Skip to main content

Primary Photophysical Processes in Chromoproteins

  • Chapter
  • First Online:
Fluorescent Proteins I

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 11))

  • 1721 Accesses

Abstract

In this chapter, the diverse range of photophysical phenomena exhibited by chromoproteins is reviewed. Experimental and theoretical studies of both the electronic spectra and the ultrafast radiationless decay of the chromophore of green fluorescent protein (GFP) in solution are described as a function of solvent, temperature and substituent. The relevance of these observations to photophysical phenomena observed in chromoproteins which undergo photoconversion is discussed. Next, the excited state proton transfer found in GFP is described. Its potential to probe the dynamics of proton-transfer reactions in proteins is illustrated. Finally, the photophysics underlying the phenomenon of photoswitching in chromoproteins is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shimomura O, Johnson FH (1969) Properties of bioluminescent protein aequorin. Biochemistry 8:3991

    Article  Google Scholar 

  2. Morise H, Shimomur O, Johnson FH, Winant J (1974) Intermolecular energy-transfer in bioluminescent system of Aequorea. Biochemistry 13:2656–2662

    Article  CAS  Google Scholar 

  3. Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene-expression. Science 263:802–805

    Article  CAS  Google Scholar 

  4. Cubitt AB, Heim R, Adams SR, Boyd AE, Gross LA, Tsien RY (1995) Understanding, improving and using green fluorescent proteins. Trends Biochem Sci 20:448–455

    Article  CAS  Google Scholar 

  5. Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2:905–909

    Article  CAS  Google Scholar 

  6. Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544

    Article  CAS  Google Scholar 

  7. Chudakov DM, Matz MV, Lukyanov S, Lukyanov KA (2010) Fluorescent proteins and their applications in imaging living cells and tissues. Physiol Rev 90:1103–1163

    Google Scholar 

  8. Alieva NO, Konzen KA, Field SF, Meleshkevitch EA, Hunt ME, Beltran-Ramirez V, Miller DJ, Wiedenmann J, Salih A, Matz MV (2008) Diversity and evolution of coral fluorescent proteins. PLoS One 3

    Google Scholar 

  9. Pouwels LJ, Zhang LP, Chan NH, Dorrestein PC, Wachter RM (2008) Kinetic isotope effect studies on the de novo rate of chromophore formation in fast- and slow-maturing GFP variants. Biochemistry 47:10111–10122

    Article  CAS  Google Scholar 

  10. Wachter RM, Watkins JL, Kim H (2010) Mechanistic diversity of red fluorescence acquisition by GFP-like proteins. Biochemistry 49:7417–7427

    Google Scholar 

  11. Wachter RM (2007) Chromogenic cross-link formation in green fluorescent protein. Acc Chem Res 40:120–127

    Article  CAS  Google Scholar 

  12. Shimomura O (1979) Structure of the chromophore of Aequorea green fluorescent protein. FEBS Lett 104:220–222

    Article  CAS  Google Scholar 

  13. Niwa H, Inouye S, Hirano T, Matsuno T, Kojima S, Kubota M, Ohashi M, Tsuji FI (1996) Chemical nature of the light emitter of the Aequorea green fluorescent protein. Proc Natl Acad Sci USA 93:13617–13622

    Article  CAS  Google Scholar 

  14. Frommer WB, Davidson MW, Campbell RE (2009) Genetically encoded biosensors based on engineered fluorescent proteins. Chem Soc Rev 38:2833–2841

    Article  CAS  Google Scholar 

  15. Meech SR (2009) Excited state reactions in fluorescent proteins. Chem Soc Rev 38:2922–2934

    Article  CAS  Google Scholar 

  16. van Thor JJ (2009) Photoreactions and dynamics of the green fluorescent protein. Chem Soc Rev 38:2935–2950

    Article  Google Scholar 

  17. Bell AF, He X, Wachter RM, Tonge PJ (2000) Probing the ground state structure of the green fluorescent protein chromophore using Raman spectroscopy. Biochemistry 39:4423–4431

    Article  CAS  Google Scholar 

  18. Elsliger MA, Wachter RM, Hanson GT, Kallio K, Remington SJ (1999) Structural and spectral response of green fluorescent protein variants to changes in pH. Biochemistry 38:5296–5301

    Article  CAS  Google Scholar 

  19. Llopis J, McCaffery JM, Miyawaki A, Farquhar MG, Tsien RY (1998) Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins. Proc Natl Acad Sci USA 95:6803–6808

    Article  CAS  Google Scholar 

  20. Chattoraj M, King BA, Bublitz GU, Boxer SG (1996) Ultra-fast excited state dynamics in green fluorescent protein: Multiple states and proton transfer. Proc Natl Acad Sci USA 93:8362–8367

