY, Irvine SE, Eggeling C, Hell SW (2009) STED microscopy reveals crystal colour centres with nanometric resolution. Nat Photonics 3:144–147

    Article  CAS  Google Scholar 

  30. Schrof S, Staudt T, Rittweger E, Wittenmayer N, Dresbach T, Engelhardt J, Hell SW (2011) STED nanoscopy with mass-produced laser diodes. Opt Express 19(9):8066–8072

    Article  Google Scholar 

  31. Göttfert F, Wurm CA, Mueller V, Berning S, Cordes VC, Honigmann A, Hell SW (2013) Coaligned dual-channel STED nanoscopy and molecular diffusion analysis at 20 nm resolution. Biophys J 105:L01–L03

    Article  Google Scholar 

  32. Willig KI, Harke B, Medda R, Hell SW (2007) STED microscopy with continuous wave beams. Nat Methods 4(11):915–918

    Article  CAS  Google Scholar 

  33. Honigmann A, Eggeling C, Schulze M, Lepert A (2012) Super-resolution STED microscopy advances with yellow CW OPSL. Laser Focus World 48(1):75–79

    Google Scholar 

  34. Honigmann A, Mueller V, Fernando UP, Eggeling C, Sperling J (2013) Simplifying STED microscopy of photostable red-emitting labels. Laser + Potonik 5:40–42

    Google Scholar 

  35. Coto Hernàndez I, d’Amora M, Diaspro A, Vicidomini G (2014) Influence of laser intensity noise on gated CW-STED microscopy. Laser Phys Lett 11(9):095603

    Article  Google Scholar 

  36. Moffitt JR, Osseforth C, Michaelis J (2011) Time-gating improves the spatial resolution of STED microscopy. Opt Express 19(5):4242

    Article  Google Scholar 

  37. Vicidomini G, Moneron G, Han KY, Westphal V, Ta H, Reuss M, Engelhardt J, Eggeling C, Hell SW (2011) Sharper low-power STED nanoscopy by time gating. Nat Methods 8(7):571–573

    Article  CAS  Google Scholar 

  38. Vicidomini G, Schönle A, Ta H, Han KY, Moneron G, Eggeling C, Hell SW (2013) STED nanoscopy with time-gated detection: theoretical and experimental aspects. PLoS One 8(1):e54421

    Article  CAS  Google Scholar 

  39. Leutenegger M, Rao R, Leitgeb RA, Lasser T (2006) Fast focus field calculations. Opt Express 14(23):11277–11291

    Article  Google Scholar 

  40. Westphal V, Hell SW (2005) Nanoscale resolution in the focal plane of an optical microscope. Phys Rev Lett 94:143903

    Article  Google Scholar 

  41. Vicidomini G, Coto Hernández I, d’Amora M, Cella Zanacchi F, Bianchini P, Diaspro A (2014) Gated CW-STED microscopy: a versatile tool for biological nanometer scale investigation. Methods 66(2):124–130

    Article  CAS  Google Scholar 

  42. Moneron G, Medda R, Hein B, Giske A, Westphal V, Hell SW (2010) Fast STED microscopy with continuous wave fiber lasers. Opt Express 18(2):1302–1309

    Article  CAS  Google Scholar 

  43. Eggeling C, Ringemann C, Medda R, Schwarzmann G, Sandhoff K, Polyakova S, Belov VN, Hein B, von Middendorff C, Schonle A, Hell SW (2009) Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457(7233):1159–1162

    Article  CAS  Google Scholar 

  44. Westin L, Reuss M, Lindskog M, Aperia A, Brismar H (2014) Nanoscopic spine localization of Norbin, an mGluR5 accessory protein. BMC Neurosci 15(1):45

    Article  Google Scholar 

  45. Eggeling C, Widengren J, Rigler R, Seidel CAM (1998) Photobleaching of fluorescent dyes under conditions used for single-molecule detection: evidence of two-step photolysis. Anal Chem 70:2651–2659

    Article  CAS  Google Scholar 

  46. Bülter A (2014) Single-photon counting detectors for the visible range between 300 and 1,000 nm. Springer Ser Fluoresc. doi:10.1007/4243_2014_63

    Google Scholar 

  47. Wahl M (2014) Modern TCSPC electronics: principles and acquisition modes. Springer Ser Fluoresc. doi:10.1007/4243_2014_62

    Google Scholar 

  48. Ronzitti E, Harke B, Diaspro A (2013) Frequency dependent detection in a STED microscope using modulated excitation light. Opt Express 21(1):210–219

    Article  CAS  Google Scholar 

  49. Coto Hernàndez I, Peres C, Cella Zanacchi F, d’Amora M, Christodoulou S, Bianchini P, Diaspro A, Vicidomini G (2014) A new filtering technique for removing anti-stokes emission background in gated CW-STED microscopy. J Biophotonics 7(6):376–380

    Article  Google Scholar 

  50. Wang Y, Kuang C, Gu Z, Xu Y, Li S, Hao X, Liu X (2013) Time-gated stimulated emission depletion nanoscopy. Opt Eng 52(9):093107

    Article  Google Scholar 

  51. Bertero M, Boccacci P, Desiderá G, Vicidomini G (2009) Image deblurring with Poisson data: from cells to galaxies. Inverse Probl 25(12):123006

    Article  Google Scholar 

  52. Zanella R, Zanghirati G, Cavicchioli R, Zanni L, Boccacci P, Bertero M, Vicidomini G (2013) Towards real-time image deconvolution: application to confocal and STED microscopy. Sci Rep 3:2523

    Article  CAS  Google Scholar 

  53. Donnert G, Eggeling C, Hell SW (2007) Major signal increase in fluorescence microscopy through dark-state relaxation. Nat Methods 4(1):81–86

    Article  CAS  Google Scholar 

  54. Donnert G, Eggeling C, Hell SW (2009) Triplet-relaxation microscopy with bunched pulsed excitation. Photochem Photobiol 8:481–485

    Article  CAS  Google Scholar 

  55. Donnert G, Keller J, Medda R, Andrei MA, Rizzoli SO, Lührmann R, Jahn R, Eggeling C, Hell SW (2006) Macromolecular-scale resolution in biological fluorescence microscopy. Proc Natl Acad Sci 103(31):11440–11445

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Eggeling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vicidomini, G., Coto Hernàndez, I., Diaspro, A., Galiani, S., Eggeling, C. (2014). The Importance of Photon Arrival Times in STED Microscopy. In: Kapusta, P., Wahl, M., Erdmann, R. (eds) Advanced Photon Counting. Springer Series on Fluorescence, vol 15. Springer, Cham. https://doi.org/10.1007/4243_2014_73

Download citation

Publish with us

Policies and ethics