    Article  CAS  Google Scholar 

  21. Sample V, Newman RH, Zhang J (2009) The structure and function of fluorescent proteins. Chem Soc Rev 38:2852–2864

    Article  CAS  Google Scholar 

  22. Lukyanov KA, Fradkov AF, Gurskaya NG, Matz MV, Labas YA, Savitsky AP, Markelov ML, Zaraisky AG, Zhao XN, Fang Y, Tan WY, Lukyanov SA (2000) Natural animal coloration can be determined by a nonfluorescent green fluorescent protein homolog. J Biol Chem 275:25879–25882

    Article  CAS  Google Scholar 

  23. Schuttrigkeit TA, von Feilitzsch T, Kompa CK, Lukyanov KA, Savitsky AP, Voityuk AA, Michel-Beyerle ME (2006) Femtosecond study of light-induced fluorescence increase of the dark chromoprotein asFP595. Chem Phys 323:149–160

    Article  CAS  Google Scholar 

  24. Adam V, Lelimousin M, Boehme S, Desfonds G, Nienhaus K, Field MJ, Wiedenmann J, McSweeney S, Nienhaus GU, Bourgeois D (2008) Structural characterization of IrisFP, an optical highlighter undergoing multiple photo-induced transformations. Proc Natl Acad Sci USA 105:18343–18348

    Article  CAS  Google Scholar 

  25. Kredel S, Nienhaus K, Oswald F, Wolff M, Ivanchenko S, Cymer F, Jeromin A, Michels FJ, Spindler KD, Heilker R, Nienhaus GU, Wiedenmannl J (2008) Optimized and far-red-emitting variants of fluorescent protein eqFP611. Chem Biol 15:224–233

    Article  CAS  Google Scholar 

  26. Nienhaus K, Nar H, Heilker R, Wiedenmann J, Nienhaus GU (2008) Trans-cis isomerization is responsible for the red-shifted fluorescence in variants of the red fluorescent protein eqFP611. J Am Chem Soc 130:12578

    Article  CAS  Google Scholar 

  27. Ando R, Hama H, Yamamoto-Hino M, Mizuno H, Miyawaki A (2002) An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc Natl Acad Sci USA 99:12651–12656

    Article  CAS  Google Scholar 

  28. Habuchi S, Tsutsui H, Kochaniak AB, Miyawaki A, van Oijen AM (2008) mKikGR, a monomeric photoswitchable fluorescent protein. PLoS One 3

    Google Scholar 

  29. Mizuno H, Mal TK, Tong KI, Ando R, Furuta T, Ikura M, Miyawakil A (2003) Photo-induced peptide cleavage in the green-to-red conversion of a fluorescent protein. Mol Cell 12:1051–1058

    Article  CAS  Google Scholar 

  30. Vaziri A, Tang JY, Shroff H, Shank CV (2008) Multilayer three-dimensional super resolution imaging of thick biological samples. Proc Natl Acad Sci USA 105:20221–20226

    Article  CAS  Google Scholar 

  31. Bates M, Huang B, Dempsey GT, Zhuang XW (2007) Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317:1749–1753

    Article  CAS  Google Scholar 

  32. Patterson G, Davidson M, Manley S, Lippincott-Schwartz J (2010) Annu Rev Phys Chem 61:345–367

    Google Scholar 

  33. Rulliere C (ed) (2003) Femtosecond laser pulses: principles and experiments. Springer, New York

    Google Scholar 

  34. Diels JC, Rudolphe W (2006) Ultrashort laser pulse phenomena. Academic, New York

    Google Scholar 

  35. Andrews DL, Allcock P (2002) Optical harmonics in molecular systems. Wiley-VCH, Weinheim

    Book  Google Scholar 

  36. Fleming GR (1986) Chemical applications of ultrafast spectroscopy. Oxford University Press, Oxford

    Google Scholar 

  37. Rhee H, Joo T (2005) Noncolinear phase matching in fluorescence upconversion. Opt Lett 30:96–98

    Article  Google Scholar 

  38. Heisler IA, Kondo M, Meech SR (2009) Reactive dynamics in confined liquids: ultrafast torsional dynamics of auramine O in nanoconfined water in aerosol OT reverse micelles. J Phys Chem B 113:1623–1631

    Article  CAS  Google Scholar 

  39. Vengris M, van der Horst MA, Zgrablic G, van Stokkum IHM, Haacke S, Chergui M, Hellingwerf KJ, van Grondelle R, Larsen DS (2004) Contrasting the excited-state dynamics of the photoactive yellow protein chromophore: protein versus solvent environments. Biophys J 87:1848–1857

    Article  CAS  Google Scholar 

  40. Arzhantsev S, Zachariasse KA, Maroncelli M (2006) Photophysics of trans-4-(dimethylamino)-4′-cyanostilbene and its use as a solvation probe. J Phys Chem A 110:3454–3470

    Article  CAS  Google Scholar 

  41. Kwok WM, Ma C, Phillips D, Matousek P, Parker AW, Towrie M (2000) Picosecond time-resolved study of 4-dimethylaminobenzonitrile in polar and nonpolar solvents. J Phys Chem A 104:4188–4197

    Article  CAS  Google Scholar 

  42. Schmidt B, Laimgruber S, Zinth W, Gilch P (2003) A broadband Kerr shutter for femtosecond fluorescence spectroscopy. Appl Phys B Lasers Opts 76:809–814

    Article  CAS  Google Scholar 

  43. Takeda J, Nakajima K, Kurita S, Tomimoto S, Saito S, Suemoto T (2000) Femtosecond optical Kerr gate fluorescence spectroscopy for ultrafast relaxation processes. J Lumin 87–89:927–929

    Article  Google Scholar 

  44. van Stokkum IHM, Gobets B, Gensch T, van Mourik F, Hellingwerf KJ, van Grondelle R, Kennis JTM (2006) (Sub)-picosecond spectral evolution of fluorescence in photoactive proteins studied with a synchroscan streak camera system. Photochem Photobiol 82:380–388

    Article  CAS  Google Scholar 

  45. Schmitt M, Dietzek B, Hermann G, Popp J (2007) Femtosecond time-resolved spectroscopy on biological photoreceptor chromophores. Laser Photon Rev 1:57–78

    Article  CAS  Google Scholar 

  46. Greetham G, Towrie M, Matousek P, Parker AW (2010) J Appl Spectrosc 64:1320

    Article  Google Scholar 

  47. Towrie M, Grills DC, Dyer J, Weinstein JA, Matousek P, Barton R, Bailey PD, Subramaniam N, Kwok WM, Ma CS, Phillips D, Parker AW, George MW (2003) Development of a broadband picosecond infrared spectrometer and its incorporation into an existing ultrafast time-resolved resonance Raman, UV/visible, and fluorescence spectroscopic apparatus. Appl Spectrosc 57:367–380

    Article  CAS  Google Scholar 

  48. van Stokkum IHM, Larsen DS, van Grondelle R (2004) Global and target analysis of time-resolved spectra. Biochim Biophys Acta Bioenergetics 1657:82–104

    Article  CAS  Google Scholar 

  49. Remington SJ (2006) Fluorescent proteins: maturation, photochemistry and photophysics. Curr Opin Struct Biol 16:714–721

    Article  CAS  Google Scholar 

  50. van Thor JJ, Pierik AJ, Nugteren-Roodzant I, Xie AH, Hellingwerf KJ (1998) Characterization of the photoconversion of green fluorescent protein with FTIR spectroscopy. Biochemistry 37:16915–16921

    Article  Google Scholar 

  51. Bell AF, Stoner-Ma D, Wachter RM, Tonge PJ (2003) Light-driven decarboxylation of wild-type green fluorescent protein. J Am Chem Soc 125:6919–6926

    Article  CAS  Google Scholar 

  52. Wachter RM, Elsliger MA, Kallio K, Hanson GT, Remington SJ (1998) Structural basis of spectral shifts in the yellow-emission variants of green fluorescent protein. Struct Folding Design 6:1267–1277

    Article  CAS  Google Scholar 

  53. Andersen LH, Lapierre A, Nielsen SB, Nielsen IB, Pedersen SU, Pedersen UV, Tomita S (2002) Chromophores of the green fluorescent protein studied in the gas phase. Eur Phys J D 20:597–600

    Article  CAS  Google Scholar 

  54. Lammich L, Petersen MA, Nielsen MB, Andersen LH (2007) The gas-phase absorption spectrum of a neutral GFP model chromophore. Biophys J 92:201–207

    Article  CAS  Google Scholar 

  55. Forbes MW, Jockusch RA (2009) Deactivation pathways of an isolated green fluorescent protein model chromophore studied by electronic action spectroscopy. J Am Chem Soc 131:17038

    Article  CAS  Google Scholar 

  56. Webber NM, Meech SR (2007) Electronic spectroscopy and solvatochromism in the chromophore of GFP and the Y66F mutant. Photochem Photobiol Sci 9:276–281

    Google Scholar 

  57. Dong J, Solntsev KM, Tolbert LM (2006) Solvatochromism of the green fluorescence protein chromophore and its derivatives. J Am Chem Soc 128:12038–12039

    Article  CAS  Google Scholar 

  58. Conyard J, Kondo M, Heisler IA, Baldridge A, Tolbert LM, Solntsev KM, Meech SR (2011) J Phys Chem B 115:1863–1873

    Google Scholar 

  59. Gepshtein R, Huppert D, Agmon N (2006) Deactivation mechanism of the green fluorescent chromophore. J Phys Chem B 110:4434–4442

    Article  CAS  Google Scholar 

  60. Vengris M, van Stokkum IHM, He X, Bell AF, Tonge PJ, van Grondelle R, Larsen DS (2004) Ultrafast excited and ground-state dynamics of the green fluorescent protein chromophore in solution. J Phys Chem A 108:4587–4598

    Article  CAS  Google Scholar 

  61. Litvinenko KL, Webber NM, Meech SR (2003) Internal conversion in the chromophore of the green fluorescent protein: temperature dependence and isoviscosity analysis. J Phys Chem A 107:2616–2623

    Article  CAS  Google Scholar 

  62. Mandal D, Tahara T, Meech SR (2004) Excited-state dynamics in the green fluorescent protein chromophore. J Phys Chem B 108:1102–1108

    Article  CAS  Google Scholar 

  63. Mandal D, Tahara T, Webber NM, Meech SR (2002) Ultrafast fluorescence of the chromophore of the green fluorescent protein in alcohol solutions. Chem Phys Lett 358:495–501

    Article  CAS  Google Scholar 

  64. Webber NM, Litvinenko KL, Meech SR (2001) Radiationless relaxation in a synthetic analogue of the green fluorescent protein chromophore. J Phys Chem B 105:8036–8039

    Article  CAS  Google Scholar 

  65. Kummer AD, Kompa C, Niwa H, Hirano T, Kojima S, Michel-Beyerle ME (2002) Viscosity-dependent fluorescence decay of the GFP chromophore in solution due to fast internal conversion. J Phys Chem B 106:7554–7559

    Article  CAS  Google Scholar 

  66. Sension RJ, Repinec ST, Szarka AZ, Hochstrasser RM (1993) Femtosecond laser studies of the cis-stilbene photoisomerization reactions. J Chem Phys 98:6291–6315

    Article  CAS  Google Scholar 

  67. Kim SK, Fleming GR (1988) Reorientation and isomerization of trans-stilbene in alkane solutions. J Phys Chem 92:2168–2172

    Article  CAS  Google Scholar 

  68. Nagele T, Hoche R, Zinth W, Wachtveitl J (1997) Femtosecond photoisomerization of cis-azobenzene. Chem Phys Lett 272:489–495

    Article  Google Scholar 

  69. Sundstrom V, Gillbro T (1982) Viscosity-dependent isomerization yields of some cyanine dyes – a picosecond laser spectroscopy study. J Phys Chem 86:1788–1794

    Article  Google Scholar 

  70. He X, Bell AF, Tonge PJ (2003) Ground state isomerization of a model green fluorescent protein chromophore. FEBS Lett 549:35–38

    Article  CAS  Google Scholar 

  71. Dong J, Abulwerdi F, Baldridge A, Kowalik J, Solntsev KM, Tolbert LM (2008) Isomerization in fluorescent protein chromophores involves addition/elimination. J Am Chem Soc 130:14096

    Article  CAS  Google Scholar 

  72. Voliani V, Bizzarri R, Nifosi R, Abbruzzetti S, Grandi E, Viappiani C, Beltram F (2008) Cis-trans photoisomerization of fluorescent-protein chromophores. J Phys Chem B 112:10714–10722

    Article  CAS  Google Scholar 

  73. Yang JS, Huang GJ, Liu YH, Peng SM (2008) Photoisomerization of the green fluorescence protein chromophore and the meta- and para-amino analogues. Chem Commun:1344–1346

    Google Scholar 

  74. Huang GJ, Yang JS (2010) The N-arylamino conjugation effect in the photochemistry of fluorescent protein chromophores and aminostilbenes. Chem Asian J 5:2075–2085

    Google Scholar 

  75. Wang DQ, Merz T, van Gunsteren WF (2010) The thermal isomerization of the GFP chromophore: a computational study. Phys Chem Chem Phys 12:11051–11061.

    Google Scholar 

  76. Wu LX, Burgess K (2008) Syntheses of highly fluorescent GFP-chromophore analogues. J Am Chem Soc 130:4089–4096

    Article  CAS  Google Scholar 

  77. Stavrov SS, Solntsev KM, Tolbert LM, Huppert D (2006) Probing the decay coordinate of the green fluorescent protein: arrest of cis-trans isomerization by the protein significantly narrows the fluorescence spectra. J Am Chem Soc 128:1540–1546

    Article  CAS  Google Scholar 

  78. Weber W, Helms V, McCammon JA, Langhoff PW (1999) Shedding light on the dark and weakly fluorescent states of green fluorescent proteins. Proc Natl Acad Sci USA 96:6177–6182

    Article  CAS  Google Scholar 

  79. Altoe P, Bernardi F, Garavelli M, Orlandi G, Negri F (2005) Solvent effects on the vibrational activity and photodynamics of the green fluorescent protein chromophore: a quantum-chemical study. J Am Chem Soc 127:3952–3963

    Article  CAS  Google Scholar 

  80. Martin ME, Negri F, Olivucci M (2004) Origin, nature, and fate of the fluorescent state of the green fluorescent protein chromophore at the CASPT2//CASSCF resolution. J Am Chem Soc 126:5452–5464

    Article  CAS  Google Scholar 

  81. Toniolo A, Olsen S, Manohar L, Martinez TJ (2004) Conical intersection dynamics in solution: the chromophore of green fluorescent protein. Farad Discuss 127:149–163

    Article  CAS  Google Scholar 

  82. Polyakov IV, Grigorenko BL, Epifanovsky EM, Krylov AI, Nemukhin AV (2010) Potential energy landscape of the electronic states of the GFP chromophore in different protonation forms: electronic transition energies and conical intersections. J Chem Theory Comput 6:2377–2387

    Google Scholar 

  83. Olsen S, Manohar L, Martinez TJ (2002) Features of interest on the S-0 and S-1 potential energy surfaces of a model green fluorescent protein chromophore. Biophys J 82:359A–359A

    Google Scholar 

  84. Olsen S, Smith SC (2007) Radiationless decay of red fluorescent protein chromophore models via twisted intramolecular charge-transfer states. J Am Chem Soc 129:2054–2065

    Article  CAS  Google Scholar 

  85. Olsen S, Smith SC (2008) Bond selection in the photoisomerization reaction of anionic green fluorescent protein and kindling fluorescent protein chromophore models. J Am Chem Soc 130:8677–8689

    Article  CAS  Google Scholar 

  86. Baffour-Awuah NYA, Zimmer M (2004) Hula-twisting in green fluorescent protein. Chem Phys 303:7–11

    Article  CAS  Google Scholar 

  87. Megley CM, Dickson LA, Maddalo SL, Chandler GJ, Zimmer M (2009) Photophysics and dihedral freedom of the chromophore in yellow, blue, and green fluorescent protein. J Phys Chem B 113:302–308

    Article  CAS  Google Scholar 

  88. Wilmann PG, Petersen J, Pettikiriarachchi A, Buckle AM, Smith SC, Olsen S, Perugini MA, Devenish RJ, Prescott M, Rossjohn J (2005) The 2.1 angstrom crystal structure of the far-red fluorescent protein HcRed: inherent conformational flexibility of the chromophore. J Mol Biol 349:223–237

    Article  CAS  Google Scholar 

  89. Henderson JN, Ai HW, Campbell RE, Remington SJ (2007) Structural basis for reversible photobleaching of a green fluorescent protein homologue. Proc Natl Acad Sci USA 104:6672–6677

    Article  CAS  Google Scholar 

  90. Prescott M, Ling M, Beddoe T, Oakley AJ, Dove S, Hoegh-Guldberg O, Devenish RJ, Rossjohn J (2003) The 2.2 A crystal structure of a pocilloporin pigment reveals a nonplanar chromophore conformation. Structure 11:275–284

    Article  CAS  Google Scholar 

  91. Jaye AA, Stoner-Ma D, Matousek P, Towrie M, Tonge PJ, Meech SR (2006) Time-resolved emission spectra of green fluorescent protein. Photochem Photobiol 82:373–379

    Google Scholar 

  92. Arnaut LG, Formosinho SJ (1993) Excited-state proton-transfer reactions. 1. Fundamentals and intermolecular reactions. J Photochem Photobiol A Chem 75:1–20

    Google Scholar 

  93. Lossau H, Kummer A, Heinecke R, PollingerDammer F, Kompa C, Bieser G, Jonsson T, Silva CM, Yang MM, Youvan DC, MichelBeyerle ME (1996) Time-resolved spectroscopy of wild-type and mutant green fluorescent proteins reveals excited state deprotonation consistent with fluorophore-protein interactions. Chem Phys 213:1–16

    Article  CAS  Google Scholar 

  94. Kennis JTM, Larsen DS, van Stokkum NHM, Vengris M, van Thor JJ, van Grondelle R (2004) Uncovering the hidden ground state of green fluorescent protein. Proc Natl Acad Sci USA 101:17988–17993

    Google Scholar 

  95. Brejc K, Sixma TK, Kitts PA, Kain SR, Tsien RY, Ormo M, Remington SJ (1997) Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein. Proc Natl Acad Sci USA 94:2306–2311

    Article  CAS  Google Scholar 

  96. Stoner-Ma D, Jaye AA, Matousek P, Towrie M, Meech SR, Tonge PJ (2005) Observation of excited-state proton transfer in green fluorescent protein using ultrafast vibrational spectroscopy. J Am Chem Soc 127:2864–2865

    Article  CAS  Google Scholar 

  97. Stoner-Ma D, Melief EH, Nappa J, Ronayne KL, Tonge PJ, Meech SR (2006) Proton relay reaction in green fluorescent protein (GFP): polarization-resolved ultrafast vibrational spectroscopy of isotopically edited GFP. J Phys Chem B 110:22009–22018

    Article  CAS  Google Scholar 

  98. van Thor JJ, Georgiev GY, Towrie M, Sage JT (2005) Ultrafast and low barrier motions in the photoreactions of the green fluorescent protein. J Biol Chem 280:33652–33659

    Article  CAS  Google Scholar 

  99. van Thor JJ, Zanetti G, Ronayne KL, Towrie M (2005) Structural events in the photocycle of green fluorescent protein. J Phys Chem B 109:16099–16108

    Article  CAS  Google Scholar 

  100. van Thor JJ, Ronayne KL, Towrie M, Sage JT (2008) Balance between ultrafast parallel reactions in the green fluorescent protein has a structural origin. Biophys J 95:1902–1912

    Article  CAS  Google Scholar 

  101. Frank RAW, Titman CM, Pratap JV, Luisi BF, Perham RN (2004) A molecular switch and proton wire synchronize the active sites in thiamine enzymes. Science 306:872–876

    Article  CAS  Google Scholar 

  102. Burykin A, Warshel A (2003) What really prevents proton transport through aquaporin? Charge self-energy versus proton wire proposals. Biophys J 85:3696–3706

    Article  CAS  Google Scholar 

  103. Cui Q, Karplus M (2003) Is a “proton wire” concerted or stepwise? A model study of proton transfer in carbonic anhydrase. J Phys Chem B 107:1071–1078

    Article  CAS  Google Scholar 

  104. Stoner-Ma D, Jaye AA, Ronayne KL, Nappa J, Tonge PJ, Meech SR (2008) Ultrafast electronic and vibrational dynamics of stabilized A state mutants of the green fluorescent protein (GFP): snipping the proton wire. Chem Phys 350:193–200

    Article  CAS  Google Scholar 

  105. Shi X, Abbyad P, Shu X, Kallio K, Kanchanawong P, Childs W, Remington SJ, Boxer SG (2007) Ultrafast excited-state dynamics in the green fluorescent protein variant S65T/H148D. 2. Unusual photophysical properties. Biochemistry 46:12014–12025

    Article  CAS  Google Scholar 

  106. Shu X, Kallio K, Shi X, Abbyad P, Kanchanawong P, Childs W, Boxer SG, Remington SJ (2007) Ultrafast excited-state dynamics in the green fluorescent protein variant S65T/H148D. 1. Mutagenesis and structural studies. Biochemistry 46:12005–12013

    Article  CAS  Google Scholar 

  107. Leiderman P, Genosar L, Huppert D, Shu X, Remington SJ, Solntsev KM, Tolbert LM (2007) Ultrafast excited-state dynamics in the green fluorescent protein variant S65T/H148D. 3. Short- and long-time dynamics of the excited-state proton transfer. Biochemistry 46:12026–12036

    Article  CAS  Google Scholar 

  108. Stoner-Ma D, Jaye AA, Ronayne KL, Nappa J, Meech SR, Tonge PJ (2008) An alternate proton acceptor for excited-state proton transfer in green fluorescent protein: rewiring GFP. J Am Chem Soc 130:1227–1235

    Article  CAS  Google Scholar 

  109. Kondo M, Meech SR, Tonge PJ, Stoner-Ma D, Heisler IA (2010) Ultrafast dynamics of protein proton transfer on short hydrogen bond potential energy surfaces: S65T/H148D GFP. J Am Chem Soc 152:1452–1453

    Article  CAS  Google Scholar 

  110. Cleland WW, Kreevoy MM (1994) Low-barrier hydrogen-bonds and enzymatic catalysis. Science 264:1887–1890

    Article  CAS  Google Scholar 

  111. Cleland WW (2010) Adv Phys Org Chem 44:1–17

    Google Scholar 

  112. Lill MA, Helms V (2002) Proton shuttle in green fluorescent protein studied by dynamic simulations. Proc Natl Acad Sci USA 99:2778–2781

    Article  CAS  Google Scholar 

  113. Wang SF, Smith SC (2006) Leading coordinate analysis of reaction pathways in proton chain transfer: application to a two-proton transfer model for the green fluorescent protein. Chem Phys 326:204–209

    Article  CAS  Google Scholar 

  114. Wang SF, Smith SC (2007) Mechanistic aspects of proton chain transfer in the green fluorescent protein – Part II. A comparison of minimal quantum chemical models. Phys Chem Chem Phys 9:452–458

    Article  CAS  Google Scholar 

  115. Zhang H, Smith SC (2007) Model real-time quantum dynamical simulations of proton transfer in the green fluorescent protein (GFP). J Theor Comput Chem 6:789–802

    Article  CAS  Google Scholar 

  116. Zhang RB, Nguyen MT, Ceulemans A (2005) A concerted mechanism of proton transfer in green fluorescent protein. A theoretical study. Chem Phys Lett 404:250–256

    Article  CAS  Google Scholar 

  117. Vendrell O, Gelabert R, Moreno M, Lluch JM (2008) A potential energy function for heterogeneous proton-wires. Ground end photoactive states of the proton-wire in the green fluorescent protein. J Chem Theory Comput 4:1138–1150

    Article  CAS  Google Scholar 

  118. Vendrell O, Gelabert R, Moreno M, Lluch JM (2008) Exploring the effects of intramolecular vibrational energy redistribution on the operation of the proton wire in green fluorescent protein. J Phys Chem B 112:13443–13452

    Article  CAS  Google Scholar 

  119. Vendrell O, Gelabert R, Moreno M, Lluch JM (2008) Operation of the proton wire in green fluorescent protein. A quantum dynamics simulation. J Phys Chem B 112:5500–5511

    Article  CAS  Google Scholar 

  120. Fang C, Frontiera RR, Tran R, Mathies RA (2009) Mapping GFP structure evolution during proton transfer with femtosecond Raman spectroscopy. Nature 462:200–204

    Article  CAS  Google Scholar 

  121. Irie M (2000) Chem Rev 100(5):1685–1716

    Google Scholar 

  122. Ando R, Mizuno H, Miyawaki A (2004) Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting. Science 306:1370–1373

    Article  CAS  Google Scholar 

  123. Gurskaya NG, Verkhusha VV, Shcheglov AS, Staroverov DB, Chepurnykh TV, Fradkov AF, Lukyanov S, Lukyanov KA (2006) Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light. Nat Biotechnol 24:461–465

    Article  CAS  Google Scholar 

  124. Wiedenmann J, Ivanchenko S, Oswald F, Schmitt F, Rocker C, Salih A, Spindler KD, Nienhaus GU (2004) EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion. Proc Natl Acad Sci USA 101:15905–15910

    Article  CAS  Google Scholar 

  125. Shaner NC, Patterson GH, Davidson MW (2007) Advances in fluorescent protein technology. J Cell Sci 120:4247–4260

    Article  CAS  Google Scholar 

  126. Hayashi I, Mizuno H, Tong KI, Furuta T, Tanaka F, Yoshimura M, Miyawaki A, Ikura M (2007) Crystallographic evidence for water-assisted photo-induced peptide cleavage in the stony coral fluorescent protein kaede. J Mol Biol 372:918–926

    Article  CAS  Google Scholar 

  127. Lelimousin M, Adam V, Nienhaus GU, Bourgeois D, Field MJ (2009) Photoconversion of the fluorescent protein EosFP: a hybrid potential simulation study reveals intersystem crossings. J Am Chem Soc 131:16814–16823

    Article  CAS  Google Scholar 

  128. Tsutsui H, Karasawa S, Shimizu H, Nukina N, Miyawaki A (2005) Semi-rational engineering of a coral fluorescent protein into an efficient highlighter. EMBO Rep 6:233–238

    Article  CAS  Google Scholar 

  129. Lukacs A, Kondo M, Heisler IA, Miyawaki A, Tsutsui H, Towrie M, Greetham G, Tonge PJ, Stoner-Ma D, Meech SR (2010) In: Ultrafast phenomena XVII. Jonas D, Riedle E, Schoenlein R, Chergui M, Taylor A (eds) OUP: 511–513

    Google Scholar 

  130. Dedecker P, Hotta J, Ando R, Miyawaki A, Engelborghs Y, Hofkens J (2006) Fast and reversible photoswitching of the fluorescent protein Dronpa as evidenced by fluorescence correlation spectroscopy. Biophys J 91:L45–L47

    Article  CAS  Google Scholar 

  131. Habuchi S, Ando R, Dedecker P, Verheijen W, Mizuno H, Miyawaki A, Hofkens J (2005) Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa. Proc Natl Acad Sci USA 102:9511–9516

    Article  CAS  Google Scholar 

  132. Habuchi S, Dedecker P, Hotta JI, Flors C, Ando R, Mizuno H, Miyawaki A, Hofkens J (2006) Photo-induced protonation/deprotonation in the GFP-like fluorescent protein Dronpa: mechanism responsible for the reversible photoswitching. Photochem Photobiol Sci 5:567–576

    Article  CAS  Google Scholar 

  133. Subach FV, Zhang LJ, Gadella TWJ, Gurskaya NG, Lukyanov KA, Verkhusha VV (2010) Red fluorescent protein with reversibly photoswitchable absorbance for photochromic FRET. Chem Biol 17:745–755

    Google Scholar 

  134. Stiel AC, Andresen M, Bock H, Hilbert M, Schilde J, Schonle A, Eggeling C, Egner A, Hell SW, Jakobs S (2008) Generation of monomeric reversibly switchable red fluorescent proteins for far-field fluorescence nanoscopy. Biophys J 95:2989–2997

    Article  CAS  Google Scholar 

  135. Ando R, Flors C, Mizuno H, Hofkens J, Miyawaki A (2007) Highlighted generation of fluorescence signals using simultaneous two-color irradiation on Dronpa mutants. Biophys J 92:L97–L99

    Article  CAS  Google Scholar 

  136. Mizuno H, Mal TK, Walchli M, Kikuchi A, Fukano T, Ando R, Jeyakanthan J, Taka J, Shiro Y, Ikura M, Miyawaki A (2008) Light-dependent regulation of structural flexibility in a photochromic fluorescent protein. Proc Natl Acad Sci USA 105:9227–9232

    Article  CAS  Google Scholar 

  137. Fron E, Flors C, Schweitzer G, Habuchi S, Mizuno H, Ando R, De Schryver FC, Miyawaki A, Hofkens J (2007) Ultrafast excited-state dynamics of the photoswitchable protein dronpa. J Am Chem Soc 129:4870

    Article  CAS  Google Scholar 

  138. Andresen M, Stiel AC, Trowitzsch S, Weber G, Eggeling C, Wahl MC, Hell SW, Jakobs S (2007) Structural basis for reversible photoswitching in Dronpa. Proc Natl Acad Sci USA 104:13005–13009

    Article  CAS  Google Scholar 

  139. Stiel AC, Trowitzsch S, Weber G, Andresen M, Eggeling C, Hell SW, Jakobs S, Wahl MC (2007) 1.8 Angstrom bright-state structure of the reversibly switchable fluorescent protein Dronpa guides the generation of fast switching variants. Biochem J 402:35–42

    Article  CAS  Google Scholar 

  140. Li X, Chung LW, Mizuno H, Miyawaki A, Morokuma K (2010) A theoretical study on the nature of on- and off-states of reversibly photoswitching fluorescent protein Dronpa: absorption, emission, protonation, and Raman. J Phys Chem B 114:1114–1126

    Google Scholar 

  141. Bulina ME, Chudakov DM, Britanova OV, Yanushevich YG, Staroverov DB, Chepurnykh TV, Merzlyak EM, Shkrob MA, Lukyanov S, Lukyanov KA (2006) A genetically encoded photosensitizer. Nat Biotechnol 24:95–99

    Article  CAS  Google Scholar 

  142. Kent KP, Childs W, Boxer SG (2008) Deconstructing green fluorescent protein. J Am Chem Soc 130:9664

    Article  CAS  Google Scholar 

  143. Kent KP, Oltrogge LM, Boxer SG (2009) Synthetic control of green fluorescent protein. J Am Chem Soc 131:15988

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I am grateful to EPSRC for financial support (EP/H025715), to my students and postdoctoral fellows for their work and insights over the years, and to my collaborators for their generous advice and assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen R. Meech .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Meech, S.R. (2011). Primary Photophysical Processes in Chromoproteins. In: Jung, G. (eds) Fluorescent Proteins I. Springer Series on Fluorescence, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4243_2011_19

Download citation

Publish with us

Policies and ethics